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Pointwise convergence and a new inversion theorem
for Hankel transforms

By JORGE J. BETANCOR (Tenerife)

and LOURDES RODRÍGUEZ-MESA (Tenerife)

Abstract. In this note we obtain necessary and sufficient conditions for a mea-
surable function f on (0,∞) to satisfy

lim
T→∞

ST (f, µ; x) = f(x),

for almost every x ∈ (0,∞) and for every µ ∈ (−1/2, 1/2), where

ST (f, µ; x) =

Z T

0
y2µ+1(xy)−µJµ(xy)hµ(f)(y)dy, x ∈ (0,∞) and T ∈ (0,∞),

and

hµ(f)(y) =

Z ∞

0
z2µ+1(yz)−µJµ(yz)f(z)dz, y ∈ (0,∞).

Here Jµ denotes the Bessel function of the first kind and order µ.

Finally we prove a new inversion theorem for the Hankel transformation hµ for
µ ≥ −1/2.

1. Introduction

The Hankel transformation appears in different forms ([16], [18] and
[21], amongst others). One of them is that defined by

(1) hµ(f)(y) =
∫ ∞

0

x2µ+1(xy)−µJµ(xy)f(x)dx, y ∈ (0,∞).
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Key words and phrases: Hankel, transformation, pointwise convergence, inversion
formula.



236 Jorge J. Betancor and Lourdes Rodŕıguez-Mesa

As usual Jµ denotes the Bessel function of the first kind and order
µ. Usually µ represents a real number greater or equal to −1/2. The hµ-
transformation has been extensively studied in the last years (see, for ex-
ample, [1], [2], [5], [7], [10] and [13]). A. L. Schwartz [16] established an
inversion formula for the transformation (1). More specifically he proved
that if x2µ+1f(x) is absolutely integrable on (0,∞), xµ+1/2f(x) is abso-
lutely integrable on (0, 1) and f is of bounded variation in a neighborhood
of x0 ∈ (0,∞) then

lim
T→∞

ST (f, µ; x0) =
f(x0 + 0) + f(x0 − 0)

2

where ST (f, µ; x) =
∫ T

0
y2µ+1(xy)−µJµ(xy)hµ(f)(y)dy, T ∈ (0,∞) and

x ∈ (0,∞).
According to Corollary 1 [19] one obtains (Lemma 2.1 in the next

section) that

lim
T→∞

σT (f, µ; x) = f(x), for almost every x ∈ (0,∞)

provided that x2µ+1f is absolutely integrable in (0,∞) and µ∈(−1/2, 1/2),
where

σT (f, µ; x) =
∫ T

0

y2µ+1(xy)−µJµ(xy)
(
1−

( y

T

)2 )
hµ(f)(y)dy,

for every x ∈ (0,∞) and T ∈ (0,∞).
Other important results are due to D. T. Haimo [7] and

I. I. Hirschman [8].
The first part of this note is inspired by the paper of D. S. Lubin-

sky and F. Moricz [11] where the pointwise convergence of the Fourier
transforms is investigated. Here we establish relations between ST and σT .
Those relations allow us to obtain new necessary and sufficient conditions
for a measurable function f on (0,∞) to satisfy lim

T→∞
ST (f, µ; x) = f(x),

for almost every x ∈ (0,∞), when µ ∈ (−1/2, 1/2).
Finally, motivated by the paper of T. G. Genchev [6], we will prove a

new inversion theorem for the Hankel transformation hµ, when µ ≥ −1/2.
Throughout this paper we will denote by Lµ the space constituted

by all measurable functions f on (0,∞) such that x2µ+1f is absolutely
integrable on (0,∞).
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2. Pointwise convergence of Hankel transforms

We obtain in this section necessary and sufficient conditions in order
that lim

T→∞
ST (f, µ; x) = f(x), for almost every x ∈ (0,∞). We previously

establish some useful results.
An immediate consequence of Corollary 1 [19] is the following

Lemma 2.1. Let f ∈ Lµ and µ ∈ (−1/2, 1/2). Then

lim
T→∞

σT (f, µ; x) = f(x), for almost every x ∈ (0,∞).

Throughout this section we will assume that µ ∈ (−1/2, 1/2).

Lemma 2.2. Let f ∈ Lµ. If for every T ∈ (0,∞), x ∈ (0,∞) and

λ ∈ (1,∞) we define IT (f, µ, λ;x) = λ2

λ2−1

∫ λT

T
y2µ+1(xy)−µJµ(xy)×(

1− (
y

λT

)2
)
hµ(f)(y)dy, then

ST (f, µ;x)−σT (f, µ; x) =
λ2

λ2 − 1

[
σλT (f, µ;x)−σT (f, µ; x)

]
−IT (f, µ, λ; x)

for each x ∈ (0,∞), λ ∈ (1,∞) and T ∈ (0,∞).

