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Remarks on convergence of types theorems
on finite dimensional vector spaces

By WILFRIED HAZOD (Dortmund)

Abstract. The Convergence-of-Types theorem for finite dimensional vector
spaces turned out to be a most powerful tool for investigations of limit theorems in
probability theory. A convenient formulation is the following: Let B be a group of affine
or linear transformations (“admissible normalizations”) acting on the vector space E
and let F ⊆ M1(E) be a suitable set of probabilities (“full or non-degenerate w.r.t.
B ”). Let further (µn), µ, ν ⊆ F and (αn) ⊆ B. Then µn → µ and αnµn → ν imply
that (αn) is relatively compact. And then ν = αµ for any accumulation point α of
(αn).

In the language of transformation groups this means that the group of normaliza-
tions B acts properly or perfectly on the set of full measures F .

Unifying previous investigations we present a method to construct suitable classes
of full measures F for a given group B. And in the sequel we apply this method to
concrete examples of groups. As a by-product a new proof of the convergence-of-types
theorem for nilpotent simly connected Lie-groups is obtained, based on linear algebra
and avoiding any deeper knowledge of Lie-group theory.

The history of convergence-of-types theorems started with Khint-
chine’s investigations [K] on the behaviour of the distributions of normal-
ized real random variables, see also e.g. [L] or [GK]. Since then the ideas
and techniques developed there found various applications and were gen-
eralized in different directions. See e.g. [LS], [Ba], [JM] for recent surveys
on the literature.

A new branch of investigations started with [F], independently [Bi],
[Sh]: Now the limit behaviour of distributions of vector valued random
variables normalized by linear operators resp. affine transformations is
considered with applications to operator-stability (see e.g. [Sh], [HMV],
[M]), operator-semi-stability (e.g. [Ja], [Lu], [S]), self-decomposability (e.g.
[U], [J]), operator- self-similar processes ([HM], see also [W], [W1]). For
generalizations to infinite dimensional spaces and applications see e.g. [LS],
[JM], [Si] and the literature mentioned there, for applications to the theory
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of extreme values see e.g. [P1], [P2]. For similar concepts in the frame-
work of probabilities on groups see e.g. [B], [HN], [N], [Ha1-3], for nilpo-
tent groups and compact extensions, and see [D] for general connected Lie
groups. For applications to stability and semi-stability on locally compact
groups see e.g. [B], [DG], [Ha1], [Ha4-6], [N], [Sch1-2], for totally discon-
nected groups, e.g. for p-adic-vector spaces see [Sha] or [T].

Convergence of types theorems are usually formulated as follows: Let
E be a vector space (or a group), let B be a group of linear or affine trans-
formations (or automorphisms) acting on E. Then B acts canonically on
the probabilities M1(E). (Call B the group of admissible normalizations).
Let F ⊆ M1(E) be a subset of measures (in the sequel called full with
respect to B, in short: B-full). Then F and B fulfil the convergence of
types condition (C-T)

(C-T) if (µn), µ, ν ∈ F , (αn) ⊆ B, µn → µ and αnµn → ν imply
that (αn) is relatively compact in B.

And then αµ = ν for any accumulation point α of (αn).

In most investigations mentioned above B is the whole group of linear
operators Gl(E), resp. the corresponding group of affine transformations
AG(E). Then the corresponding class of full measures F = FB are those
which are not concentrated on a proper subspace resp. on a proper hy-
perplane ([Sh]). And if the group B is the group of homothetical trans-
formations resp. the corresponding affine group then (C-T) holds with
F = M1(E)\{ε0} resp. M1(E)\{εx, x ∈ E}. But already the investiga-
tions for nilpotent groups ([N], [HN]) – the first examples of non-abelian
groups – lead in a natural way to the more general concept: Given a group
B acting on E, try to construct a suitable large class of “full” measures
F such that (F ,B) fulfil condition (C-T). And it is natural to expect that
the size of F depends on the size of B : F increases if B decreases.

In investigations of limit distributions on finite dimensional vector
spaces usually the limit measure is supposed to fulfil the strong fullness
condition of Sharpe [Sh], whereas the proofs often only depend on the
validity of the convergence of types theorem, see e.g. [HM], [W], [W1], [JM].
Hence it is possible to obtain analogous results in more general situations
without changing the proofs. This remark is essential for investigations of
the behaviour of group-valued random variables: Here it turns out that
problems on groups often can be solved by studying equivalent problems on
vector spaces (and vice versa). Only the group of admissible normalizations
and the corresponding fullness concept have to be changed in a proper
way. So, the following may be considered as an attempt to unify previous
investigations and may serve as a tool box for further applications.
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The investigations in [D] and [Ha3] lead into different directions: For
a general connected Lie group G we fix F to be the set of probabilities not
concentrated on a proper connected subgroup. Then it is shown that under
restrictions on B, e.g. B being contained in the connected component of
the group of automorphisms Aut(G), F and B fulfil the convergence of
types condition (C-T).

We start (§1) with a general formulation of (C-T) conditions within
the framework of topological transformation groups. It is pointed out that
(C-T) means exactly that the transformation group acts properly (in the
sense of Bourbaki [Bou]) resp. perfectly ([E]) on a suitable set of “full
measures” F ⊆ M1(E). Hence various properties of full measures follow
directly from well known results in the theory of transformation groups.
We collect some of these results in Theorem 1.4.

In the following (§2. ff) we restrict our considerations to groups of
linear or affine transformations acting on a finite dimensional (hence locally
compact) vector space. It turns out that – from the point of view of
transformation groups – it is not necessary to distinguish between linear
and affine transformations (§2). We show then that (C-T) may be replaced
by weaker boundedness conditions (W-C-T) (§2) resp. (W-C-T∗) (§3), and
we present a method to construct full measures F = FB fulfilling these
boundedness conditions for a given group B (§3).

Then, in §4, we show for concrete examples that this method solves
the problem of finding a suitable class of full measures FB for a given
group of normalizations B, unifying previous investigations. Moreover, we
show that in most examples the so constructed class FB of full measures is
maximal. Indeed, in these cases we obtain the following characterization :
µ is full iff the invariance group JB(µ) is compact.

As a special application of t the methods we tain finally – in The-
orem 4.8. – a new proof for the convergence of types theorem for sim-
ply connected nilpotent Lie groups ([HN], [N]); a proof which applies the
above-mentioned vector space methods to the tangent space of the group,
hence a finite-dimensional vector space, thus avoiding any deeper methods
from Lie group theory.
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§1 Types and transformation groups

We start with some general considerations concerning types of proba-
bilities and convergence of types within the context of topological transfor-
mation groups. The idea to consider convergence of types and type-spaces
of probabilities from a topological point of view appears already in [Doe].
See also [Ba] for a survey on the history. To avoid difficulties with non-
Hausdorff topologies on quotient spaces we restrict the considerations to
suitable subsets F = FB of probabilities called “full w.r.t. B” or in short
“B-full”.

