On the conditions of equality in an integral inequality

By I. DANCS and B. UHRIN (Budapest)

1. Introduction

For a, b€R, (non-negative real numbers), O0=#x€R and 0=i=1 denote

g {o if a-b=0,
a.n M@0 2\ (—2py* it a-b=>0.
The mean M} (a, b) can be extended also for =0, a=—o and a=+ =
in the following way (see, e.g. [1]):
(1.2) M?_(a,b) 2 lim M (a, b) = min {a, b},
(1.3) M¢(a, b) 2 lirr& M}(a, b) = a*. b'-4,
x-—-
.4 M3 _(a,b) = lim Mi(a, b {0 N AR W
(e Sl Bl 5 U0 MelG0) = max {a, b} if a-b=0.

For 4, a and b fixed, M/ (a, b) is a non-decreasing function of x on —ec=a= 4+
(see [1]).

In [2] we have proved the following

Proposition. Let f,g: R—-R, be Lebesgue-measurable, bounded and not iden-
tically zero functions with

(1.5) y = sup f(x), J 2= supg(y)
xcR yeER
and such that the function

(1.6) ()=  sup  MZ(f(x), g(»), I€R,
Ax4+(1=A)y=t
is Lebesgue-measurable, — <=ua=+< and 0=,=1. Then we have

b oo

(1.7) jmhi(r}dr;M;‘(}'.é)-{).- vi %dﬁu-a}. fu%dy].

This inequality is essentially due to HEnsTOCK and MACBEATH [3], see also
Brascamp and Lies [4] or GupTa [6].

Remark. 1f in the definition of A} we take ess-sup instead of sup, then A%
turns to be Lebesgue-measurable (see [2] and further references there). If both f
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and g are assumed to be Borel-measurable then A% as defined in (1.6) is probably
L-measurable (although this has not been proved yet). The Proposition remains
true also for i} defined by ess-sup (see [2]). | this case the inequality is slightly sharper
than (1.7). Our Theorem investigates the case of equality in this weaker case (1.7),
to avoid superfluous measure theoretic considerations. We think the proof of
Theorem is valid with minor changes also in the sharper ess-sup case.

The aim of this paper is to prove the necessary conditions of equality in (1.7),
in the case of upper semi-continuous f and g.

First introduce some notations. Let f,g: R—-R, and denote A =suppf=
= {x€R: f(x)=0}, B<supp g.

Denote by conv (4) the convex hull of 4 and consider conv (4) as a topological
space with the topology generated by that of R (analogously for conv (B8)). Denote
by f and g the restriction of f and g to conv(A4) and conv (B), respectively. If

yesupf(x)<+< and d=sup g(y)<+ o, then for £€(0,1) denote
xXeA yEB

AQ) 2 {x:f(x) =¢-7), B(E) 2 {y:g(y) =¢-0} A1) 2 og IA(‘f).
B(1)= () B(&). Further, denote

(1.8) i a = inf{x:x€conv(A4)}, @ = sup{x:x€conv(4)},
(1.9) b = inf{y: ycconv(B)}, b = sup {y: yeconv(B)}
and if A(1)=0 and B(1)#0, respectively, then

(1.10) a = inf{x:x€A(1)},a = sup{x:xcA(1)}
and L

(1.11) b = inf{y:y€ B(1)}, b = sup{y: ye B(1)},

respectively.
If A(1)=0 then by definition we take

(1.12) either a=4d=a or a=4a=a,
depending of fand conv (4).

Similarly, if B(1)=0 then we take
(1.13) either b=b=b or b=bh=h,

depending on g and conv (B).

(The exact meaning of the last two “‘vague’ definitions will be clear for those
f and g which we are dealing with.)

For the illustration of these notations see Figure I.

