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Introduction

For the study of Finsler spaces, the indicatrices play an important role. In
the present paper, we shall deal with some special Finsler spaces characterized by
Riemannian geometric properties of the indicatrices.

In § 1, we shall state the fundamental formulas. In § 2, we deal wnth a Finsler
space such that all the indicatrices are conformally flat. In § 3, we obtain a necessary
and sufficient condition for the vector field C,') (the tangential component of the
torsion vector C; to the indicatrix) on the indicatrix is conformal Killing. More-
over, as an application of the result, we shall deal with the M. MATSUMOTO’s
conjecture on a Finsler space satisfying T-condition [4].%) Finally, in § 4, we shall
deal with C-reducible Finsler spaces.

The terminologies and notations in the present paper are referred to M. MATSU-
MOTO’s monograph [6].

" § 1. Fundamental formulas

Let (M", L) be an n-dimensional Finsler space, where M" is the underlying
n-dimensional manifold and L=L(x, y) is the Finsler fundamental function.
L being a differentiable function of the point x=(x') and the element of support
y=()") €T .(M™ and is positively homogeneous of degree one with respect to y,
where T, (M™") is the tangent space of M" at the point x.

Now, we shall restrict our discussion to the fixed point x,(€¢ M") and the
corresponding tangent space T, (M") of M" at the point x,. Then the space

=T, (M")— [0} being an n-dimensional Riemannian space with the metric
tensor gij(xo, ¥)=1%02L2/0y'dy/, where 0 is the origin of T, (M"). It is easily
seen that the Riemannian connection and the curvature tensor of V" are the
h(hv)-torsion tensor (the Cartan torsion tensor) C,; and the v-curvature tensor
(the first curvature tensor of the Finsler Space) Siju, respectively. And the covariant
differentiation of the tensor Tj; on V" is the same as the v-covariant differentiation:
Tu]t—aTu/a}" T Cl— Ty Gy

1) Greek indices run over the range {1, 2, ...,n—1} and Roman indices run over the range
e Ay 8
¥) Numbers in brackets refer to the references at the end of the paper.
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Moreover, it is well known that

(l.1a) - Cm)" = Cuk}"' = Cm)"' =0,
(1.1b) Suu}" = Suu}’j - Suu}’* = Suu)" =0,
(1.1¢) L =1,

(1.1d) Il;=L"hy,

(1.1e) hijle = =L (hu L+ hy 1),

Where !‘zy‘lL aﬂd hu=gu—'!‘.{1.
The indicatrix I,, at xo(€ M") is defined by the hypersurface which is given
by the following equation

(1.2) 8iy(x0, Y)Yy =1, (or L(x,,y) =1).

Then I,, is locally represented by the equation y'=)'(v*). We shall denote the
projection factor dy'/du* and the unit normal vector to I,, by B, and N’ re-
spcctivc!y.' Then the induced Riemannian metric tensor g,; of I, is given by
8ap =gl}B¢ Bﬂj'

We shall denote the operation of D-symbol due to Van der Wearden—Bortolottt
by D,. Then it is well known that

(1.3a) D,g,; =0, (1.3b) D,g,, =0,
(13¢) D,By = b, N, (1.3d) D N'=—ghb, By,

where the symmetric tensor b,, is the second fundamental tensor of I, and g**
are the contravariant components of g,,. Moreover, from (1.1a) it is clear that

(1.4) D,y = B/,

Applying D, to (1.2) and using (1.3a) and (1.4), we obtain that g B,'y/=0.
This equation gives us that the normal vector N'(u) is identical with »'(x). On
the other hand, the indicatrix 7., is totally umbilical and the first mean curvature
of I,, is equal to —1 identically. Then we have b,; =—g,s. This result gives
us that

(1‘5) DGBJI =_g=§y"

Let R,,; be the curvature tensor of I,, then from the Gauss equation,
we have that

(1.6) Rxﬁy‘! = Ss’jkl BsiBg"B-,kBal — 858yt 8ay 8pa-
On the other hand, from the definitions of 4;; and g,; we have
(1.7) glﬂ = hu.Bat.ng.

Substituting (1.7) in (1.6), we get

(1.8) Ropys = (Siju—huhy+hyhy) B! By B} By'.
Contracting (1.8) by g*, we obtain

(1 .9) Rﬂ? = (Sjk . (” _2) hjl:) Bﬂi B?k,
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where R,, is the Ricci tensor of I,, and S;=g"S,;,, is v-Ricci tensor. Moreover
contracting (1.9) by g#”, we have

(1.10) R=S—(n—=2)(n—1),

where R is the scalar curvature of /,, and S=g/*S;, is v-scalar curvature.

