Multipliers of L'-algebras with order convolution

By DAVID L. JOHNSON and CHARLES D. LAHR (Hanover, New Hampshire)

Abstract: For each n,1=n=N, let L%a,,b,) be the commutative convolution measure
algebra, under order convolution, of all Lebesgue integrable functions on the interval I, of real
numbers from a, to b,, where I, is a lopolozlwl semigroup under max multiplication. Then
the multiplier algebra WM (L%a,, b ) of L%a,.b,) is shown to be the Banach algebra obtained
fmm L'a,, b,) by the adjunction of an identity elemcm Moreover, the Banm:h space L\(IT1,)=

- 3 L'(a,, b,) of Lebesgue integrable functions on the product semigroup H! becomes a

cornmur.ame convolution measure algebra under order convolution, and u is shown that

:Dl(@ Ll(a”, b") - 0 m(L1(GJ|| b!l ’)»
AMS(MOS) subject classification (1970). Primary 43A10, 43A20. Key words and phrases:
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1. Introduction

Let N be an arbitrary, but fixed, element of the positive integers N and,
for each n, 1=n=N, let I,={a,.b,} be an interval of real numbers from a,
to b,, where either a, or b, may possibly be infinite and /, may or may not
contain either a, or b,. Then, with the usual interval topology and max multiplica-
tion, each J, is a locally compact idempotent commutative topological semigroup;
with the product topology and componentwise multiplication, the product semigroup

S= ]T I, has these same properties. Further, let M(S) denote the Banach algebra

nw=1
under convolution product and total variation norm of all finite regular Borel
measures on S. Then the Banach space LYS) of all measures in M(S) which
are absolutely continuous with respect to (product) Lebesgue measure on S be-
comes a commutative semisimple Banach algebra in the inherited product #+ which
will be called order convolution. A multiplier of L'(S) is an automatically conti-
nuous linear operator 7T:LYS)—-LYS) such that T(f*g)=f*T(g), for all
£, g€ LY(S). In this paper the multipliers of LYS) are characterized. The result
for the case of a single interval 7,, a special case of which has been obtained by
Larsen using different methods [7], is easy to describe: the multiplier algebra
M(LY1,)) of LYI,) is the Banach algebra obtained from LY(J,) by adjoining an
identity. In the case where N=2, the multiplier algebra of L'(S) is the projective
tensor product of the multiplier algebras M(LY(Z,)), I=n=N.

The maximal ideal space 4(LY(1,)) of LX(1,), I,=a,, b,}, can be identified [6]
with the interval (a,, b,] (if b, =+<=, the right-end is compactified). For each
x€(a,, b,), if ¢@.=K]a,, x] is the characteristic function of [a,,x], then ¢,
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determines a complex homomorphism via the pairing fx)=(o.. ) f f(t) ds,

feLY(1,); correspondingly, 4(LY(S))= ]] (a,, b,] [1). These and other t‘acts about

L\(1)=LYa,,b,) and LYS) as Banach algebras can be found in [6, 1]. For results
about tensor products, consult [4].

Now, LYS) has the structure of a semisimple convolution measure algebra
(CMA) in the sense of TAYLOR [8]; hence, there is an isometric imbedding fi+v,
of L(S) into M(I'), where I' isthe structure semigroup of L'(S), and A(L’{S)]-—
=I, the set of continuous semicharacters of I. Each y¢I determines a unique

element of A(LY(S)) via the mapping f—~ f zdvy, fELYS). Routine verification

r
shows that the structure semigroup I', of LY(I,) consists of two ideal elements
0, and 1,, and the pairs ¢, t*, forall ¢, a,<t<b,. Further, (I',, <) is linearly
ordered by specifying that

=g <stct~<i*<cl, foral sfa,<t<f<b,.

The product on I',=[0,, 1,] is then max multiplication, and I', has the compactified
order topology (a one or two-point compactification when one of a, or b,, or
both a, and &,, happen to be infinite). Moreover, [,={{.: x¢(a,. b,]}, where
4;,:]([0 x¥), a,<x<b,, and ¥, =K[0,b})=K(I,). Also, because LY(S)=

= ® LX(I,), the projective tensor product of the LY(1), 1=n=N, the structure

u—l

semigroup I' of LYS) is HI’ [11].