Let E be a topological space, let B be a topological group acting con-
tinuously on E, i.e. θ : B × E → E × E, (α, x) 7→ (x, αx) is continuous.
In order to simplify notations and to avoid more or less trivial problems
we always assume E and B to be Polish. (In fact, in the sequel (§2 – §4)
we shall restrict our considerations to matrix groups acting on finite di-
mensional vector spaces.) Let M1(E) be the set of probabilities on E,
endowed with the topology of weak convergence. So, B acts continuously
on M1(E) in a canonical way: For f ∈ Cb(E), µ ∈M1(E), α ∈ B, we put
〈αµ, f〉 :=

∫
fdαµ := 〈µ, f ◦α〉. Define θ : B×M1(E) →M1(E)×M1(E)

by (α, µ) 7→ (µ, αµ), then θ is continuous. I.e. B acts as transformation
group on M1(E).

Definition 1.1. The action of B on M1(E) defines an equivalence
relation 'B (in short: ') on M1(E) : µ ' ν iff Bµ = Bν, i.e. iff µ = αν
for some α ∈ B. Following the usual notations in probability theory we
define B-type of µ (in short: type) to be the orbit Bµ. Furthermore, the
quotient space T := M1(E)/ ', endowed with the quotient topology
is called type space. π : M1(E) → T denotes the canonical projection
µ 7→ Bµ.

Let F ⊆M1(E) be B-invariant, considered as topological space w.r.t.
the induced topology. Then ' restricted to F defines an equivalence re-
lation on F . Let T (F) := F/ ' be the quotient space, endowed with
the quotient topology, the type space of F , let πF : F → T (F) be the
canonical projection and let finally i : F → M1(E) resp. j : T (F) → T
be the inclusion maps.

For µ ∈ M1(E) put J (µ) := JB(µ) = {α ∈ B : αµ = µ}. J (µ) is
usually called invariance group resp. symmetry group (linear resp. affine
normalizations) in probabilistic language, isotropy group or stabilisator in
the language of transformation groups.

Proposition 1.2. a) The map θ : (α, µ) 7→ (µ, αµ),B × M1(E) →
M1(E) ×M1(E) and the inclusions i : F → M1(E) and j : T (F) → T
are continuous.
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b) The quotient maps π and πF : F → T (F) are continuous and open.

c) If F is closed or open in M1(E) then on T (F) the quotient topology
of F/ ' and the induced topology of T coincide, i.e. j is a homeo-
morphism j : T (F) ←→ j(T (F)) ⊆ T . Hence in this situation we
may use the abbreviation π instead of πF .

d) The quotient topology on T (F) is T1 iff the orbits Bµ are closed in
F . T (F) is a Hausdorff space iff the relation ' has a closed graph
∆ = {(µ, ν) : Bµ = Bν} in F × F .

Proof. a) See e.g. [Bou] I §3 No6. b), c) see [Bou] I §5 No2, Proposi-
ton 3, 4; resp. III §2 No4, Lemma 2, or [RD] Ch. 4, Lemma 4.4, 4.5, resp.
[E] Ch. 2, 2.4. d) See [Bou] III §8 No3, Propositon 8, resp. [E] Ch. 2, 2.4.

Recall that a continuous map f : X → Y between topological spaces is
called proper if for any topological space Z the map f⊗idZ : X×Z → Y ×Z

is closed
[[
cf. [Bou] §10 No1

]]
. A transformation group G acts properly on

a topological space X iff the map θ : (g, x) 7→ (x, gx), G×X → X ×X, is
proper

[[
cf. [Bou] III §4 No1

]]
.

Remark. Continuous proper maps resp. actions on a Hausdorff-space
are “perfect” in the sense of [E] Ch. 3, 3.7. See also [RD]. Especially, proper
maps ϕ : X → Y are closed and ϕ−1(K) is compact for any compact
K ⊆Y.

[[
Cf. [Bou] I §10 No2, Th. 1 or [E] Ch. 3, Th. 3.7.2.

]]

For our purposes we prefer equivalent formulations (G := B, X :=
F ⊂M1(E)):

Proposition 1.3. B acts properly (or perfectly) on F iff

a) θ : (α, µ) 7→ (µ, αµ) is a closed map and if the invariance group J (µ)
(cf. Definition 1.1) is compact for µ ∈ F , equivalently, iff

b) for any sequence (αn, µn) in B × F such that (µn, αnµn) → (µ, ν) ∈
F × F the sequence (αn) is relatively compact in B.

And then for any accumulation point α of (αn) we have αµ = ν.

Proof. a) See e.g. [Bou] I §10 No2, Théorème 1: Note that B and F
are supposed to be Hausdorff spaces, hence quasi-compact sets are com-
pact, and furthermore that θ−1(µ, ν) = {(β, µ) : βµ = ν} = β0J (µ)× {µ}
for some β0 ∈ B with β0µ = ν.
b) See [Bou] III §4 No1, No2, Proposition 4. See also [E] Ch. 3, Theo-
rem 3.7.13

For further use we collect some facts concerning properly acting trans-
formation groups:
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Theorem 1.4. Assume B to act properly on F . Then

a) T (F) is Hausdorff, especially the orbits Bµ are closed in F for any
µ ∈ F

b) for any µ ∈ F the map α 7→ αµ : B → F is proper

c) moreover we have B/JB(µ) ∼= Bµ, where

d) JB(µ) is a compact group

e) for any compact set K ⊆ F and any µ ∈ F the set {α ∈ B : αµ ∈ K}
is compact in B.

f) for any compact K,L ⊆ F the set {(α, µ) ∈ B × F : µ ∈ L and
αµ ∈ K} is compact.

g) for any compact K ⊆ F and closed F ⊆ B the set F.K is closed in F .

h) If B is locally compact we have: B acts properly on F iff for any
µ, ν ∈ F there exist neighbourhoods V (µ),W (ν) such that {α ∈ B :
αV (µ) ∩W (ν) 6= ∅} is relatively compact.

Proof. a)–d) See e.g. [Bou] III §4 No2, Proposition 3,4. e) is a
consequence of b) and the remark below 1.2.

f) By assumption θ : (α, µ) 7→ (µ, αµ) is proper hence θ−1(L×K) is
compact.

g) See [Bou] III §4 No5, Corrollaire. h) See [Bou] III §4 No4, Prop. 4.