The function f: R--R, is said to be a-concave, on R, —co=g= + <, if

(1.14) f(Ax+(1=2)y) = MI(f(x),f(y)) for all x,yeR and 0=/7="!.
Now, the main result of this paper is the following

Theorem. Let f,g: R—~R, be such that Az=suppf and Bosuppg are
bounded sets containing more than one point and f and § are upper semi-continuous
(u.s.c.) on conv (A) and conv (B), respectively. Let —=a=+ and 0</=1,
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If for [ and g equality holds in (1.7), then A() and B(&) are convex for all €(0, 1)
and the following conditions hold:

(1.15) a=a ifandonlyif b=b,
(1.16) da=a ifandonlyif b=5h;

(D: if a=a, b<b, then

(1.17) a—g= [{si] (b—b),

(1.18) flx) = %-g[b+[%] “(x "'Q)] V x€(a, a)

and f(x) is strictly increasing continuous x-concave function on (a, a);
(D): if a<a,b<b, then

x
(1.19) a_a-:[%] .(b—b),

(1.20) Sf(x) = ég [5-!-(%) (x—ff)] v x€(a, a)
and f(x) is strictly decreasing continuous a-concave function on (a, a).

Remark. 1t is easy to see that if the conditions (1.15)+ (1.20) are fulfilled then
equality occurs in (1.7), hence (1.15) + (1.20) are not only necessary but also suffi-
cient conditions of equality in (1.7) (see also remarks at the end of the paper).

The statements (1) and (11) are independent, in the sense that a=a, d<a or
a<a, d=a or a=a, d<a can occur independently.

It is clear that a=a=d=a and b=b=b=b.

The statement of the Theorem for y=4 is illustrated on Figure 2.

For f which is u.s.c. only on conv (4) (and not R), the set {xcA: f(x)=y}
can be also empty because conv(A) is not necessarily compact. Clearly, if the
mentioned set is not empty, it is equal to A(1) (similarly for g).

The statement of the theorem is especially clear if y=4. In this case it simply
says that: (1) moving from a[b] to + ==, the graph of f[g] first strictly continuously



120 I. Dancs and B. Uhrin

parallel o - concave parallel o -concave
curves curves

increases up to y[d=9y], after that it remains constant till 4[] and strictly contin-
uously decreases till @[b]; (2) the increasing [decreasing] “part” of the graph of f
is “parallel’’ to that of g: (3) both the increasing and decreasing parts of fand g
are a-concave.

Of course it may happen that f[g] has no increasing or decreasing “‘part” (or
neither of them).

It is easily seen, that for f: R—R, the condition “{x€R: f(x)=¢{} is con-
vex for all £=0" is equivalent to the condition “fis — ce-concave” (see (1.14)).
— ss-concave functions are called quasi-concave. Hence, the statement of the theo-
rem “A(¢) and B(&) are convex for all £€(0, 1)” can be replaced by: “f and g
are quasi-concave” .

In the following paragraph the proof of this theorem is given. It is by no means
a simple one. It consists of two main steps. First, we prove the theorem for =1
and y=4. In the second step the general case is transformed to the case «=1 and
y=20; after “re-transforming™ we get the result. To make the proof more *‘readable™
we divided it into the number of lemmas. In the paragraph 3 some hopeful extensions
of the theorem are discussed ( fand g are u.s.c. but supp fand supp g are not bounded ;
f and g Lebesgue-measurable).

2. Proof of the theorem

In the Lemmas | + 4’ it is assumed that the functions f and g satisfy the assump-
tions of the Theorem for a=1, 0<i<1, and that 0<=y=4d=1.

Lemma 1. The sets A() and B(&) are convex for all £€(0, 1).

Proor. The function hf(7) is (for fixed 7) non-decreasing in «, hence if equality
occurs in (1.7) for a=1 then it occurs also for a= —-o, i.e. denoting h(r)=
= h* _(1), t€R, we can write

@2.1) [ hwdi=i- [ fdx+(0-7 [ g()dy.