The algebra of all mult:phers of LYS) is denoted by 9M(L'(S)) and each
SEL'(S) determines a multiplier T, by T,(g)=f*g, gEL'(S). Since LY(S) has
an approximate identity bounded by 1, there is an isometric imbedding T\suy
of M(LYS)) into M(I) satisfying vryy=pur=*vy, fELYS) [5 12]. This realization

of M(LYS)) will be utilized to show that M(LY(S))= :Ul(L‘(I )) and that

M(LY1,)) is obtained from L*(J,) by adjoining an |dcnt1tv Sccnon 2 is devoted
to the case N=1 and contains the answer to a question posed by LARSEN [7, p. 244],
while Section 3 is devoted to the general case. We remark that, for CMA’s A, B,
it is not in general true that M(4 R B)=M(A) @V (B). For example, let A=B=
=LYR); then M(L}(R))=M(R) and M(LY(R)® L} (R))=M(L(RXR))=M(RXR)
[10], while M(R)® M(R)SE M(RXR) [3, pp. 784—S5].

2. Multipliers of L'(a, b)

In this section, N=1 and we write LYa, b) instead of LYS). Let A =
={v,e M(I'): feL¥(a, b)} and let 8, in M(I') denote the Dirac measure of unit
point mass concentrated at the identity 0 of I'=r,.

Theorem 1. If T: L¥a, b)—~LYa, b) is a multiplier of L\a,b), then ur=
=cdo+v, for some c in C, f in L¥a, b). In other words, M (L (a, b)) is the Banach
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algebra obtained by adjoining the identity multiplier to the canonical image of LY(a, b)
in M(L(a, b)).

PrOOF. Writing pr=cdy+puf, where c=p({0)) (and so wuF({0))=0), the
result follows provided pf€A,. Since A, is norm-closed in M(I), it suffices
to construct a sequence {u,} of measures in A, which converges in norm to uj.
We proceed now to the construction of just such a sequence.

Let {c;} be a strictly decreasing sequence of real numbers in (a, b) converging
downward to a, and let {u} be the approximate identity of L!(a, b) defined for
each k by u,=(c,—cr+1)™! Klcis1, ). For each k, let w,=vr, . Because
vre=ur*v,, for all feL(a,b),

(D (’I’x’ ﬂT)(‘bxs vf} - (“’xl #r*":) = <‘!’.n "r,r);
that is,
@ url0, x*) [ f(t)dt = vr([0, x*), x€(a, b), feL (a, b).

Setting f=u, in (2) and observing that [ w(t1)dt=1, for all x in [c, b), yields

(3) kr[0, x*) = ay [0, x*), x€[ey, b].
Further, since ur and @, are regular Borel measures on I', for all x in (¢, b],
4) urled, x*) = ayfef, x¥),

with the convention that [c¢f, bF)=[c/, 1].
Now, for k in N, define the measures g, and 4, on I' by setting u,=
=K[ef, l)ur and i,=K[c}, lJo,. Then, for each ¥ €l x€(a, b],

(5) W ) = [V dpls) = [ K0, x*)(S)K[ei, 1)(s) dur(s) =
r r

{0, if a<xsgc
urlet, x%), if ¢<x=b,
and, in like manner,

(6) Wx» A = [

0, if a<x=g¢

aplet,x*), f ¢q<x=bh.

Thus, in view of the identity (4), the measures p, and J, agree on ['; hence,
wy=4,. Consequently, um,<w, and, since €A and A, is an L-subspace of
M), p€ Ap, for every k in N.