For further properties of proper (perfect) maps see also [E] Ch. 3, 3.7.

Following again the usual notations in probability theory we are led to

Definition 1.5. (B,F) fulfil the convergence of types condition if for
any sequence (µn) ⊆ F , (αn) ⊆ B such that µn → µ and αnµn → ν

(C-T)
with µ, ν ∈ F the sequence (αn) is relatively compact in
B. Then, for any accumulation point α of (αn) we have
αµ = ν

Remark 1.6. In most applications F will be an open subset. Then
(C-T) is equivalently formulated as follows:

(C-T∗) Let (µn) ⊆M1(E), (αn) ⊆ B, µn → µ, νn := αnµn → ν. If
µ and ν ∈ F then (αn) is relatively compact in B.

In view of Proposition 1.3.b) we obtain the following translation from the
language of transformation groups into probabilistic language:

Remark 1.7. B acts properly respectively perfectly on F iff (B,F)
fulfil the condition (C-T). Hence e.g. the assertions of Theorem 1.4 hold if
(C-T) is fulfilled.
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Let (µn), µ, ν ⊆ F , (αn) ⊆ B and αnµn → ν. Then, πF being con-
tinuous, the types πF (µn) converge to πF (µ) in the topology of the type
space T (F), and conversely. Indeed, the following observation will help to
understand better the notion “convergence of types”:

Theorem 1.8. Let F ⊆ M1(E). Assume πF (µn) → πF (µ) in the

type space T (F).
a) Then there exist (αn) ⊆ B such that αnµn → µ.

b) If T (F) is a Hausdorff space then for any sequence (βn) ⊆ B such

that βnµn → ν ∈ F we obtain ν = βµ for some β ∈ B, i.e. ν and µ

belong to the same type.

c) If moreover (B,F) fulfil (C-T) then αnµn → µ ∈ F and βnµn → ν ∈
F imply that πF (µ) = πF (ν) and that (βnα−1

n ) is relatively compact,

the accumulation points belonging to {γ ∈ B : γµ = ν} = γ0J (µ), for

some γ0 ∈ B.[
Note that obviously we have πF (αnµn) → πF (µ) and πF (βnµn) → πF (ν)

in a), b) and c).
]

Proof. a) πF is continuous and open (Proposition 1.2. b)). There-
fore we can choose neighbourhood bases W of µ in F and V := {πFW :
W ∈ W} of π(µ) in T (F). We write in short π := πF . Given W ∈ W
there exists n = nW ∈ N , such that for n ≥ nW we have πµn ∈ V = πW .
Hence Bµn ⊆ BW , therefore we have αnµn ∈ W for some αn ∈ B and
for sufficiently large n > nW . Considering a sequence of neighbourhoods
Wm ↘ {µ}, hence πWm ↘ {πµ}, we can find a suitable sequence (αn) in
B such that αnµn → µ.

b) Assume moreover βnµn → ν, then πµn → πν. If T (F) is Hausdorff
then πµ = πν, i.e. Bµ = Bν. Hence ν = βµ for some β ∈ B.

c) We have αnµn → µ and (βnα−1
n )αnµn → ν, whence by (C-T)

relative compactness of (βnα−1
n ) follows. The rest assertions of c) follow

immediately.

Finally, we note the following consequence of the (C-T) condition resp.
of Theorem 1.4. The proof is left to the reader.

Corollary 1.9. Assume (B,F) to fulfil (C-T). Then, for a compact
set K ⊆ F the set

⋃
µ∈K JB(µ) is compact in B.

[
Cf. Theorem 1.4.f)

]
.

Therefore, if µn → µ in F , then JB(µn) → JB(µ). (Convergence in C(B),
the set of compact subsets of B).
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§2 Affine and linear normalizations

Let E ∼= Rd be a finite dimensional real vector space, let End(E) re-

spectively Aff(E) denote the semigroups of linear respectively affine trans-

formations on E, furthermore let Gl(E) respectively AG(E) be the linear

group of E respectively the group of invertible affine transformations en-

dowed with the natural topology. Let B be a closed subgroup of Gl(E)[
respectively of AG(E)

]
, hence acting in canonical way as transformation

group on E.

In probability theory it is usual to distinguish between linear and affine

normalizations. (See e.g. the definitions of stability and strict stability in

[Sh], [JM], [HMV], [Lu], [S], [Ja].) We show that from the point of view of

convergence-of-types theorems this distinction is not essential:

Definition 2.1. Let E ∼= Rd,A := E⊕R ∼= Rd+1. Let Ψ be the affine

embedding E → A, x 7→ (x, 1), defining a canonical affine embedding

Φ :Aff(E) →End(A) [AG(E) → Gl(A)] via Φ(γ)(Ψx) = Ψ(γx), γ ∈
Aff(E), x ∈ E

[
respectively γ ∈ AG(E), x ∈ E.

]
The embedding Ψ of E in into A induces a topological isomorphism

between M1(E) and Ψ(M1(E)) = {ρ ∈ M1(A) : supp(ρ) ⊆ Ψ(E) =
E ⊕ {1}} endowed with the induced topology of M1(A).

Definition 2.2. Let F ⊆ M1(E), let C be a subset ⊆End(E) [resp.

C ⊆Aff(E)].

(C,F) fulfil the weak convergence of types condition (W-C-T) if for
µn, µ, yν ∈M1(E) the conditions

(W-C-T)
(αn) ⊆ C, µn → µ, αnµn → ν and µ ∈ F imply that (αn)
is relatively compact (i.e. bounded) in End(E)

[
resp. in

Aff(E)
]
.
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If C = B is a group we have

Lemma 2.3. Let B be a closed subgroup of Gl(E) respectively AG(E),
let F be B – invariant in M1(E). Then (B,F) fulfil (C-T) iff (W-C-T) is
fulfilled.

Proof. Assume (W-C-T) to hold. Let µn → µ, αnµn → ν, µn, µ, ν ∈
F . Apply (W-C-T) to “µn → µ, αnµn → ν, µ ∈ F” then boundedness
of (αn) follows. On the other hand apply (W-C-T) to “νn := αnµn → ν,
µn := α−1

n (νn) → µ, ν ∈ F” then boundedness of (α−1
n ) follows.

Conversely, (C-T) implies (W-C-T), as easily seen.

The simple Lemma 2.3 turns out to be extremly useful. E.g. with the
notations above (2.1–2.3) we obtain immediately:

Proposition 2.4. Let B ⊆ AG(E) be a closed subgroup, let F ⊆
M1(E) be B-invariant. Put B∗ := Φ(B) ⊆ Gl(A) and F∗ := Ψ(F) ⊆
M1(A), where A,Φ,Ψ are defined as in 2.1. Then (B,F) fulfil (C-T) iff
(B∗,F∗) do.