- o0
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(It is clear that under the assumptions, 4 and B have positive Lebesgue-measure.)
Denote C(&)= {teR: h(1)=E&), £€(0, 1). Clearly, we have

(2.2) C(E) 2 240 +(1-2)B(%), V¢e(0,1).
This implies, using I-dimensional Brunn—Minkowski inequality (see [3]),
(2.3) u(C©Q) = p(24©)+(1-2)B(Q) = iu(A)+(1 =) u(B(©)), E€(O,1),

where u means 1-dimensional Lebesgue-measure. Integrating (2.3) over (0, 1) and
using identities

(2.4) ] fx)dx = [flu(A(éJ)dé. j' g(y)dy =|;fl u(B(&)) dé,
j'wh(r)dt= fl,u(C(C)')dé.

the relation (2.1) implies a7 : ’ 1

(2.5) [oe@d= [y,

where ' ;

(2.6) @(&) 2 (A4 +(1—-1)B(9)),

(2.7) V(&) 2 iu(A(9)+(1=2u(B(Q)).

The functions ¢(¢) and () are non-increasing on (0, 1), hence they have at most
countable many points of discontinuity (of the first kind). Denote by F and E
the set of points of discontinuity of ¢ and ¥, respectively. First, we prove that
F=E.

Let n€(0, 1)\ E and assume that n€ F. The point 5 is a point of continuity
of Y (&). This implies, using @ (&)= (&), £€(0, 1), that there is w=0 for which

(2.8) e(&) = Y(&), ViE(m—w,n).
But this contradicts (2.5).

Similarly, if we assume that n€(0, 1)\ F and n€E, then again there is w=0
so that (2.8) hold, a contradiction. Thus, we have (0, I)\ F=(0, 1)\ E, implying
E=F. The relation @(&)=y(£), £€(0, 1) and (2.5) implies

(2.9) @) =y¥(8), VEEWO, 1)\ E

Really, if @(n)=y(n) for some n€(0, 1)\ E, then the continuity of ¢ and y implies
that @ (&) =y (&) in some neighbourhood of n which contradicts (2.5). Using the
conditions of equality in l-dimensional Brunn—Minkowski inequality (see [3]),

(2.9) implies :
u(conv (4(E)N\A() =0

(2.10) {p(conv (B(é))\B(C")) =0, V&€, I)\E.

It is easy to see, that the upper semi-continuity of f on conv (4) implies that 4 (&)
is closed in conv (4). It is also easily seen, that this implies: conv (A4(¢)) is closed
in conv (4). Hence, the set conv (A(&))\ A (&) is either empty or open in conv (A).
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But it cannot be open, because of (2.10). The same may be said of conv (B(&))\ B(¢).
So. we have
] {conv(A('é)) = A($),
e conv (B(9)) = B(), ¥E€(0, 1) E
Let neE. Clearly,
A(m) =N{A(©): & < n, £€(0, D\E}
and
B(n) ={B(S): ¢ =n, C€(0, DNE},

showing that A(n), B(y), are convex (as intersections of convex sets).
The lemma implies that A(1) and B(1) are either empty or convex. The lemma
also implies, that 4 and B are convex, because
A= U AQ.B= U B()
0=§=<1 0=E=1
and
A) s A@), B(E)= B() for 0<{<¢ =1

Hence, conv(4)=A4 and conv (B)=B.
It is easily seen, that A(1) can be empty only in the following two cases: either
A(&)=(a,a(l)] v&€(O,1) and .:'-i’i"- a(@)=a or A)=[a({),a), ¢£(0,1) and

lim a(¢)=a. Similar criteria holds for B(1). If we define a(&)=inf {x: x£A({)}

Ewl—

and a($)=sup {x: xc A(£)}, then we can write for the quantities defined in the
previous paragraph:

a= lim a({), a = lim a(c), a = lim a(¢), @ = lim a(d).
Similar relations hold for b, b, b, b. We see that:
A(l) =0 if and only if either a =a a=a
B(1) =0 if and only if either b=b=5b or b=~5b=h.
These clarify the definitions (1.12) and (1.13).
Lemma 2. We have

(2.12) a=a ifandonlyif b=0>b
and
(2.13) da=a if and only if b =b.

