Topological radicals in semigroups
By C. Y. HUNG and K. P. SHUM (Hong Kong)

A semigroup (i.e., topological semigroup) is a non-empty Hausdorff space to-
gether with a continuous associative binary multiplication. Let F be a non-empty
subset of a semigroup S. The algebraic radical of F in S is the set {xcS|x*¢F
for some integer k=1} which is denoted by R(F). Algebraic radical in semigroups
was studied by K. P. SHUM and C. S. Hoo [2]. By the topological radical of F in S,
we mean the set T(F)={xe¢S|I(x)(NF# @}, where I'(x) is the closure of the
positive powers of x. The notion of topological radical was initiated by R.J. KocH[S5].
Clearly, T(F) contains R(F) as a subset, and in general these two radicals are
not equal. If S is a semigroup with zero, then 7({0}) is usually called the radical
of S. The set T({0}) was widely studied by K. NUMAKURA [6], R. J. KocH [5],
K. P. SHuM and C. S. Hoo [4]. In case if the semigroup S is commutative and
compact, then T({0}) is the union of all the nil ideals of S. However, if F is
a non-zero subset of S or in case if S is a semigroup without zero, the properties
of T(F) are still not well-known.

The aim of this paper is to discuss the properties of T(F) in compact semi-
groups, an attempt is made to relate the algebraic and topological properties of T(F).
Results concerning the properties of R(F) and 7({0}) obtained in [2], [3], [4], [5]
and [6] will be amplified and strengthened.

We shall follow A. B. PAALMAN—DE MIRANDA [8] for all concepts and terminolo-
gy not defined in this paper.

1. Preliminaries

We shall use the following notations:
Let A be any subset of a semigroup S and x be an element of S. Then
A =topological closure of 4 in S.

J(A)=AUASUSAUSAS, which is the principal ideal of S generated by A.

Jo(A)=The largest ideal contained in A, if J(A)#= @.

E=the set of all idempotents of S.

E(A)=ENA.

tod, x={seS|sxcA} which is called the right topological zero devisors of x
with respect to 4. If S is a commutative semigroup, then tod, x={s¢ S|sxcA}=
={seS|xscA}.

r(x)={xl)r=1-

K(x)= N {x'}li=n)}.

n=1
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It is well-known that if I'(x) is a compact, then it contains an unique idempotent.
Moreover, K(x) is a group and K(x)=el (x)e=I(x)e where ecI'(x) is the unique
idempotent of I'(x). (See [8], pages 22—25).

We quote several definitions which will be needed later on.

Lemma 1.1 (NUMAKURA [6]). The set E of idempotents of a semigroup S is
a closed subspace of S which is partially ordered under the relation e=f if ef=fe=e,
and this partial order is closed.

Definition 1.2. (SHUM—STEWART [12]. An ideal 7/ of a semigroup S is said
to be topologically semiprime if x¢ 7 implies I'(x) /= @.

Clearly, all open completely semiprime ideals of S are topologically semiprime.

It was proved by R. J. KocH on [5] that if S is a semigroup with zero and I'(a)
is locally compact for each a¢ 7({0}), then 7({0}) is topologically semiprime.

Definition 1.3. (KocH [5]). Let 4 be a subset of a mob S. An idempotent
ecS 1is called A-primitive if e¢ A4 and e is the only idempotent in eSe\A. An
idempotent ecS is called A-maximal if ecA4 and f*=fcA, then either efcA
or f=e.

Obviously, A-primitive idempotents are the atoms of the partial ordered set
(E(A), =). A-maximal idempotents are the maximal elements in the ordered set
(E(A), =).

The set of all A-maximal idempotents of S is denoted by E(A)".

The set of all A-primitive idempotents of S is denoted by Eﬁ

Definition 1.4. A semigroup S is called semi-normal if and only if eS= Se
for all idempotents e€S.

Clearly, commutative semigroups are semi-normal, but not conversely. We
should note that many results on commutative semigroups can be extended to semi-
normal semigroups trivially.

The following results are topological generalization of algebraic radicals which
are analogous to those in ring theory |12].

Theorem 1.5. Let A, B be any two ideals of a semigroup S. The topological
radical of ideals in S has the following properties:

(1) A*cB for some integer k=1 implies that T(A)cT(B); moreover, if

A is a compact subset of S, then ﬂ A" B implies that T(A)c T(B). (ﬂ V ol
usually denoted by A~). L

(i) T(AB)=T(AN B)=T(A)NT(B).