§ 2. Finsler spaces with conformally flat indicatrices

In this section, let the dimension of the Finsler space M" be more than three,
then the dimension of the indicatrix is more than two.

Now, we assume that the indicatrix 7., is conformally flat, then from the well-
known theorem of Weyl we have that

(2.1) Cupys = Rupya+(Ryy s+ Rys8ay— Ras 8py— Ry, 8.9)/(n—3)—
—R(8ey8p5— 82385))/(n—2)(n—=3)=0 for n=35,
(2.2) C,y=D,Rs,—DyR,,—(8p,D, R—g,yDyR)[2(n—2) =0 for n =4,

where C,,; is the Weyl’s conformal curvature tensor.

First, we shall consider the case of n=35. Substituting (1.7), (1.8), (1.9) and
(1.10) in (2.1), we have

(2.3) {Sipu+(Suhu+Spha—Sahju—Sihy)/(n—3)—
—S(hahﬂ _h"hﬂ‘)/(n '-2)(" — 3)}B¢‘B’JBrtB i == 0.

Let Quu =Sm1 + (Slkhﬂ + Sjlhik = Suhjx -8 jl'hﬂ')/ (n=3)—S (huhﬂ - hﬂhjk)/ (n—2)(n-3),
then from (1.1b) and /;;3/=0 obtained by the definition of #4; we have that
Qi = Qijuy’ = Qijuy* = Qujuiy' =0. Therefore the following equation is satisfied
on I, by the above equation and (2.3)

(2.4) S+ Suhu+Siha—Suhp—Sphy)/(n—3)—
—=S(hyhjy—hyhp)/(n—2)(n—3) = 0.

Since S, is the homogeneous tensor of degree —2 with respect to y, we are
able to extend (2.4) on ¥”". Then we get

(2.5) Sijir = ha Cpthy Cy—hy Cy—hy Cy,

where C;=S,;/(n—3)— Sh;;/2(n—2)(n—3).
Conversely, if the v-curvature tensor satisfies (2.5) at the point x, of M”",
then the indicatrix 7, is conformally flat, as it has been proved by M. Matsumoto [6].
Next, we shall consider the case of n=4 and assume that 7, is conformally
flat. For the dimension of the indicatrix 7, is three, the Weyl’s conformal curvature
tensor C,s,; vanishes on I, . Therefore (2.5) is satisfied on V™.

Now we substitute (1.7), (1.9) and (1.10) in (2.2) and use (1.5), then we have
(2.6) {Sile— Sialj— (Sl hi; - S|;ha)/2(n—2)} B,' By B} = 0.

o9
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Let

. Silhij— Sjlhp+2SL™ hy;l, —2SL~hy 1))
QI_JI - Sijk_SlﬁIJ+L_lSij!k_L_:Sikfj_( Ll J! . 2(’]_2)0 : x ’
then it is clear from (1.1b) and S;;l)*=—2S5;;. that Q) =0y’ =0iu)* =0
These equations and (2.6) show us that Q,4=0 on I, . Therefore we have
the following equation on V"

(2.7) Sijle=Suly+ LS =L S, 1, —
—(Slehyy— S|, hu+2SL= by l,—2SL by 1)/2(n—2) = 0.

From the v-covariant differentiation of C;;, (2.7) is rewritten in the form
(2.8) C”h-'ciklj{'L-ICUI*_L-l C“IJ-:O.

Conversely, if (2.8) is satisfied at the point x, of M", then we easily obtain
Co3,=0 on I, from the contraction of (2.7) by B,', By and B,*. These results

give us

Theorem 1. Let M" be an n-dimensional Finsler space. A necessary and
sufficient condition for all the indicatrices are conformally flat is that

Siju = hyCp+hp Cy—hy Cy—h; Cy for n =35,
Cij]k_ci.tu"'L_l C.'jfk—L_l Cnfj =0 for n=4.

If n=5 and the indicatrix is conformally flat, then C,,=0 from D,C%%,=
=(n—4)C,,/(n—3). So we have

Corollary 2. Let M"™ be an n(=5)-dimensional Finsler space. If all the in-
dicatrices are conformally flat, then we have that

Cijle— Calj+ L7 Cyly = L7 Gyl = 0.