Proof. By Lemma 2.3 it suffices to check only the weak condition
(W-C-T) for (B,F) resp. for (B∗,F∗). Whence the assertion immediately
follows.

Therefore, in the following we will restrict our considerations to closed
subgroups B of the linear group Gl(E) acting on E ∼= Rd

Proposition 2.5. Let B be a non-compact closed subgroup of Gl(E)
[resp. AG(E)]. Then there exists a unique maximal open subset FB =
F ⊆ M1(E), such that (B,F) fulfil the convergence of types condition
(C-T).

Proof. Let V := {F ⊆ M1(E) : F is open and (B,F) fulfil (W-C-
T)}. Then obviously, V is stable w.r.t. finite unions and for any directed
chain (Fα) ⊆ V we have

⋃Fα ∈ V. Hence, by Zorn’s lemma, there exists
a unique maximal element Fo in V. Now Lemma 2.3 yields that (B,Fo)
fulfil (C-T).

Indeed, the assertion of Proposition 2.5. is valid in more general situa-
tions considered in §1. But here we are mainly interested to obtain explicite
constructions and descriptions of classes of B-full measures FB. This will
be done in the following §3 and 4. In most examples the constructed FB
will turn out to be maximal for the given group B.
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§3 A method to construct full measures, given B

Let E ∼= Rd, F ∼= Rs be finite dimensional vector spaces. Put
F0(E) := M1(E)\{ε0} and F1(E) := {µ : µ not concentrated on a proper
linear subspace}, furthermore let Fs

0 := {µ : µ ∗ µ̃ ∈ F0} and define Fs
1

analogously.
Note that Sharpe’s “full measures” (cf. [Sh]) – called non-degenerate

in [B] – are defined to be not concentrated on proper hyperplanes, hence
are just the measures belonging to Fs

1 (E).
Let H(E) := {x 7→ tx : t > 0} be the group of homothetical trans-

formations on E. It is well known that (Gl(E),F1(E)) resp. (AG(E),
Fs

1 (E)) as well as (H(E),F0(E)) fulfil (C-T).
[[
See e.g. [Sh], resp. [K],

[L], [GK]. Note that a proof for homothetical transformations on Rd is
identical with a proof for probabilities on the real line. See also 4.4.a)
below.

]]

Remark that obviously

F1(E) =
⋂

ϕ∈E′\{0}
ϕ−1(F0(R)) =

⋂

ϕ∈E′\{0}
{µ ∈M1(E) : ϕ(µ) 6= ε0}.

Therefore we define in an analogous way for an auxiliary space F ∼= Rs:

Definition 3.1. Let H ⊆Lin(E, F )\(0), H 6= ∅. Then we define:
FH := FH(E) :={µ ∈M1(E) : ϕ(µ) 6= ε0, ϕ ∈ H}=

⋂
ϕ∈H ϕ−1(F0(F )).

For latter use we define further:

Fs
H := Fs

H(E) := {µ ∈M1(E) : µ ∗ µ̃ ∈ FH}.

For a subset A ⊆Lin(E, F )\{0} put ΓA :=
{

1
‖ϕ‖ϕ : ϕ ∈ A

}
and KA :=

{tϕ : t > 0, ϕ ∈ A}. Obviously we have FH = FΓH = FKH .
The subsequent conditions (3.1) and (3.2) are always supposed to be

fulfilled:

(3.1) ΓH is assumed to be closed, hence compact
(3.2) and KH to be B-invariant KH = KHB (hence ΓH = ΓHB)

(where B ⊆End(E) acts in canonical way on Lin(E, F ) from the right).

According to the notations introduced in previous investigations, esp.
in [Sh], we call probabilities belonging to FH

[
resp. Fs

H

] B-full
[
resp. B-

shift-full , in short B-S-full
]
. Note that in the definition of full measures

above FH(E) and B ⊆End(E) are connected by H and F via the con-
ditions (3.1) and (3.2). Hence we frequently use the notation FH =: FB
and call the measures in short B-full, or full w.r.t. B.
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Remark. Obviously, F0(E) = FH(E), where F := E, H := {id},
and F1(E) = FH(E), where F := R, H := E′\{0}. Furthermore, as
easily seen Fs

0 (E) = M1(E)\{εx : x ∈ E} and Fs
1 (E) = {µ : µ not

concentrated on a hyperplane}. Therefore we obtain

Proposition 3.2. a) Fs
H(E) is an open ideal in the convolution semi-

group M1(E) and FH(E) is an open subset containing Fs
H(E).

b) Furthermore, the inclusion Fs
H ⊇ {µ ∈ FH : 0 ∈ supp (µ)} holds

true.

c) Let µ ∈ FH
[
resp. Fs

H

]
. Then {ν ∈ M1(E) : supp ν ⊇ supp µ} ⊆

FH
[
resp. ⊆ Fs

H

]
.

d) Fs
H(E) := {µ : ϕ(µ) 6= εx for all x ∈ F , ϕ ∈ H} =

⋂
ϕ∈H

ϕ−1(Fs
0 (F )) =

{µ : ψ(µ) 6= ε0 for all affine ψ : x 7→ ϕx + a, ϕ ∈ H, a ∈ E}.
Proof. a) As easily seen, Fs

0 (F ) = M1(E)\{εx : x ∈ E} is an open
ideal in M1(F ) and F0(F ) is open, F0(F ) ⊇ Fs

0 (F ). Hence ϕ−1(F0(F ))
and ϕ−1(Fs

0 (F )) are open in M1(E) for any ϕ ∈ H, furthermore
ϕ−1(Fs

0 (F )) is an ideal. Hence
⋂

ϕ∈H ϕ−1(Fs
0 (F )) is an ideal.

Further, the representations FH(E) =
⋂

ϕ∈H ϕ−1(F0(F )) and
Fs

0 (F ) = {µ : µ ∗ µ̃ ∈ F0(F )} show that Fs
H(E) =

⋂
ϕ∈H ϕ−1(Fs

0 (F )).

Hence we have to show that FH(E) and Fs
H(E) are open. Since we

may assume H = ΓH to be compact, assertion a) is a consequence of the
following simple

Lemma. Let K, F, G be Hausdorff spaces, let K be compact and φ :
K ×F → G continuous. Then for any open W ⊆ G the set

⋂
k∈K{f ∈ F :

φ(k, f) ∈ W} is open in F .

b) Obviously, Fs
0 (F ) ⊇ {µ ∈ F0(F ) : 0 ∈ supp(µ)}. Let µ ∈ FH(E)

and assume 0 ∈ supp (µ). Then by definition, for ϕ ∈ H we have ϕ(µ) ∈
F0(F ) and 0 = ϕ(0) ∈ supp (ϕ(µ)). Hence ϕ(µ) ∈ Fs

0 (F ) and therefore
µ ∈ ⋂

ϕ∈H ϕ−1(Fs
0 (F )) = Fs

H .