(iii) T{T(A)}=T(A).

(iv) T(AUB)=T{T(A)UT(B)).

The proofs are straightforward and hence omitted.

Theorem 1.6. Suppose S and T are semigroups and h is a continuous homo-
morphism of S into T. We have

() If A is anideal of S, then h(T(A))cT(h(A)).

(i) If S is compact and B is an ideal of T, then h='(T(B))=T(h B)).



Topological radicals in semigroups 267

ProOF. We only prove (ii). Let xch~T(B)), then h(x)eT(B) and I'(h(x))N
MNB#= . Hence there exists b¢B such that b=Ilim A(x)* for some net o. Since
B is compact, there exists a subnet B of « such that x? converges. Then b
=lim (h(x))’=h(lim xf) and so I'(x)"h~Y(B)# &, thatis xeT(h~'(B)). On the
other hand, let x¢T(h~'(B)), then I'(x)Nh~(B)s . Hence there is an element
yeh~Y(B) such that y=Ilim x* for some net «. Thus, lim A(x)*=hA(y)€B and so
r(h(x))N B @. It then follows that h(x) € T(B), whence xch=*(T(B)).

Remark. Topological radicals and algebraic radicals are in general not equal
as illustrated by the following example.

Example 1.7. Let S be the subset of the plane defined by S={0}x[0, 1]U

{l
In
multiplication in S is the coordinatewise usual multiplication. Then S is a semi-
group. Let A4 be the set {0}x[0,'/;) which is an ideal of S. Obviously, R(A4)=

= {0}X[0, 1), T(A)={0}X[_(_],_1)U{-}z— n=2,3, ...}x{()}. So, ASR(A)S T(A)SS.

n=1,2, 3, }x {0}, where the underline brackets denote the intervals. The

2. Topological radicals

Let A be an ideal of a semigroup S. If S is a I'-compact semigroup with
zero and A is the zero ideal, then the topological radical 7({0}) is the set
{xeS|x"~0} which is the set of all nilpotent elements of S and is denoted by N.
The properties of the set N were widely studied by K. NUMAKURA [6], R. J. RocH [5],
and SHUM—Hoo0 [4]. In this section, we study T'(A4) instead of N. Generalized
results concerning the set N are obtained in compact semigroups without zero.

Theorem 2.1. Let A be an open subset of a semigroup S, then T(A) is open.

PrROOF. Let x¢T(A), then I'(x)[1A# @. Since A is an open subset of S,
there exists an integer n, such that x"¢4 for n=n,. Let V be an open
neighbourhood of x" such that V< A. Then by the continuity of multiplication,
there exists an open neighbourhood U of x such that U"c¥VFcA. Hence I'(U)
MA# @, which means that Uc T(A). Thus T(A) is open.

In view of theorem 2.1, we obtain generalized versions of the following theorems.

Theorem 2.2. (NUMAKURA [6]). Ler S be a compact semigroup and A be an
open ideal of S such that its topological radical is a proper subset of S. Then there
is a closed ideal M minimum with respect to not being in T(A). M has the form

M=SeS with eéé—(j). Furthermore, J{T(A)}yy=MNJ{T(A)} is the topological
radical of A in the subsemigroup M and J,{T(A)}y is a maximal proper ideal of
M with M|J,{T(A)}y completely O-simple.

The proof of the above theorem is an application of Zorn’s lemma. In the
process of proof, we need to use the facts that E(4)=E{T(A4)} and T(A) is open.
The reader is referred to [6] for details.

4 D
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Corollary. Let A be an open ideal of a compact semigroup S, then S contains
a A-primitive idempotent if and only if there is an idempotent ecE(A) such that
eSeN\T(A) is closed.

Theorem 2.3. (R. J. KocH [5]). Let S be a compact semigroup and A be an
ideal of S. Let ecE(A), then SeN\T(A) and Se(\T(A) are subsemigroups and

SeN\T(A) is the disjoint union of the maximal groups e,Se, . T(A), where e, runs
over the set E(A)() Se.

Theorem 2.4. (R. J. KocH [5]). Let S be a compact semigroup and A be an
ideal of S with ecE(A). Then the followings are equivalent:

(1) ecE(A).

(11) eSeNT(A) is a group.
(iii) Se is a closed left ideal minimum with respect to not being contained in T(A).
(iv) SeS is a closed (two sided) ideal minimum with respect to not being in T(A).