§ 3. Indicatrices with conformal Killing vector field C,

Let C; be a vector field given by C;=g/*C;;. Then we get a vector field
C,=C;B,} on I,. From the fact that C,, are connection coefficients of V”
we have that C;=d(log Vg)/d)', where g is the determinant of the metric tensor
8. Therefore C, is the partial derivative of the function log i’E by . Ac-
cordingly, it is easy to see that D,Cy=D,C,.

Now we assume that C, is the conformal Killing vector on I,,. Then we
have that
(3.1) D;Cﬂ == .Qg‘.lﬂ)

where ¢ is a certain function on /.. From the definition of C,, (1.1a) and (1.7),
we get
(3>2) - ((":f"!?hl}) B;‘ Bprj == 0.
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For the tensor Q;; = Cj;—oh;;+L7'C;l;+L~C,l; it is easily seen 0.1y’ =0’ =0.
From these equations and (3.2) we have Q;;=0 on I,,. This result gives us the
following equation
(3.3) 1 = ehy;—LCl;,— L™ G;l;
at the point x, of M".

Conversely, if (3.3) is satisfied at the point x, of M", itisseen that D,C,=0g,.
Therefore C, is the conformal Killing vector on /,,. So we have that

Theorem 3. A necessary and sufficient condition for the vector C, is conformal
Killing vector is that

CIlJ = th_L_‘ C'IJ_L_I'CJIP

Now we assume that M" satisfies the condition (3.3). Then, by Theorem 3,
C, is a conformal Killing vector: D,C,=0g,; on I,,. Moreover, we shall assume
that the indicatrix 7., is closed and ¢ has a constant sign. Then we have g*D,C,=

=(n—1)¢=0 (or =0). Accordingly, we get that log Vg is constant on I,,. On
the other hand, log Vg is homogeneous of degree zero with respect to y. So we
obtain that log }g is constant on ¥". Then we have C;=0 at the point x, of M".

Accordingly, by DEIKE’s theorem [1], we have M" is a Riemannian space. Therefore
we have

Theorem 4. Let M" be an n-dimensional Finsler space and assume that all the
indicatrices I, are closed. If M" satisfies a condition: C;;=gh;;—L7'Cil;—
—L7IC;l; and ¢ has the constant sign, then M" is a Riemannian space.

Now we shall show two corollaries of Theorem 4.

Corollary 5. (MATSUMOTO’s conjecture) Let M" be an n-dimensional Finslerspace
and assume that all the indicatrices are closed. If M" satisfies the T-condition, then
M?" is a Riemannian space.

Proor. If M" satisfies the T-condition, then by the definition we have
(3.4) Tiju = Cph+ L Cp i+ L Cp i+ L Co ;+ L7 Cyy Iy = 0.

Contracting (3.4) by g", we have that C,,=—L"'C;/;—L~'C;l;. This equation
is the case of ¢=0 of (3.3).

Corollary 6. Let M" be an n-dimensional Finsler space and assume that all
the indicatrices are closed. If M" satisfies C|;=¢hy;—L*Cil;—L™'C;l; and the
Junction L*C,C* is a function of the point x only on M", then M" is a Riemannian
space.

Proor. If u> function L*C,C* is a function of the point x only on M",
then the function C,(* is constant on /,. From the covariant differentiation
of C,C* we get 20C,=0. If o is not equal to zero at a point # of I, then
we have ¢ #0 ina neighbourhood U of w. Thuswe have C,=0 in U. Accordingly,
by Theorem 3, we have D,C,=0g,;=0. From this, we have ¢=0 in U, this is
a contradiction. So we have ¢=0 on /,. Thus, by Theorem4, M" is a Riemannian
space.
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Again, we shall consider the case of all the indicatrices are conformally fiat.
If we denote the function C,C' by C, then the v-covariant differentiation of
C gives us
(3.5) C|; = 20C;—2L"' Cl,.
Moreover, v-covariantly differentiating (3.5)-and using (l.1c) and (1.1d), we get
(3.6) Clil; =2¢|;Ci+2(e*—L*C)h;;+6L~2Cl,1;—2L""oC;l;—6L gl; C;.
From the Ricci’s identity for the function C: C|j|;—C|;;=0, we have
(3.7) QIJ Cl'-gli CJ+2L_19C(IJ_2L_I Q" Cj = 0.