PrROOF. Let, say, A=[a.d]. B=[b.h]. We can write A=[a,a]U(a,a),
B=[b, b]\ (b, b] and

IA+(1—2)B = [ha+(1 = 2)b, a+(1 —2)b)U(Za+ (1 —2)b, 2a+(1—2)b).
Easy computations show that if for fand g equality occurs in (1.7) (x=1), then
ia+(1— )b :
(2.14) f sup  min{f(x), g(y)}dr =i ff{x)dxﬁ—(lvfl) -fg(y):f_r.
AXH(Ll=A)y=1 a b

ia ﬁ(l--).)f'_ XE{E.GI
L LA
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This shows that neither a=a, b<b nor a=a, b=»b can occur, hence (2.12) is
true.

Similarly, in all other cases, using an appropriate partition of 4 and B, we
can prove (2.12). The proof of (2.13) is analogous.

Lemma 3. Let a<a, b<b. Then
(2.15) a—a=b—b,
(2.16) f(x) = g(b—a+x) ¥ xe(a, a),
and f(x) is strictly increasing and continuous on (a, a).
Proor. Denote

[aa] if A4=][a,a] or A=[a,a) and a-=a,

P A if A=[a,a) and a=a
== 1(a,a] f A={a,a) or A=(a,a) and a=<a,
A H Ad={(ga8 amd d=37

The set B is defined analogously.

The sets A and B are closed in A and B, respectively. Because f[g] is u.s.c.
on A[B), if a=a[b=<b] then f(a)=1 [g(b)=1]. Hence, we have

(2.17) sup f(x) = sup g(y) = 1.

XEA yY€B

It is clear that the restriction of f[g] to A[B] is us.c. in A[B].
Denote
k(t) = sup (Af(x)+(1—2)g(y)). 1€iA+(1—2)B,

Ax+(l=A)y=t
xcA. veB

and
h(r) = sup  min{f(x), g(»)}, 1€24+(1—2)B.

AX+(1—A)y=t
xCA yeEB

It is clear that if for f and g equality occurs in (1.7) (with x=1, 0<=i<1),
then also
(2.18) [ kde= [ hydi =i [fx)dx+(1-7) [g(y)dy.
A B

iA+(1-2)B iA4(1-2)B

Clearly, (2.18) holds also in the case when instead of the function g(y), y€B,
we take the function g(b—a+y), yéB—b+a (g(y) is “translated” by (b—a)).

Hence, we can assume without the loss of generality, that 4 and B are located
so that a=h. It is easily seen, that f[g] is non-decreasing, and consequently because
of its u.s.-continuity on A[B], right semi-continuous on A[B]. This implies that
k(t) is also non-decreasing and right semi-continuous on A4 +(1—2)B.

Using the convergence relation (iu*+(1—2)v*)"*——— min {u, v}, we can see
that also h(7) is non-decreasing and right semi-continuous on ZA+(1—-2)B. It is
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clear that k(r)=h(z), tc AA+4(1—2)B. This implies, using the right semi-continuity
of k and h, and (2.18), that

(2.19) k(t) = h(r), Yi1ciAd+(1—4)B,

that means

(2.20) Zf(x)+(1-2)g(y) = h(1), ¥ 1€AA+(1-2)B, ¥V ix+(1—A)y =1t, x4, yEB
Now, we prove: if (2.20) holds, then

(2.21) {fand g are strictly increasing continuous functions on 4 and B, respectively}

PRrOOF of this statement :

Let £€(0,1) and denote s(&)= {(x, y)ER%: y=¢} (a line “parallel” to the
axis x). Denote by gr(f), gr(g) and gr(h) the graphs of f, g and h, respectively.

Denote I=s(&)Ngr(f), Jas(E)Ngr(g) and L=s(E)Ngr (h).

Each set 7, J or L is either empty or {one point} or of the form

= {(X, J‘)€R=: FJ = E;'-. G =EX=< (‘2}

(“‘left closed interval™).

It is easily seen, that L=AI+(1—4)J (taking by definition 0+ H=H, HCR,
if necessary).

Careful analysis show, that if, say, /=1, then (2.20) cannot be true. Similarly,
each of the cases /=0, J=0 and J=1t leads to a contradiction with (2.20).