(v) Every idempotent in SeS\T(A) isin E’BT)

Remarks: If A is an ideal of a semigroup S, then T(A) is not necessarily
an ideal of S.

Example 2.5. Let S={(x, y)|x, y=0} with the usual topology inherited from
the plane and with the multiplication defined by (x;, yi)(Xs, ¥o) =(x1Xs, X; ¥+ 1)
and let 4={(0, y)|y=0}. Then S is a semigroup and A is an ideal of S. Clearly,
T(A)={(x, »)/0=x=1, y=0} which is not an ideal of S.

We now give conditions for T(A) to be ideals.

Theorem 2.6. If A is an ideal of a I'-compact semi-normal semigroup, then
T(A) is a topological semiprime ideal of S.

PrROOF. Let acT(A) and x¢S, then I'(a)(VA# @. Since S is I'-compact,
each of the subsemigroup I'(@) and I'(x) is compact and hence each of which
contains idempotent ecl'(a), feI'(x) respectively. By the semi-normality of S and
a well-known theorem of Schwarz [8; theorem 3.2.3 page 116], we have efeI'(ax)() A,
whence axeT(A). Similarly, xacT(A4). Hence T(A) is a two-sided ideal of S.
Clearly, T(A) is topologically semi-prime.

Note. The semi-normality of a I'-compact semigroup S is not sufficient to
ensure T(A) be an ideal for any ideal 4 of S.

Example 2.7. Let S be the set { g S], 8 S}, [8 2], [3 B]} with0=x="/,. The

topology on S is the topology that S inherits when S is considered as a subspace
of Euclidean 4-space. The operation on S is the usual matrix multiplication. Then

S is a compact semi-normal semigroup. Let A:{(g 8]} which is an ideal of S.

The algebraic radical R(A) is the set {(g ’S]'O‘éxf—_f'/g}. R(A) is not an ideal
00

; 00)(0 x
of S, forif y=#0=x, then y J_,] [0 0]:[0 xy]& R(A).
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Let ecli(4). The set of all e-non-orthogonal idempotents with respect to A4
is the set {e;cEleged A} which is denoted by e,. The set e, is always non-empty
since ece,.

Theorem 2.8. Let A be an ideal of a compact semi-normal semigroup S and
e an idempotent non in A. Then Ji(S\ e )=tody,e.

Proor. Let tce,. Then ¢ is an idempotent of S such that ercA. Since
E(A)=E(T(A)), therefore the idempotent etd T'(A). This implies that 7¢ tody ,e.
Thus, tody e S\e,. As todp e is an ideal of S, tody e J(S\ey). On the
other hand, let x<Jy(S\e,). Then f*=fcI'(x)cxScJ(S\e,). Consequently,
fé¢e,, which means that fec ACT(A). Thus, fetody e, ie., I'(x)tody e # & .
Since T(A) is topologically semiprime and S is semi-normal, tod;(4e is topo-
logically semiprime. Therefore, x<tody e, and so Jy(S\e,)ctodyge. Our
proof is completed.

Theorem 2.8 includes a result of Shum—Stewart [11; lemma 2 (iv); page 212]
as a particular case. Forif ecE(A), then e, = {e}. Thus, when A4 is a topologically

semiprime ideal of S, we have tod,e=J,(S\.e) with eebﬁ.

Theorem 2.9. Let A be an ideal of a compact semi-normal semigroup S, then
the followings are equivalent:

(1) T'(A) is topologically semiprime ideal.
(i) T(A)=J[S\E(A)).

(iii) T(A)= N {J(S\e)lecE(A)).

(iv) T(A)=N{J(S\ecE(A)}.
(v) T(A)=){tod (4 elec E(A)}.

(vi) T(A)= N{tod 4 elecE(A)}.

(Vil) T(A): N {tod T(A)€:€€E(A)*}.

PROOF. (i)=(ii)=(ii1))=>(iv)=>(v) follows verbtim from the proof of proposition 7
and theorem 11 of Shum—Stewart [11]. It was proved in [4] that if e, and e, are
in E(A) such that e,=e,, then tody,esStody e, Whence (v)<«>(vi)<>(vii)
follows immediately. The cycle will be completed if we prove (v)=(iv) and (iv)=(1).