Contracting (3.7) by C', we have that Cp|;—g|,C'C;+2L*¢Cl;=0. Therefore
if the function C is nonzero, we get

(3.8) el, =C™¢,C'C;—2L1¢l,.
Next, v-covariantly differentiating (3.3) and using (1.1c), (1.1d) and (3.8), we have
(3.9) Cljk=C10|,C'h;;Cy—L2h; C;—L2hy C;—

=2L Y o(hjli+hp i+ hl)+2L*(C,l L+ C; L L+ G L 1)).

We shall consider the Ricci’s identity for the vector C;: Ci;li—Clil;=—C,S{x,
then from (3.9) we obtain that

(3.‘0) _C'Sj‘]t = (C_l Ql‘ C‘+L_z)(huck‘_h& Cj)‘
Substituting (2.5) in (3.10), we have
(3.[]) hijc.rkC‘_hikctjC'+Cl'jCk_Ciij =

=(C1g|, C'+L~)(h;; C.—hy C)).
Contracting (3.11) by g and using (I.1b), we get
(3.12) CuC' =(n—-2)(C g, C'+L"?)C[(n—3)—SC,/2(n—2)(n—3).
Substituting (3.12) in (3.11) and then contracting by [ 5,8
CC; = (8/2(n=2)(n—3)—(C |, C'+L~%)/(n—3)) Ch;; +
+((n—=1)(C | C*+L*)/(n—3)-S/(n—2)(n—3)) C; C;.
Therefore we get

Theorem 7. Let M" be an n(=4)-dimensional non Riemannian Finsler space.
If all the indicatrices are conformally flat and the vector C, is conformal Killing,
then Cij=ah;+pC,C;, where

a=S2n-2)(n-3)—(C 1| C*'+L~*/(n-3),
B = C1{(n—1)(C 1|, C*+L3)/(n—3) - S/(n—2)(n—3)}.



On some properties of Finsler spaces based on the indicatrices - 135

Moreover substituting Cy;=ah;+pC,C; in (2.8), we get

Corollary 8. For the functions « and B in Theorem 7, we have that az|,_
=C~a,CC;—2L ', and B|;=C~p|,C'C;.

Now we assume that the Finsler space M" is non Riemannian S3-like Finsler
space satisfying the T-condition. From the definition of the S3-like Finsler space
whose v-curvature tensor is written in the form: S;,=S(hh;—huhy)/(n—1)(n—2)
and Theorem 7, we have

= 2“(hﬂhjt_hllhﬂ)+ﬁ(hllc] Ck+hjk C,-C,—hi‘cj C"—hﬂ Cick)‘

We get easily that f=0 by (3.13). Therefore we have that S=L~¥n—1)(n—2).
This equation and (1.10) give us that

Theorem 9. Let M" be a S3-like non Riemannian Finsler space satisfying the
T-condition. Then the curvature tensor of the indicatrix I (x€M™") vanishes identi-
cally.

§ 4. C-reducible Finsler spaces

In this section we shall consider a C-reducible Finsler space defined by
M. MATsuMOTO.

Definition. A Finsler space M" is called C-reducible if the A(Av)-torsion
tensor C,;, is written in the form:

(4.1) CUl = (hljct+h1k C"{"hu C})}(ﬂ‘l‘l).
Substituting (4.1) in  S§y,,=C, C;'y — Cg,C);, we have that
(4.2) S‘m = hu CJl+th Cu""‘h“ le_hjl Ca.

where C;;=(Ch;/2+C;C))/(n+1)*. Therefore we get

Theorem 10. Let M" be an n(=4)-dimensional C-reducible Finsler space.
Then the indicatrix I, (x€ M™) is conformally flat.

Next we shall consider the v-covariant differentiation of C;. From the definition
of the C-reducible Finsler space, it is clear that

(43) Cfl] = ohu'—L—l CiIJ—L—l lel'

Therefore we have the following corollaries from Theorem 3, Theorem 4 and
Corollary 6.

Corollary 11. Ler M" be an (n=3)-dimensional C-reducible Fmsler space.
Then the vector C, is conformal Killing.
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Corollary 12. Let M" be an (n=3)-dimensional C-reducible Finsler space
and assume that the indicatrices are all closed. If the function C', is of constant
sign then M" is a Riemannian space.

Corollary 13. Letr M" be an n(=3)-dimensional C-reducible Finsler space
and assume that all the indicatrices are closed. If the function L*C,C* is the function
of the point x only, then M" is a Riemannian space.
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