The proof will be completed by setting c=u({0}) and uf=pr—cd,, and
proving that ug =t13_r2 M in norm. Toward this end, observe that

(?) }J; —#3=K(09 l]‘UT—K[C;, l]JuT= K(O: C:)ﬂr,
S0
(8) lut =l = 1K, ) url(T) = |l O, i),
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for each k. However, the interval (0, ¢§) is the countable disjoint union

oo
J ledi1, o) and lur| is a finite regular Borel measure on I', so
n=1

9) 2 lurllederf) = gl 0, ¢ff ) < + o,

k=1

Therefore, for every £=>0. there exists an integer K such that

(10) [zl (0, cf) = E lurlledsq, b)) <&
k=K

This fact. together with equation (8). vields uf —p,!l<e, for all k=K. |}

LArseN [7] obtained Theorem 1 for the special case S=[0, 1] (i.e., LY0. 1))
using methods quite different from ours. Larsen also observed that, if a multiplier
T of L'0,1) is a compact operator on LY0,1), then T=T,, for some f in
L0, 1). He stated the converse of this result as an open question, to which we
now supply the answer.

Proposition 2. For each positive integer n. the multiplier T, of LY0, 1) defined
by the polynomial nx"' (ie., T,f=(nux"")«f. for all f in LY0, 1)) is neither
a compact nor even a weakly compact operator on L0, 1).

Proor. First, we exhibit a sequence {f,),.. contained in the unit ball of L'(0, 1)
such that, for no »n. does the sequence {7,f,}), have a norm-convergent sub-
sequence. Let f;=1 and, for m=2, let f,=f,_,#f;; then [6, MIDDLE, p. 4]
fu(x)=mx™=1, for each m. Observe that T,f,=f,#fn=Susms fOrall n,m in N,

1

Now, foreach m, f,,=0 and ./, /,= fm.\""‘"d.\':l. Moreover, since ,!,i"l Su(x)=0,
[{]
forall x in [0, 1). the only possible limit function in L0, 1) for a norm-convergent
subsequence of the sequence {7,f.}).={/,+mJn is the zero function. However,
Sosmin=1, for all m. so every member of the sequence {T,f,}. is L'-distance
| from the zero function. Therefore, the norm-bounded sequence {f,}, in LY0. 1)
is such that, for no n, does the sequence {T,f,),. possess a norm-convergent
subsequence. Hence, the multiplier 7, of L*0, 1) is not a compact operator on
LY0, 1), for any n.
Next. a routine calculation shows that T;7=T,,. for all n; hence, the operator
T; is not compact, for any n. However, the product of two weakly compact ope-
rators on an L'-space is compact [2. Cor. 13, p. 510]. Thus, the multiplier T, is
not weakly compact, for any »n. |

3. Mulripliers of LY(I1{a,.b,})

Cikn ik

N
Let S be the product semigroup JJ1,, N=2. If fy,' is the approximate
w=1
identity for L'(/,) constructed in the proof of Theorem 1 from a strictly decreasing

N .
sequence {c;,), of real numbers in (a,. b, then {uk: R Uy, }x is an approximate
n=1



=
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identity bounded by one for L¥S) which consists of functions whose Gelfand
transforms have compact support. This fact, together with the regularity of LX(S),
implies that ﬂR(L‘(S)) is a CMA and that its canonical image in AM(I') is an

L-subspacc of M(I') [12]. Moreover, @ ‘IR(LI(I,,)) is imbedded as an L-subalgebra

A=l

in :Dt[@ L‘(!}] M(LYS)) [8, Prop. 2.5.2].

Now, for each n, 1 =n=N, I', denotes the structure semigroup of Ll(!,.). and
v [X(I)—~M(I,) denotes the canonical isometric imbedding of L!(1,) in M(I,).
Further, if A, ={'.‘:’CM(F,,) LELM(D)), then the map (f,)—(v{"") defines an iso-

metric isomorphism from ﬂ L'(I,) onto H Ap,. It is readily established that

n=1

N
@v" is an isometric isomorphism from the dense subspace ® LML) of LXS)
‘b’

onto the dense subspace ® Ap, of 60 A, =Ar={v,eM(I): feL'(S)}. and that

n=l
@v™ has a unique continuous extensnon to an isometric isomorphism v= Qv
from L'(S) onto A;.