(V)=(iv): For if ecE(A), then Jy(S\e)=tods(,e[4; lemma 4.2]. For the
converse part, we recall a theorem of SCHWARTZ [8; page 119] that if ecA, then
Jo(SN\e)= U {Pylee; e, egc E(A)} where Py={xcSlescl'(x)}. Now, suppose
Jo(S\e)=todye. Then, by using Theorem 2.8, we can easily show that ecE(A).
The proof is straightforward.

(iv)=>(@i): In view of theorem 11 of SHUM—STEWART [11]. We only need to

show that each Jy(S™\e), with eeﬁ, is an open completely prime ideal of S.
Let abeJy(SN\e). Then since e(a)*=e(a)cl(a)cS; e(b)*=e(b)cI'(b), we have
e(a)e(b)=e(ab)cI'(ab) cabSc Jy(S\e). If e(a) and e(b) are both in SN\ J,(5\e),
then by Schwarz’s theorem mentioned above, we have e-e(a)=e and e-e(b)=e.
Hence e-e(ab)=ele(a)e(b)]=[e-e(a)]e(b)=e-e(b)=e and so e(ab)ec SN\ J(S\e),
a contradiction. Therefore, either e(a)cJy(S\.e) or e(b)cJ (S \¢). Apply Schwarz’s
theorem once again, we have either acJy(SN\e) or beJy(S\e). Thus, J(S\e€)
1s indeed an open completely prime ideal.

4
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Remark. The statement of Theorem 3.2 in [4; page 544] is wrong. The set
E* there should be the set of all non-zero maximal idempotents of S instead of the
set of all non-minimal idempotents of S.

In view of Theorem 2.9, we obtain a characterization of topologically semiprime
ideals in compact semi-normal semigroups.

Theorem 2.10. Let S be a compact semi-normal semigroup. An ideal Q of
S is topologically semiprime if and only if Q is the intersection of open completely
prime ideals.

3. Topological-radically stability

Let S be a semigroup. SHUM and Hoo [2] have introduced the notion of sta-
bility of algebraic radicals on S, that is, a non-empty subset F of S is said to be
radically stable if and only if R(F)=R(F}. It is recognized in [2] that the notion
of stability of algebraic radical could be used to determine whether some properties
of an ideal are unchanged under the closure operation. In this section, we extend
the stability of algebraic radicals to topological radicals.

Definition 3.1. Let A be a non-empty subset of a semigroup S. Then A 18
said to be topologically stable if and only if 7'(4)=T(A).

The stability of algebraic radical clearly implies the stability of topological
radical, but the converse is generally not true.

Example 3.2. Let S=[0, 1]X[0, 1] with the coordinatewise usual multiplica-

tion. Then S is a semigroup. Let A=[0, 1)X[0, }/s]U{(1,0)}. Then A=[0, 1]
X[0,/,]. Clearly T(4)=T(A) but R(A)=R(A). e

Theorem 3.3. Let S be a compact semigroup and A an ideal of S. Then
T(A)=T(A) ifand only if ANE=AIE.

PRrROOF. The conditions is necessary since if A(VES ANE, then there exists
an idempotent e<E suchthat ec AN A. Hence ecT(A)=T(A) andso I'(e)( 1A= &.
As I'(e)={e}, it follows that ecA4, a contradiction. To prove the sufficiency, let
x€T(A), then I'(x)NA# @ and ecA where e*=ecl(x). The hypothesis now
implies that ecA4, whence I'(x)(NA=®. Thus x¢T(A).

Parallel to theorem 3.3, we obtain a modified version of Theorem 3.2 of
SHUM—Hoo0 [2].

Theorem 3.4. (SHUM—HO0O0 [2]). Let A be an open ideal of a compact com-
mutative semigroup S. Then A is algebraic-radically stable if and only if AMNE=
=ANE.

Proor. If A is algebraic-radically stable, then it is trivial that ANE=ANE.
To prove the sufficiency, let x€R(A). Then there exists an integer n=1 such that
x"€A. Since A is an ideal of S, we have {x", x"*!,...}c A4, hence ecA where
e*=ecI'(x). By hypothesis, we have ecA4. Now A is open, so x*¢A for some
integer k=1. Thus x€R(A).

It was seen in [2] that if A is an ideal of S which is algebraic-radically stable
in a compact commutative semigroup S, then A is a primary ideal if and only if
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A is a primary ideal [2]. The proof of this result is trivial. Naturally, we wish to
obtain similar results on topological-radically stable ideals in compact semi-normal
semigroups. As we shall see that it is far more complicated than one expected to
obtain such an analogy.