The assertions c) and d) are proved in a similar way.

The next – nearly obvious – result is, together with Proposition 2.4
and 4.4, the key to our construction of suitable classes of full measures
fulfilling the convergence-of-types condition (C-T) for a given group B:

Proposition 3.3. Let B ⊆End(E), E ∼= Rd, let F ∼= Rk be an aux-
iliary space. Furthermore, let H ⊆Lin(E, F )\{0} such that FH and B
fulfil (3.1) and (3.2).
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Then µn → µ, αnµn → ν, µ ∈ FH imply the boundedness property

(W-C-T∗) sup
n

sup
ϕ∈ΓH

∥∥ϕαn

∥∥ < ∞.

(And hence, if for given B the set H is suitably chosen (W-C-T∗) implies
(W-C-T). Cf. the examples in §4.)

Proof. Let µn, µ, ν ∈ M1(E), µn → µ, αnµn → ν, where (αn) ⊆ B.
Assume µ ∈ FH , and suppose w.l.o.g. H = KH and hence ΓH = ΓHB
according to (3.1) and (3.2). ΓH being compact, there exist ϕn ∈ ΓH
such that ‖ϕαn‖ attains the maximum at ϕn. Assume

∥∥ϕnαn

∥∥ →∞, and

assume w.l.o.g. ϕn → ϕ ∈ ΓH . Then
{

ψn := 1∥∥ϕnαn

∥∥ϕnαn

}
n≥1

has an

accumulation point ψ− ∈ ΓH . But ϕnαnµn → ϕν, and 1/ ‖ ϕnαn ‖↘ 0,
therefore ψ−(µ) = ε0 in contradiction to the assumption µ ∈ FH . We
have proved that {∥∥ϕαn

∥∥} is bounded for ϕ ∈ H. The assertion follows.

Note that in case F = R,H = E′\{0} this is just the usual proof of
the convergence of types theorem.

The role of the classes Fs
H of S-full measures is illustrated by the

following
Proposition 3.4. Let E,B, H as above. Define Baff := {β : x 7→

αx + c : α ∈ B, c ∈ E} the semidirect product of B and E. Let µn, µ, ν ∈
M1(E), let further µ, ν ∈ Fs

H , and let (βn : x 7→ αnx + cn) ⊆ Baff .

Assume µn → µ, βnµn → ν. Then
(a) supn supϕ∈ΓH

∥∥ϕαn

∥∥ and (b) supn supϕ∈ΓH

∥∥ϕ(cn)
∥∥ (S-W-C-T∗)

are finite.
Proof. (a) Apply 3.3 to the sequence µn ∗ µ̃n. Then we have

µn ∗ µ̃n → µ ∗ µ̃, and (βnµn) ∗ (βnµ̃n) = αn(µn ∗ µ̃n) → ν ∗ ν̃ . Hence
assertion (a) follows.

(b) To prove (b), observe according to (a) that{ϕαnµn : n ∈ N , ϕ ∈
ΓH} is relatively compact. On the other hand, ΓH being compact and
βnµn = αnµn ∗ εcn → ν, hence {ϕαnµn ∗ εϕ(cn) : n ∈ N , ϕ ∈ ΓH} is
relatively compact. Therefore, boundedness of the norms {

∥∥ϕ(cn)
∥∥ : n ∈

N , ϕ ∈ ΓH} follows.

Remark 3.5. With the notations introduced in §2 we obtain : Let Ψ be
the affine embedding of E into A and let Baff := {x 7→ αx + c : α ∈ B, c ∈
E} be the corresponding affine group. Then Φ(Baff) =: C ⊆ Gl(A). Let
H ⊆ Lin(E, F ), put K := {(x, t) 7→ ϕ(x) : ϕ ∈ H, t ∈ R} ⊆ Lin(A,F ).
Then Ψ(Fs

H(E)) = FK(A) ∩Ψ(M1(E)).
This again justifies our restriction to linear groups.
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§4 Examples

In the following we show for concrete examples of groups of admissi-
ble norming automorphisms B that the methods above enable us to find
suitable classes of full measures such that the “convergence of types theo-
rem” (in short: C-T-T) holds. The examples appear to be quite natural in
connection with investigations of operator stability and semistability and
related problems. Again E ∼= Rd is a fixed finite dimensional vector space
and B ⊆End(E).

4.1. C-T-T for endomorphisms.

Let B ⊆End(E) be closed, e.g. B =End (E). B need not to be a group
here.) Put F := R, H := E′\{0}, hence FH(E) = F1(E) := {µ :
µ not concentrated on a proper linear subspace}. Then, according to
Proposition 3.2, FH is open in M1(E) and (Prop. 3.3) the weak condition
(W-C-T∗) – and hence by the choice of H also (W-C-T) – is fulfilled. And
Fs

1 (E) fulfils the (W-C-T) condition for the corresponding set of affine
transformations Baff := {x 7→ βx + c : β ∈ B, c ∈ E} (Prop. 3.4).[[
Cf. e.g. [U], [JM] Ch. 2 for the case of affine normalizations B =Aff(E).

]]

4.2. C-T-T for the linear group.

Let B = Gl(E). Put again F := R, H := E′\(0), hence FH = F1(E).
According to 4.1 (W-C-T) holds and, B being a group, (C-T) follows
(Lemma 2.3). Therefore the open set F1(E)

[
resp. Fs

1 (E)] is a suitable class
of measures fulfilling the convergence of types condition for B = Gl(E)[

resp. for the affine group B = AG(E)
]
.
[[
Cf. [B], [F], [Sh],[JM]

]]
.

4.3. Homothetical transformations.

Put B := {x 7→ tx : t > 0}. B is a closed subgroup of Gl(E). Put F :=
E, H := {idE}. Hence in this case FH(E) = M1(E)\{ε0} = F0(E). F0 is
an open subset in M1(E) fulfilling (C-T), and Fs

0 = M1(E)\{εx : x ∈ E}
fulfils (C-T) for the corresponding affine transformations Baff := {x 7→
tx + c : t > 0, c ∈ E}.

[[
See e.g. [K], [GK], [L]. The proof for homothetical

transformations is identical to the proof for the one-dimensional case. A
simple proof is given below in 4.4.a).