We see, that both 7 and J consist of one point, only. But this proves our state-
ment, because f and g are right semi-continuous on 4 and B, respectively.

The statement (2.21) implies also that h(r) and, because of (2.19), k(t) are
strictly increasing and continuous on A4 +(1—2)B. Hence, all the functions have
inverse functions which are defined on (0, 1), continuous and nondecreasing there.
Denote them by

@) = /71 = {x€d:f(x) = ¢}, ¥(©) = g7'() = {yeB:g(y) = ¢},
(&) 2 k7Y = {teiAd+(1-2)B:k(1) =&}, wy(8) 2 h™'(§) =

= {t€2A+(1—2)B:h(t) = &}, (&€(0, 1)).
We can easily see that ,(§)=w,($), €€(0, 1) implies
(2.22) rp(a+(1=2)B)+(1 =) (la+ (1 =2) ) =

= lop(@)+(1—=ADY(B), Y0<=uo p<I.
We can write (2.22) with « and f reversed. Addig up these two inequalities we get
(2.23) sip(Aa+ (1 =2) B) 4+ (1 =2 (Aa+(1 = 2) B) +

+A@(A+(1 =)+ (1 =Y (Ap+(1 —A)a) =
= 9@+ (1 =AY (@ +ipBA+(1 =Y (). Y0 <a f< 1.

After the repeating application of (2.23) (i.e. taking o = ja+ (1 — 2B, f’ =+ (1 — A)x
and writing (2.23) with «’, f’, e.t.c.), taking into account continuity of ¢ and ¥,
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we see that the function A¢+(1—A)y is Jensen-concave [i.e. concave with ,uzé],

consequently, being continuous, concave on (0, 1).
Standard arguments (see, e.g., [5]) show, that the concavity implies: there is
K such that

(224) |2o(@)+(1 =AY () —ieB)—(1 =Y P)| = K|la—p| V0=a, =<1,

i.e. the function satisfies the Lipschitz-condition. Since ¢ and y are non-decreasing
functions, the condition (2.24) implies that both ¢ and Y, separately, satisfy the
Lipschitz-condition (with the same constant K). This in turn implies that both
¢ and ¥ are absolutely continuous on (0, 1), consequently for all £€(0, 1) we have

< g
225  o@—0O = [@'Mmdy and Y(EO-¥© = [ Yn)dn.
0 0

It is clear that ¢’(¢) and y’(¢) exist a.e. on (0, 1) (in fact, because of monotonity,
there are only at most countable many points where ¢’(¢) or ¥’(£) does not exist).
Let £€(0, 1) be a point where both ¢’(£) and /(&) exist. Using (2.22), we can write
for A=0 sufficiently small

(2.26) Jo@+(1- D) = ipE— M+ -1 e+ 4).
This implies
/. »
- -4 R | A i
and letting tend 4 to 0+ we get
(2.28) @'(8) = Y'(©).
On the other hand using (2.22) again, we have
1-4
i —vO+uE-a _ i ° [+ 4)-00
' —A4 - 1= A
implying
(2.30) V(&) = @'(%).
The relations (2.28) and (2.29) together give
(2.31) @'(&) = ¥'(©).
Because of (2.25) we have
(2.32) @) =) =¥ () —y(0) VEE(O,).

(Here ¢(0) = Jim (0, ¥(0) = Jim ¥(2)).
The assumption a=»b and the definition of ¢ and ¥ imply sup @(&)= sup ¥(¢)
£6(0,1) £6(0,1)
and this yields, using (2.32) that ¢ (0)=y(0). y :
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This proves the lemma, because (2.32) (where ¢(0)=y(0)) and the definition
of @ and ¥ imply
(2.33) a=>b and f(x)=g(x) Vx€(a,a)

If a#b, then (2.33) holds with f(x), xcA, and g(y)2g(b—a+y), yé B2 B—b+a,

hence we get (2.15) and (2.16).

Using an analogous proof we can prove a similar statement for the “‘right
end” of the functions fand g (now the functions involved will be strictly decreasing).