The following notation will simplify the statement and proof of the upcoming
theorem. For 1=m=N, let I, ={=()el:t,=0,} and let I.=1,..1.
Further, for each m, let id, denote the identity operator on L'(a,, b,). Finally,
if ue M(I'), then supp (u) will denote its support.

Theorem 3. If T: L'(S)— L'(S) is a multiplier of L'(S) and py is the measure
in M(I') corresponding to T, then uy admits the decomposition:

N
Hr = Vit 2 Tm,

m=1

where feLYS) (i.e., v,€A;) and, for 1=m=N, t,, is a measure in M(I') with
supp (t,)&TI',, and corresponds to a multiplier T, of LYS) contained in
N

C.id,, @ M(LYI,)). Therefore, M(LY(S))= é’; M(LY(a,, b,)).

Proor. The last statement follows from the first by using induction on N.
To prove the first statement of the theorem, fix 77 in M (L*(S)) and let ur be the
corresponding measure in M(I). Let F= LN) I'y, (the union of the faces) and define
two new measures uf, ut on I' by settin“g-;r——-K(F)pr and pf =pr—u%. We will
show that uf € A, (herce, uf =v,, for some fin L'(S)), and that u§= %; T,,, With

7, as in the statement «© the theorem. We begin with uf.

For each k£ in N, let co,,—vnkEAr Now since vy =pur*v,, for all f in
LY(S), it follows tha., for each ¥, in [, where x=(x,,)€H(a,,,£,,],

(1 l) <'xbxs pl’} (wxs "‘J") = (d’x' Hr * v,r) o ('lflx! VTJ');
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that is
(12) - we ([0, x})) f(x) = vy, ([0, x;7)).

Setting f=u, = @u,, in equation (12) yields the identity:

(13) ”T(Hlons Xp )) = wl(ﬂ[onn x+))

valid for ali (x,) in Hc,, b,). Using equation (13) and the fact that u; and
w, are regular Borel measures on I, a straightforward but tedious computation
shows that

(14) ur(I e, x1) = ou(M ek, x})),

for all (x,)in I1(c,, b,). The compmation is indicated for N=2 only; the general

case is similar. For N=2, the set H K. x') may be written as a disjoint union
of sets as follows: n=1

(15) [0y, 7)) X[0,, x3) = [0y, ) X[0,, ci)U
U[0,, ¢i) X[eds, x3) Uleil, x7) X[0,, e Uledh, x1) X[ek, x3).

By (13), ¢y and o, agree on all of the sets in equation (15), except the final set;
hence, lhey agree on the final set as well, establishing equation (14). For general N,

the set H [0,, x;}) decomposes into 2¥ disjoint sets, one of which is ]] fot . x3).

n=1 n=1
Since equation (13) implies that u, and w, agree on I1[0,, x;}) and on all of the
other 2¥ —1 sets in the decomposition of 11[0,, x;}), the identity (14) follows.
N
Next, for k in N, set R,= J] [c¢i, 1JET and define measures u,=K(R)ur

and 4,=K(R,)w, on I'. Then, fo}l:;ach Y. el x=(x)cM(a,, b,),

(16) (Was i) = rf Ve dpy = rf K(IM[O,, x})) K(Ry) dpr =

{:, if x,=c¢,, forsomen

r(Tlei, x1), i (e)e(cd, b,
and, analogously,
0, if x,=c¢,,, forsomen

(17) <¢x$ 1’&) i m.t(ﬂ [ed, x:)), if (x,)€ H(c:l’ b!]'

Therefore, by equation (14), p, and 1, agree on I' and, as a result u,=/,,
implying that u,€A4,, for every k.

Now, because A, is a norm-closed subspace of M(I"), uf€A, provided
the sequence {u,}, of measures in A, converges in norm to pf. To see that this
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occurs, first observe that pf —p=ur—K(F)ur—K(Rpur=K((P\F)\R)ur, so
(18) luf —mll = lug —ml (1) = |url (M\NF)\R,).