]]

4.4. Quasi-contracting groups.

Let B be a closed subgroup of Gl(E). We call B quasi- contracting if for
any sequence (βn) ⊆ B we have:

∥∥βn

∥∥ →∞ iff
∥∥β−1

n

∥∥ → 0. (Hence B∪{0}
and B ∪ {∞} are topological semigroups and B∗ = B ∪ {0} ∪ {∞} defines
a 2-point compactification of B.)
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Proposition. Put again H := {id} and FB := FH(E) := F0(E) =
M1(E)\{ε0}. Then (B,F0(E)) fulfil the (C-T) condition.

Proof. Let µn → µ, αnµn → ν, µ, ν ∈ F0. It suffices to show that
{∥∥αn

∥∥} and {∥∥α−1
n

∥∥} are bounded. For then the accumulation points of

{αn} in End(E) belong to B. Assume {
∥∥αn

∥∥} to be unbounded. Suppose∥∥αn

∥∥ → ∞, hence by assumption
∥∥α−1

n

∥∥ → 0. Therefore αnµn → ν

implies α−1
n (αnµn) = µn → ε0, i.e. µ = ε0, a contradiction. Conversely,∥∥αn

∥∥ → 0 implies ν = ε0. Hence (C-T) holds for (B, F0(E)).

The following examples 4.4.a)–e) may be subsumed in 4.4:

4.4.a) Homothetical transformations are quasi-contracting.
Hence, as mentioned in 4.3. above, a new proof of 4.3 follows. More
generally:

4.4.b) Contracting one-parameter groups are quasi-contracting:
Let A ∈ Gl(E) and assume Spec(A) ⊆ {λ ∈ C : Re λ > 0}. Then B :=
{tA := exp(log t)A}t>0 and F0(E) := M1(E)\{ε0} fulfil the convergence
of types condition (C-T).

[[
Indeed, as well known lim

t→±∞
∥∥tA

∥∥ = ∞ resp.= 0

iff Spec(A) ⊂ {Re λ > 0}
]]
.

4.4.c) Discrete contracting groups are quasi-contracting:
Let α ∈ Gl(E) such that Spec(α) ⊂ {| λ |< 1}. Then B := {αk : k ∈ Z}
and F0(E) = M1(E)\ε0 fulfil (C-T).[[
As well known, lim

k→±∞

∥∥αk
∥∥ = ∞ resp.= 0 iff Spec(α) ⊂ {| λ |< 1}.

]]

4.4.d) Compact extensions of quasi-contracting groups are quasi-con-
tracting:
Let K ⊆ Gl(E) be a compact subgroup, and let T be quasi-contracting,
e.g. T := (tA : t > 0) as in 4.4.b), resp. = {αk : k ∈ Z} as in 4.4.c)
such that T is contained in the normalizer of K. Then the (semidirect)
product B := T · K is quasi-contracting and hence B and F0(E) fulfil
(C-T).

[
Indeed, if T = {tA} then, as well known B = T · K is isomorphic

to a direct product.
]

Proof. W.l.o.g. we choose a norm on E such that K ⊂ O(E), the
orthogonal group, see e.g. [HR] V §22, (22.23). Hence for κ ∈ K, t ∈
T , x ∈ E\{0} we have ‖tκ‖ ≤ ‖t‖ and ‖tκx‖/‖x‖ = ‖tκx‖/‖κx‖. Hence
‖tκ‖ = ‖t‖ for all tκ, i.e. B herits the quasi-contracting property from T .
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4.4.e) Remark. The examples mentioned in 4.4.a)–4.4.d) appear in a nat-
ural way as admissible normalizing operators, e.g. in connection with in-
vestigations of domains of normal attraction: Let µ be (strictly) operator-
stable resp. -semistable on E, let (µt) be the corresponding c.c.s. such that
µ = µ1. Then the decomposability group Z(µ) := {α ∈ Gl(E) : αµt = µct

for all t > 0 and some c = c(α) > 0} is of the form (tA)J (µ) resp.
(αk)J (µ). Hence, if µ is a full measure (i.e. µ ∈ F1(E)), then J (µ)
is compact and hence Z(µ) is of the form 4.4.d).

[[
Cf. [S], [Lu], [Ha1],

[Ha2].
]]

Thus we have proved: Let µ be a full strictly operator-stable law
on E ([Sh]) and let T := {tA : t > 0}, a corresponding one-parameter
automorphism group. Then for the group of admissible normalizations
T – more generally for the decomposability group Z := J (µ) · T – the
corresponding class of full measures is just F0(E) = M1(E)\{ε0}, i.e.
(Z,F0) fulfil (C-T). If we allow affine normalizations x 7→ tAx+a, we have
to replace F0 by Fs

0 . An analogous result holds for operator semistable
laws.

4.4.f) Motion groups.
Special examples of compact extensions of (quasi-)contracting groups B
are motion groups. We start with the following almost obvious example:

Let C ∼= R2 the complex plane, and let B := C× := C\{0} operate
on C ∼= R2 canonically. Then c = |c|.(c/|c|) defines a decomposition
B = R×

+ ⊗ T with T := {c : |c| = 1}. Hence (4.4.d) C× acts quasi-
contracting on C ∼= R2, and thus F0 is a suitable class of full measures.

More generally: Let E = Rd, let O be the (compact) group of or-
thogonal transformations and put B := {tU : U ∈ O, t > 0}. Then the
corresponding affine group Baff := {x 7→tUx+b : t > 0, U ∈ O, b ∈ E} is
the group of Euclidean motions (semidirectly extended). Obviously B ful-
fils the conditions described in 4.4.d), hence (B, F0(E) := M1(E)\{ε0})
and (Baff , Fs

0 ) fulfil (C-T).

Analogously motion groups of stratified Lie groups resp. Lie algebras
are treated: E.g. let E := H := (Rd⊕Rd⊕R, [ , ]) be the 2d+1-dimensional

Heisenberg Lie-algebra, let T :=
{

δt =
(

t 0
0 t2

)
: t > 0

}
be the group of

dilations and let S be the group of symplectic orthogonal transformations

of Rd ⊕Rd. Finally, let S∗ :=
{ (

s 0
0 1

)
, s ∈ S

}
. Then B := {δtU : U ∈

S∗, t > 0} is quasi-contracting, hence (B,F0) fulfil (C-T).
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4.5. Diagonal operators.
Let B ⊆ Gl(E) be a closed subgroup. Let Ei be B-invariant subspaces,
1 ≤ i ≤ n, such that E =

∑⊕Ei. Let Bi := B|Ei be the restrictions to Ei

such that B ⊆ ∑⊕Bi. Assume that for all i there exist auxiliary spaces
Fi and Hi ⊆Lin(Ei,Fi) such that (FHi ,Bi) fulfil (W-C-T).