Lemma 3. Let d=a, b=b. Then

St

(2.349) a—a=>b—b,
(2.35) f(x) = g(b—a+x) Y x€(a,a).
and f(x) is strictly decreasing and continuous on (d, a).

Lemma 4. Let a<=a, b<b. Then the function f(x) is concave on (a, a).

ProOOF. Using (2.15) and (2.16) we can write

ia4(1—i)h
(2.36) f k(t)dt = f sup (Af(x)+(1=2)f(x))dt =
Ax+(1—iNb—a+x")=1
iA+(1-A)B Aa+(1—-A)b x,x'€(a,a)

a

= [ sup  (Ax)+(1-Df(x))de
s o

and

(2.37) i [fxydx+(1=2) [edy = [ fl)d.
A B a

According to (2.18) we have

(2.38) S osup (H)+(1=Df(x))dr = [ f(o)dr,
e s
that implies -
(2.39) flr) = o (A(x)+(1 =2 f(x)). V1€(a,a).
Ax+(l=A)x"'=1
x,x'€(a,a)

Similar statement holds on (4, a):
Lemma 4’. Let d<a, b<b. Then the function f(x) is concave on (a,a).

The lemmas together give the statement of the Theorem in the case y=4J and
x=1. The general case can be proved using the transformations below.
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Lemma 5. Let —oo<=g<+o, 0<i<I1, and f,g: R-R,. be functions sat-
isfving the assumptions of the Proposition. Then, equality occurs in (1.7) if and only if

+ oo + oo + o=
(240) [ sup  ME(e(x), y()dr=Me( [ edx, [ w()dy),

o ox+(l—a)y=t

where

1 y ] 1 [ 5 ]

2 s i B it i L ———————

W) e f[}.'y“+(l—).)5‘* o Al £ o sy )
and

Ay*

PrOOF. Denote 4 =supp f, Basupp g, £224(1 —).)[%] .
ne A[%] +1-4, C2¢-A, D=n-B.

Then, the following relations are easily checked:

(2.43) f£££.).. dx = -!-.'— f(p(u)d“‘ fg_(‘.}idy — ...i.. f{b(l’}d{‘.
A7 & ¢ B d mp

(2.44) wC+(l—w)D = A+(1—-2) B

and

A+ =) g* )"

su = su wp* ")".’(I"'(U] 2y 1/x
Ax+(1—g),=: MZ(y. ) “-'ll+(1—l::)u=t( @*( W (v))
xeA.ch ucC,veD

holds for all r€@wC+(1—w)D. These prove the lemma.

The lemma shows that it is enough to investigate the conditions of equality in
(1.7) for the functions such that y=d0=1. In this case the right hand side of (1.7)
does not depend on =, hence if in (1.7) equality holds for some a, then it holds also
for all «’<a (being A%(r) non-decreasing in a). This shows that if = —1 and
equality holds in (1.7), then equality holds also for = —1. The following trans-
formation shows that also the cases —e=a< —1 can be transformed to the case
a=—1.

Lemma 6. Let —oo=a=—1, 0=i<1, f,g: R—=R_. be functions satisfying
the assumptions of the Proposition and y=3d6=1. If equality holds in (1.7), then

+ s

(2.45) f sup Mil(tp{x).w(y))df=M{‘[ fmtp(x)dx. fmub(.v)dy],

oo AX+(l=A)y=t
where
(2.46) @(x) 2 f1"(x), ¥(x) 2 g"(x), x€R.
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Proor. Denote Az=suppf, Basuppg, A(&)z {x€A: f(x)=¢),
B(§) = {yeB:g(y) =&}, C(&) 2 {tc2A+(1-2)B:h; (1) = ¢},
E@©) 2 {teiA+(1—A)B:k(1) = &), F(&) 2 {x€A:0(x) = &),
G() = {yeB:y(y) = &},

k(1) & sup (2o Y(x)+(1 =AW~ (y))"Y, teiA+(1—7)B.
ix+(1=Ad)y=t
XEA,YEB

It is easy to see that k(r)=(hi(1))*l, t¢iA+(1—4)B. Using the relations (2.2),
(2.3) and (2.4) (with h(r)2hi(1)), equality in (1.7) implies

u(C©Q) = Au(AQ))+(1 =u(B(Z)), ae. £&€(0,1),
and from this we have

#(EMm)) = 2u(Fm)+(1=u(G@m), ae. ne(,1).
Integrating the last equality over (0, 1) we get (2.45).

where

This lemma shows that it is enough to investigate the conditions of equality in
(1.7) for the case y=d6=1 and a= —1. In the last step we transform the case
a=—1 to the case «=1.