However, the product interval '\ F= H (0,, 1,] is the countable disjoint union

n=1
U (Ry+1\Ry), when R, is taken to be the empty set. Hence, because |ur| is
k=0

a finite regular Borel measure on I,

(19) 5 sl (Rest\RD) = [zl (P\F) <+ oo,

and so, for every e>0, there exists an integer K such that

(20) Izl (PNF)N\Ry) = 2; Izl (Ress\RY) < e.

By equation (18), the inequality in (20) implies that [ju7 — u,ll<e, for all k=K.
Thus, uF€Ar, asdesired, and there exists an element f in L)(S) such that uy=v,.
Turning now to u$=K(F)ur, recall that

m=1
F= Ur'-rIU(re\r)u u[r' JL_JII'}]]U.--U[ \(U F;]]

m=]

Define measures t1,, 1=m=N, in M(I') as follows:

N=-1
2= KIDprs 4= KTNNDpir, s Ty = K[ U f;]] ur

j=1
N

Observe that p§= 3 7,. Since B(LY(S)) is a convolution measure algebra, each
m=1

measure 7,,, | =m=N, being absolutely continuous with respect to ur, corresponds
to a multiplier of LY(S). It suffices therefore to determine the form of an arbitrary
multiplier measure 7 satisfying supp ()T, forsome m, 1=m=N.

Because L'(S)=L'(a,,b,)® L'(I}), without loss of generality, assume that
m=1 and that the support of the multlpller measure 1 is contained in I';. It remains
to provc that t=0, @ n, where §, in M(I',) is the point mass at 0,_, and # is a measure

in M ]] ] correspondmg to a multiplier of L*(J])=L* [ H L ] Define n on the

semicharacters V', = @ ¥s, » Where X" =(x ). ;€ [] (a,, b,], of ]]’ I, by the formula:

@n o) = U ®@Yxrs 7).
N

Since the linear span of such semicharacters y,. is dense in C [.ﬂ' .] , equation (21)
=2
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N N
defines a unique measure n in M| JJ F,,}. For each x=(x,)Y., in [] (a,, b,),
n=1

n=12

(22) Wz 0,@M) = 'ﬁxp opWe ) =We,m) =
= {I!'bl@ wx' ’ f} o q":' t>+ {(wh _'&xl)'@ wx' ] 1-')-

A routine calculation shows that supp ((Ys,—¥,,)®v, ) \supp (r)=0; hence,
equation (22) reduces to

(23) (er 1®M) = Wan 1), ¥l

implying that t=4,®n. It remains to show that n corresponds to a multiplier of
L(F). To ac-omplish this, fix fin L!(a,, b,) with f(b)= j'lf(r,) dt,=1. Then, for
cach g in LI(K), f® eL'(ay, )@ L' (K)S LX(S), and S0 V,0,€Ar. If we let v'=
=@ v be the canonical imbedding of L'({)=® L'(a,,b,) in @ Ar,, then,

n=2 n=2 n=2

N N
since A= Ar.=4r1®[.® Ar,] it follows that y=v"®y’". This decomposition
n=1

of v reveals that v,g,=v{"Q@v, €An®[® A,—] forevery gin L!([{). For each semi-

character ., x=(x,)€ H (a,, b,), on I'}
n=1

‘.24) ; <'1’;-f*";sg> e {'ﬁx;@ 'J’x',‘Sl@’fx'px;@wx's V?’@ lF;) =
= Waps VW Wrs M) Wxs V) = Wxs VP @ (% v)));

whence, it follows that

(25) v}” @(n*vy) = t%v,g,,

for all g in LYJ}). Because t is a multiplier measure on Ay and v,g,€A4r,
equation (25) implies that v“’@(qaw )eAp, for every g in L'(I)).

Now, ©,: Ar;@L@ Ar, ]"' & Ay, defined by 91[2?1@(11 Z (Wny» Vi) is

n=2
a continuous linear map from An® [.® A ,-,_] to @ Ar, [9, Lemma 2]. Therefore,
=2 n=2
for each ge L'(I),

N
(26) O, @ (1% ) = n*v;€ @ Ar,.

Hence, n corresponds to a multiplier of L'(J). §
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