Define F :=
∑⊕Fi. Let pi : F → Fi the canonical projections and

ji : Fi → F the injections, ji = p∗i . Furthermore, H :=
⋃

Hi(−Hi

embedded as subspaces of Lin(E, F )). Then (FH ,B) fulfil (W-C-T), and
hence also (C-T) according to 2.3 and 3.3.

Proof. Let πi : E → Ei be the natural projections. Then by def-
inition µ ∈ FH iff πiµ ∈ FHi for all i, 1 ≤ i ≤ n. Hence the assertion
follows.

4.5.a) Example: Let Ai ∈ Gl(Ei) with Spec(Ai) ⊆ {Re λ > 0},
1 ≤ i ≤ n. Let E :=

∑⊕Ei,B :=

{(
S1 . 0

.0 . Sn

)
: Si := tAi

i ,

ti > 0, i = 1, . . . , n

}
. Put H := {πi : 1 ≤ i ≤ n}, and hence

FH := FB = {µ : πi(µ) 6= ε0 for 1 ≤ i ≤ n} = Cp
⋃

π−1
i {ε0} = {µ:

not concentrated on Ei, 1 ≤ i ≤ n}. (Cp denoting the complement).
Then by 4.5, B and FB fulfil (C-T).

For examples and applications of diagonal norming operators cf. [Sch3]
and the literature mentioned there.

4.6. Non-quasi-contracting one-parameter groups.
Let N ∈End(E) be step−r + 1- nilpotent, i.e. Nr 6= 0, Nr+1 = 0. Define
B := {tN : t > 0}. Then put F := E, H := {Nr} and hence FH := {µ :
Nr(µ) 6= ε0} is a suitable class of B-full measures, i.e. (B,FH) fulfil (C-T).

Proof. Since tN =
∑r

k=0(log t)kNk is representable as (log t)r ·C(t),

with C(t) :=
∑r−1

k=0(log t)k−rNk + Nr, we obtain that
∥∥C(t)

∥∥ is uniformly

bounded outside any neighbourhood (1− ε, 1 + ε) of 1,
∥∥C(t)

∥∥ ≤ Kε, say.

Assume µn → µ, tNn (µn) → ν, i.e. [(log tn)r id ·C(tn)](µn) → ν. Assume
tn → ∞[→ 0] for some subsequence. Then C(tn) → Nr and |(log tn)r| →
∞, and w.l.o.g. tn < 1−ε or > 1+ε. Hence κn := C(tn)(µn) → Nrµ := κ,
and ((log tn)rI)(κn) = tNn µn → ν. And we obtain therefore κ = ε0 (cf. the
proof of 4.4), hence Nrν = ε0 in contradiction to the assumption µ ∈ FH .
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Hence we have proved that {tn} is bounded away from 0 and ∞, i.e. (C-T)
is fulfilled.

4.7. Automorphisms of nilpotent Lie Algebras.
Let E ∼= Rd be endowed with a Lie algebra structure [ , ] such that (E, [ , ])
is nilpotent of step r. Define Aut(E) to be the group of Lie algebra
automorphisms, Aut(E) := {α ∈ Gl(E) : α[x, y] = [αx, αy] for x, y ∈ E}.
We consider B =Aut(E) as a closed subgroup of Gl(E).

E(1) := [E,E] is a characteristic ideal in the Lie algebra E. Let
π1 : E → E/E(1) := M0 be the canonical projection. Put H := {ϕ ◦ π1 :
ϕ ∈ M ′

0}\{0} = {ϕ ∈ E′\{0} : kerϕ ⊇ E(1)}.
Proposition. FB := FH := {µ ∈ M1(E) : π1(µ) ∈ F1(M0)} is

a suitable class of full measures for the whole group B :=Aut(E), i.e.

(B,FB) fulfil (C-T).[
Note that by definition of M0 we have FB = {µ: not concentrated

on a proper ideal}.]

Proof. We need some preparations:
The descending central series E(0) := E,E(i+1) := [E, E(i)], . . . , E(r+1) =

{0} is a sequence of characteristic ideals. Let E(i) := E/E(i). For i ≥ 1

let Mi be a vector space complement of E(i+1) in E(i), hence E(i) ∼=∑r
j=i⊕Mj , E(i)

∼= ∑i−1
j=0⊕Mj . Let πi : E → E(i) be the canonical

projection. E(i) being characteristic, we obtain a representation πiα =
α(i)πi for α ∈Aut(E), 1 ≤ i ≤ r, with α(i) ∈Aut(E(i)). (Note that

E(i) and E(i) are nilpotent Lie algebras). Let (µn), µ, ν ∈ M1(E), let
(αn) ⊆ B =Aut(E), such that µn → µ, αnµn → ν and µ, ν ∈ FB.

1.) i = 1. π1µn := µ
(1)
n → µ(1) := π1(µ) and π1αnµn = α

(1)
n π1µn =

α
(1)
n µ

(1)
n → ν(1) := π1(ν). Since π1(µ) ∈ F1(E(1)) = F1(M0) we obtain by

4.2. boundedness of (α(1)
n ).

2.) i = 2. As before we have π2µn := µ
(2)
n → µ(2) := π2(µ) and

α
(2)
n µ

(2)
n → ν(2), where α

(2)
n has a matrix representation of the form

α
(2)
n =

(
α

(1)
n 0
bn cn

)
with cn ∈Aut(M1) and bn ∈Lin(M0,M1).



214 Wilfried Hazod

We have M1 ⊆ [E,E]. Hence to show that (cn) is bounded it is
sufficient to show the boundedness of (αn[X,Y ]) for X, Y ∈ E. Indeed,
M1 being central in E(2), it is sufficient to consider X, Y ∈ M0. But then

the sequence (αn[X, Y ] = [α(1)
n X,α

(1)
n Y ])n≥1 is bounded since (

∥∥α
(1)
n

∥∥)n≥1

is.
Assume (

∥∥α
(2)
n

∥∥) to be unbounded. Then accumulation points α∗ of

(α(2)
n /

∥∥α
(2)
n

∥∥) are of the form α∗ =
(

0 0
b 0

)
with b ∈Lin(M0,M1)\{0}.

As in the proof of Proposition 3.3 we obtain α∗µ(2) = ε0, hence b(π1(µ)) =

ε0, a contradiction. Hence the boundedness of (α(2)
n )n≥1 is proved.

3.) 2 < i < r. Now continue by induction. Assume that (α(i)
n )n≥1 is

bounded. Then, as above, α
(i+1)
n has a representation α

(i+1)
n =(

α
(i)
n 0 0
bn dn cn

)
with cn ∈ Gl(Mi+1) and dn ∈Lin(

∑i
2⊕Mj ,Mi+1),

bn ∈Lin(M0, Mi+1).