Lemma 7. Let O0<i<1 and f,g: R—R_ be functions satisfying the assump-
tions of the Proposition and such that y=3d=1. If equality holds in (1.7) for a=—1,
then for arbitrary (sufficiently small) £¢=0 we have

247 / sup  (Ap (x)+(1 =AW, (»))dr =

i i Ax+(1—-A)y=t
AA(e)+(1—A)B(e) X € Ae), y € B(e)

=i [odx+(1-2 [v.(ady.

Ale) B(e)

where A(e)= {x€supp f: f(x)=e)}, B(e)= {yesupp g: g(y)=¢e),

1 1
(2.48) e (x)21e  flx)° XA x€R,
0 x¢ A(e),
and
l_# }'GB(E)
(2.49) v 2i1e g0’ - x€R.
[0 vé B(e),
ProOF. Denote A < supp f. Besupp g, h(t)2h? (1), te L A+(1 —2) B (see (1.6)),
A T
(2.50 h,(1) & [—’- —] , 1€24(e)+(1 — 2)B(e),
: g | s e

x € A(g),y € Bie)
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and
(251) k(e sup (Ao, (x)+(1 =), (»), t€AA(e)+(1—A)B(e).

Ax+(1=A)y=t
x € A(e), y € B(e)

Clearly, we have
(2.52)  {t€iA+(1=2)B:h(r) = &} 2 {t€iA(e)+(1—2)B(e): h,(1) = &} 2

2 A +(1—-4)B(), VEe(s, ).
This shows, using (2.3), (2.4) and the fact equality holds in (1.7), that
(2.53) u({re24(e)+(1 =2 B(e):h (1) = &}) =
= ipu(A@)+(1=Du(BE@), ae. (1)
We can see easily that (2.53) implies

(2.54)  u({te214(e)+(1—2)B(e): k(1) = n}) = iu({x€A(2): 0.(x) = n})+

+(1=Au({yeBE):y.(y) = n}), ae. "G[O’sl_l]'

Integrating (2.54) over (O, %— l] we get (2.47).

This lemma shows, that it is enough to investigate the conditions of equality
in (1.7) for the case y=d=1 and a=1. But for this case the Theorem has been
already proved (see Lemmas 1+ 4").

Thus, the proof of the Theorem for the general case y#0 and —ee<a<+e
consists of a careful “‘re-transformation”™ of the results of Lemmas 5, 6 and 7. In
this, we distinguish two cases:

(a): ;lélgf(x) =0 and ;retg g(»)=0
and L _
(b): min{inf f(x), ;rggg(y)} =0.
In the case (a) take:
& 2 min {}‘25 f(x), J1'{:_1£g(y)}
and in the case (b):

0 < & = min {y, é}.

Denote A(g)2 {xesupp f: f(x)=e}, B(e)= {yesupp g: g(y)=¢},

{l if a=-—1,
T o) if —ee=<a<-—1
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and define on R the two functions as follows:
0, if x¢ [).+( =2 [%]] - A(e),
s £ = . if xe [;.-m 1) [%]’]-A(e).