Definition 3.5. Let A be an ideal of a semigroup S. A is called a I'-primary
ideal of § if the following conditions hold simultaneously.

(1) xycA, x¢ A implies that I'(y)NA# @
and

(ii) xyeA, y§ A implies that I'(x)"NA# @,
where x,y are arbitrary elements of S.

Example 3.6. Let S={0}x[0, ‘/g]U{% n=2,3, }>< {0} with the coordinate-

wise usual multiplication. Then S is a semigroup and 4= {0}X[0, ¥/,] is a I'-primary
ideal of S.

Definition 3.7. Let S be a semigroup. S will be called topological-radically
complete if T(4)=S implies A=S for every ideal 4 of S. In other words,
S is topological-radically complete if S is the only ideal of S with topological
radical S.

We now give a characterization on I'-primary ideals in compact semi-normal
semigroups.

Theorem 3.8. Let S be a compact semi-normal semigroup with S*=S. If
A is a proper ideal of S which contains all idempotents in ®(S), the intersection
of all maximal ideals of S, then A is I'-primary if and only if T(A) is a proper
prime ideal of S.

The following lemma is needed to prove theorem 3.8.

Lemma 3.9. Let S be a compact semigroup, then S is topological-radically
complete if and only if S*=S.

ProOOF. The necessity is trivial by 7(S?*)=S. For the sufficiency, let us suppose
that T(4)=S for some proper ideal 4 of S. As T(A) is the set {xeS|I'(x)N
MNA#®} and S is compact, we have EcA. Since S*=S, by Koch and Wallace
(see [8; page 44]), we have S=SEScA which is a contradiction. Hence S is
topological-radically complete.

We only need to prove the sufficiency for Theorem 3.8 for the necessity is trivial.

Suppose T(A) is a proper prime ideal of S. Since EMN®(S)cA, we have
®(S)cT(A). Then by ScHWARZ [10], each prime ideal of S containing @(S) and
different from S is a maximal ideal. Thus 7(A4) is a maximal ideal of S. If A4 is
not a I'-primary ideal of S, then there exists elements x and y such that xycA4,
but x¢§ A and y¢ T(A). [The proofis similar if yéA4 and x€T(A).] Now let e be
the unique idempotent of I'(y). Then ed T(A4) for T(A) is topologically semi-
prime. Consequently, T(A)ET7(AUeS)S S and by the maximality of 7(A),
we have T(AUeS)=S. So AUeS=S by lemma 3.9. Since x¢A4 and yq T(A),
we have xceS and yceS. These imply that x=es=xe and y=ey=ye, whence



2T C. Y. Hung and K. P. Shum

I'(y) is a group. Therefore, there is an element y~'¢I'(p) such that y~ly=yy~l=e.
Hence, x=xe=(xy)y~1€A, a contradiction.

Corollary. Let S be as in Theorem 3.8. Suppose furthermore that ®(S)E=
=K(S)NE, where K(S) is the minimal ideal of S. Then an ideal A of S is
I'-primary if and only if T(A) is prime.

In view of the above corollary, we obtain an analogous result of [2] as follows:

Theorem 3.10. Let S be a compact semi-normal semigroup with S*=S. If
A is a proper ideal of S such that:

(1) K(S)NE=®(S)NEcCANE,

(i) A is topological-radically stable
then A is I'-primary if and only if A is primary.

4. P-semigroups

In this section, we introduce a special kind of semigroups, namely p-semi-
groups which is inspired by H. S. Butts and R. GiLMER [1]. We shall show that the
algebraic radical and topological radical of ideas in p-semigroups always coincide.

Definition 4.1. A p-semigroup is a semigroup in which every ideal is a finite
intersection of powers of topological semiprime ideals.

I
Let S be the set {[—:;-,0)|n=], 53 ...}u{[o, -;-] n=1,2,3, ...}U{(o, 0)} with

usual topology inherited from the plane and usual coordinatewise multiplication,
then S is a p-semigroup.

Theorem 4.2. Let S be a compact semi-normal semigroup in which every ideal
can be written as a finite intersection of I'-primary ideals and the cardinality of E is
finite. Then the followings are equivalent:

(i) S is a p-semigroup.

(i) Every I'-primary ideal of S is a power of its topological radical.