As in step i = 2 boundedness of (α(i)
n ) implies boundedness of (dn) and of

(cn). If (α(i+1)
n ) were unbounded there exist non-zero accumulation points

α∗ =
(

0 0
∗ 0

)
of

{
α

(i+1)
n

/ ∥∥α
(i+1)
n

∥∥
}

, hence α∗π1(µ) = ε0, a contradic-

tion.

So we obtain a new proof of the convergence-of-types theorem for nilpo-
tent Lie groups (Cf. [HN], [N]):

Theorem 4.8. Let G be a simply connected nilpotent Lie group with

Lie Algebra (G, [ , ]) and let Aut(G) be the group of topological auto-

morphisms of G. Then G/[G,G] ∼= G/[G,G] := G(1) (topologically and

algebraically). Let π : G → G(1) be the canonical homomorphism. Let

“full measures on the group G” be defined as F := {µ ∈ M1(G) : π(µ) ∈
F1(G(1))} = {µ ∈ M1(G): For any continuous surjective homomorphism

ϕ : G → R we have ϕ(µ) 6= ε0}.
Then (Aut(G), F) fulfil the convergence-of-types condition (C-T).

Proof. Being a homeomorphism, exp : G → G defines bijections
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f ←→ fo := f ◦ exp, Cb(G) ←→ Cb(G), µ ←→ µo, M1(G) ←→M1(G),

τ ←→ τo, Aut(G) ←→Aut(G).
[[
Cf. e. g. [Ha1], [HN].

]]

Let Fo := {µo : µ ∈ F}. So it is sufficient to show: (Aut(G),Fo :=
{µo : µ ∈ F}) fulfil (C-T) on the vector space G. But obviously Fo =
{µo ∈ M1(G) : π1(µo) ∈ F1(G(1))}, hence by 4.7 (C-T) is fulfilled. 4.8 is
proved.

Remark 4.9. In most of the concrete examples above we can show
that the constructed class of full measures FH is maximal w.r.t. B (cf.
Proposition 2.5). E.g. we can show that for µ 6∈ FH the invariance group
JB(µ) is non-compact. (To exclude trivial situations we always assume B
to be non-compact):

Maximality is obvious for the examples 4.2–4.4, i.e. for F0(E) =
M1(E)\{ε0} since we have µ 6∈ F0(E) iff µ = ε0 and since JB(ε0) = B is
non-compact.

On the other hand, since µ 6∈ FH iff µ(kerϕ) = 1 for some ϕ ∈ H,
FH is maximal for B if for any ϕ ∈ H the set {α ∈ B : α|ker ϕ = id|ker ϕ}
is non-compact.

Hence maximality of FH also follows in the case of the examples
4.5–4.6, – and for the corresponding groups of affine transformations if F
is replaced by Fs –, and also for automorphism groups of nilpotent Lie
algebras resp. groups. Indeed, maximality can be proved for the group
of automorphisms of nilpotent Lie algebras B =Aut(E) (Example 4.7)
along the lines mentioned above. This is just the way Proposition 3.3 and
Theorem 3.4 in [HN] are proved.

See also the general discussion in [Ha1], [Ha2], where we suggested for
more general convolution structures to define fullness of µ by compactness
of the invariance group J (µ).

Note that in the situation of 4.9 we gain the following characterization:

Proposition 4.10. Let FH be maximal w.r.t. B. Then µ is B-full iff

the invariance group JB(µ) is compact.
[[
Cf. also [Sh], [U], [JM], [HN],

[Ha1], [Ha2], [T]
]]

§5 Infinite dimensional spaces. Concluding remarks.

If E is an (infinite dimensional) Banach space and if End(E) is en-
dowed with the (natural) strong operator topology, then the results of §3
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and §4 are no longer true: The action of Gl(E) on E resp. on the prob-
abilities M1(E) is not simultaneously continuous. Only the restriction to
bounded subsets of End(E) of the map θ (defined in §1) is continuous,
and (cf. [LS]) on these sets the weak condition (W-C-T) is fulfilled, if the
set of full measures is defined to be F1. Hence (C-T) is fulfilled for all
(Ka,b,F1(E)), where Ka,b := {α ∈ Gl(E) : ‖α‖ ≤ a and ‖α−1‖ ≤ b}.
But in general (C-T) does not hold, see e.g. [LS] or [JM]. This is one of
the reasons why in the infinite dimensional setup the relations between
limit theorems and stability concepts are less satisfactory than in finite
dimensional spaces.

On the other hand, for homothetical transformations (cf. e.g. [CR])
or for ‖ . ‖-contracting one-parameter groups (Tt), continuous w.r.t. the
strong operator topology (cf. e.g. [Ja1] “V -decomposability”, [JM]) the
C-T-theorem is valid. Indeed, quasi-contracting groups (cf. 4.4) may be
defined in a more general setup:

Definition 5.1. A subgroup B ⊆ Gl(E), endowed with the strong
operator topology is called quasi-contracting if the following conditions
(5.1) and (5.2) are fulfilled:

‖αn‖ → ∞ iff ‖α−1
n ‖ → 0(5.1)

B1 := {α ∈ B : ‖α‖ = 1} is compact.(5.2)

Proposition 5.2. Let B be quasi-contracting. Then B and F0 :=
M1(E)\{ε0} fulfil (C-T), hence B acts properly on F0.

[[
The proof is identical with the proof of 4.4.

]]

Proposition 5.3. Let B be a subgroup of Gl(E) endowed with the
strong operator topology. Assume B to be either a) locally compact or b)
metrizable. Then B acts as a transformation group on M1(E).

Proof. If a) or b) holds it is sufficient to consider the restrictions
of θ to relatively compact subsets of B. But these sets are uniformly
‖.‖-bounded and on norm-bounded sets the action is simultaneously con-
tinuous. (Cf. [LS].)

Proposition 5.4. Let B be a subgroup of Gl(E) endowed with the
strong operator topology and assume condition (5.1) to be fulfilled. Then
B and F1(E) := {µ: not concentrated on a proper closed subspace} fulfil
(C-T).

Proof. Let (µn) ⊆ M1(E), µ, ν ∈ F1, let (αn) ⊆ B, µn → µ and
αnµn → ν. Let ‖αn‖ → 0. Then, {µn} being uniformly tight, ν = ε0
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follows. A contradiction. Conversely, assume ‖αn‖ → ∞, hence by as-
sumption ‖α−1

n ‖ → 0, therefore µ = ε0 follows. So {‖αn‖} and {‖α−1
n ‖}

are uniformly bounded and the assertion follows from [LS].
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