8 f’[m")

(J’) =r l < if )?E [)" [%]‘ 41 —";..] . B(E).
[)q} (=2’

If f and g were us.c. on conv (suppf) and conv (supp g), respectively, then,
clearly, ¢, and y, are u. sc on conv (A4(¢)) and conv (B(e)), respectively. Further,

sup @,(x)= sup wc(y)———-—l and according to Lemmas 5, 6 and 7 we have
x € Ale) € B(z)
(see (2.47)):
(2.55) sup (0o, (x)+(1 —w)Y,(v))dt =
x4+ (l=w)y=t

wA(e)+(1—w)B(e) IEA(!} yE B(e)

=0 [o®dx+(1-0) [y,()dy.
Al B(e)
where

gim iy*
(£0) ?=rd—Ae

Applying the Theorem to ¢,(x) and ¢, (y) we get the results (1.15)+ (1.20) for
the functions f, and g, which are the restrictions of fand g to 4(e) and B(e), respec-
tively (clearly, sup f.(x)=y and sup g, (y)=9).

x € A(g) y€ B(g)
If the case (a) holds, then we are ready, because A(g)=suppf and B(e)=supp g
in this case.
In the case (b) letting tend £é—+0+ we can easily see that (1.15)+ (1.20) remain
true for fad g. By this the Theorem is completely proved.

3. Remarks

1. Let f,g: R—R_ fulfil the assumptions of the Theorem, but A4 or [and] B
may be unbounded. The definitions of a, «, @ and @ are meaningful also in this
case and a=a=d=a also holds, but now a or ¢ and 4@ or @ may have the value
—o and + e, respectively (the same for b, b, b and b). A standard “restrict to
bounded sets and after that let tend to infinity”-type analysis would probably show

that the statement of the Theorem remain true also for this case. We did not write
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down exact calculations for this analysis, for two reasons: first, the proof of the
bounded case is already quite complicated and lengthy; secondly, we are not con-
vinced of the non-existence of a proof which is shorter and such more “elegant”
than ours and which would include also the non-bounded case.

For —1=a= 4+ the right hand side of the inequality (1.7) can be decreased
so that the following weaker inequality is true

+ oo

(3.1 f hi(t)dt = M*,

—es 1+x

+

([ ax [ ema)

(See [2], [3]. This is a simple onsequence of (1.7) and the Hdélder inequality.)
The second named author, analyzing the proof of (3.1) due to HENsTOCK and
MACBEATH [3], proved: if f and g are Lebesgue-measurable and equality holds in

(3.1) (for —1=a=++=), then we have (of course, 0<y<=+<= and O0<=d<=+-
are also assumed)
(3.2) suppf == [a;, @), supp g== [b,, ba],
by 2 C_ ay—a

B [a] T ek

Y JY
(3.4) Ax) = 58 [bl + [?] (x—al)] a.e. x€[a,, a,
and
(3.5) flox’+(1 —w)x") = M2(f(x), f(x")), ae. X', x"€[a,,as).
where
(3.6) ®= i

A+ (1=2)0""

The method of proof of (3.2) + (3.6) is quite different from that used in this paper.
If equality holds in (3.1), then obviously the right hand sides of (3.1) and (1.7)
are equal. This easily implies:

+eo y 1+a +e
(3.7) [ foax=(5) [ s»a
From this it follows (using the notations of paragraph 1):
: R 5 T
(3.8) d-a = [E] (5 b).

It is easy to see that in this case the conditions (1.17)+(1.20) can be writen
in the form
(3.9) r—g=[§] (h—b),

(3.10) flx) = %g [b+[€—] (x—g)] Y x€(a, a),
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and
(3.11) fpx’+(1—pw)x") = ME(f(x'), f(x"))

holds for all x’, x"€(a,a) and O=pu=1.

We see that the results (1.15)—(1.20) and (3.2)—(3.6) are essentially the same.
In fact, it was the result (3.2)+ (3.6) which suggested that a similar result might
be true if equality holds only in the sharper inequality (1.7) (so that (3.7) is not
satisfied). It turned out, that the method used for the proof of (3.2)—(3.6) does
not work in this sharper case. On the other hand, the application of the method
used in this paper to the proof of the “measurable™ (i.e. not u.s.c.) case seems to be
an especially difficult problem. The question, if the Theorem (or a similar result
like (3.2)—(3.6)) is true for Lebesgue-measurable functions f and g, is still open.
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