(iii) Every ideal of S is a finite intersection of power of open ideals.

For proving Theorem 4.2, we need the following lemma.

Lemma 4.3. Let P be a topologically semiprime ideal of a compact semigroup S,

then T(P)=T(p")=P for all integers 1=1,=, where P is the set (| P".
ne=1

PROOF. Obviously, T(p")c T(P) (1=1,= ). Now, let xeT(P), then I'(x)"
NP#@. Let yeI'(x)NP. Since S is compact, so is I'(x). Hence there exists an
unique idempotent ecI'()y)cI'(x) and ecI'(y)c P, which implies that ecP' for
all 1=/;=c. Thus I'(xX)NP'= @ and xeT(Ph).

We now prove theorem 4.2,

(i)=>(ii). Let Q be a I'-primary ideal of S. Since S is a p-semigroup,

0= [E] pli (1=1,=<) where p,; are distinct topologically semiprime ideals of S.
1
Hence Qcpli for each i. Let P=T(Q), then for each i, PCT(P})=P;. On the
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other hand, since P>() Pk, so by lemma 4.2, P= T(P)gr[ﬁ P}u]:ﬁ T(PY) =
1 1 1

=(n} Po ]"] P;. Since P is topologically semiprime and E is finite, by theorem
1 1
2.9 (iii), P must be an open prime ideal of S. Hence P> P; for some i. Thus,
P=P;. Clearly P,&P; for i=2, so ﬁP{r¢P,. Let yeﬁ Pli with y¢P,.
2 2

Then for any x€P{, we have xyePp [fﬂ\ P,‘-]CQ, thus xecQ since I'(»)NQ= .
2

Therefore Q=P}, i.e., any I'-primary ideal of S is a power of its topological
radical.

(ii)=>(iii). Let A4 be an ideal of S. Then by hypothesis, Azﬁ Q,, where
1

Q, are I-primary ideals of S. Let P,=T(Q;) for each i. By assumption that
E is finite and theorem 2.9 (iii), we know that each P, is an open prime ideal.

Also by (ii), each Q;=P/i for some 1=[,=. Thus A=|£]P;‘f (1=l=0o0).
1

(i1)=>(1). Each open prime ideal of a compact semi-normal semigroup is an
open completely prime ideal of S, (see Theorem 2.9) and hence topologically semi-
prime.

If the condition of finite intersection is weakened, we have the following theorem.

Theorem 4.4. Let S be a compact semigroup in which every ideal is an inter-
section (not necessarily finite) of powers of open prime ideals. Then the followings
are true and equivalent.

(i) (A=)*=A for every closed ideal A of S.
(i) (4, ...NA) CAT...A; for any finite number of closed ideals A, of S,
with equality if S is commutative.
PROOF. Let 4 be an arbitrary closed ideal of S. Then (4~)=(" P{i for some
i

open prime ideals P; and 1=/,=-. We have (4=)*)c PicP;, hence A=CP;.
Since S is compact, it follows that A"CP; for some n, so AcP; for each i.

Now A< P} for each i. Thus A== ﬁ A"c () Ac [ Pli=(A4=)%. The equivalence
of (i) and (ii) is immediate. i " '

In Theorem 4.4, if all powers of open prime ideals are equal to 1, then we obtain
the following generalized result of M. SATYANARAYANA [9].

Theorem 4.5. Let S be a compact semigroup. Then the following are equivalent
(1) Every proper closed ideal is an intersection of open prime ideals.
(ii) A*=A for every closed ideal A of S.
(ii1) For every acS, there exists x, y, z such that a=:zaya:.
(iv) The product of any order of a finite number of closed ideals is equal to their
intersection.

Finally, we remark that the algebraic and topological radicals of an ideal
always coincide in p-semigroups.
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Theorem 4.6. Let S be a p-semigroup. Then the algebraic and the topological
radicals of ideal in S coincide. As a consequence, an ideal A of S is topologically
semiprime if and only if it is completely prime.

PROOF. Let A be any ideal of S. Then A=(,'l] P/, where P; are distinct
1

topologically semiprime ideals, 1 =/,= =, Clearly R(4)=()R(P)=()P;.Since [ P,
1 1 1

is topologically semiprime, so R(A)=(\P;=T [(“) PI] = ﬁ T(P) = (“] T(PH=
rd 1 1 3 1
= T[n P,"] =T(A).
1
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