Proof. Let x ∈ (0,∞), λ ∈ (1,∞) and T ∈ (0,∞). It is not hard to
see that

σλT (f, µ; x)− σT (f, µ;x)

=
∫ λT

T

y2µ+1(xy)−µJµ(xy)
(
1−

( y

λT

)2 )
hµ(f)(y)dy

+
λ2 − 1

λ2

∫ T

0

y2µ+1(xy)−µJµ(xy)
( y

T

)2

hµ(f)(y)dy

=
∫ λT

T

y2µ+1(xy)−µJµ(xy)
(
1−

( y

λT

)2 )
hµ(f)(y)dy

+
λ2 − 1

λ2

(
ST (f, µ;x)− σT (f, µ; x)

)

and thus the proof is finished. ¤
Lemma 2.3. Let f be in Lµ and such that x2kf ∈ Lµ where k ∈

N ∪ {0}. Then hµ(f) is k-times differentiable on I and

(2)
( 1

x
D

)l

hµ(f)(x) = (−1)lhµ+l(f)(x), x ∈ (0,∞),
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for every l ∈ N∪{0} satisfying 0 ≤ l ≤ k. Moreover if we also assume that
x−µ−1/2−kf ∈ Lµ+k and x−µ−1/2f ∈ Lµ then

(3)
xµ+1/2+l

( 1
x

D
)l

hµ(f)(x) −→ 0, as x →∞,

for every l ∈ N ∪ {0}, 0 ≤ l ≤ k.

Proof. According to Lemma 5.4-1 [21], in order to see (2) it is suffi-
cient to differentiate under the integral sign. On the other hand (3) is an
immediate consequence of (2) and of the Riemann Lebesgue Lemma for
the Hankel transformation ([20], p. 457). ¤

We remark here that [15] and [17] established results similar to the
one presented in Lemma 2.3.

In the sequel, for each f ∈ Lµ we will denote by Af the set of all those
x ∈ (0,∞) for which lim

T→∞
σT (f, µ; x) = f(x). According to Lemma 2.1

the Lebesgue measure of (0,∞)\Af is zero.
Now we obtain a necessary and sufficient condition for the validity of

lim
T→∞

ST (f, µ;x) = f(x), for every x ∈ Af .

Theorem 2.1. Let f ∈ Lµ and x ∈ Af . Then lim
T→∞

ST (f, µ;x) = f(x)

if and only if

lim
λ→1+

lim sup
T→∞

|IT (f, µ, λ;x)| = 0,

where IT (f, µ, λ;x) is defined as in Lemma 2.2.

Proof. According to Lemma 2.2 we have

(4)

∣∣∣|ST (f, µ; x)− σT (f, µ;x)| − |IT (f, µ, λ; x)|
∣∣∣

≤ λ2

λ2 − 1

∣∣∣σλT (f, µ; x)− σT (f, µ; x)
∣∣∣

for every T ∈ (0,∞) and λ ∈ (1,∞).
Our result can now be deduced from (4) and Lemma 2.1. ¤

As a consequence of Theorem 2.1 we obtain new sufficient conditions
to ensure that

lim
T→∞

ST (f, µ;x) = f(x),

for every x ∈ Af and f being a function in Lµ.
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Theorem 2.2. Let f be in Lµ such that x−µ−1/2f ∈ Lµ, x2kf ∈ Lµ

and x−µ+k−3/2f ∈ Lµ, for some k ∈ N ∪ {0}. If

(5) lim
λ→1+

lim sup
T→∞

∫ λT

T

y2(µ+k)+1|hµ+k(f)(y)|dy = 0

then lim
T→∞

ST (f, µ; x) = f(x), for every x ∈ Af .

Proof. Assume firstly k = 0. Since z−νJν(z) is a bounded function
on (0,∞), in case ν ≥ −1/2 we have

∣∣∣IT (f, µ, λ;x)
∣∣∣

≤ λ2

λ2 − 1

∫ λT

T

y2µ+1|(xy)−µJµ(xy)|
(
1−

( y

λT

)2 )
|hµ(f)(y)|dy

≤ C

∫ λT

T

y2µ+1|hµ(f)(y)|dy, for every x, T ∈ (0,∞) and λ ∈ (1,∞).

Here C denotes a suitable positive constant.

Hence (5) implies that

lim
λ→1+

lim sup
T→∞

|IT (f, µ, λ;x)| = 0, for every x ∈ (0,∞).

Then according to Theorem 2.1 lim
T→∞

ST (f, µ;x) = f(x), for every x ∈ Af .

Assume now k ∈ N. By virtue of 5.1(6) [21] partial integration leads
to

∫ λT

T

y2µ+1(xy)−µJµ(xy)
(
1−

( y

λT

)2 )
hµ(f)(y)dy

= x−2µ−1

∫ λT

T

(xy)µ+1Jµ(xy)
(
1−

( y

λT

)2 )
hµ(f)(y)dy

= x−2µ−2

∫ λT

T

d

dy

[
(xy)µ+1Jµ+1(xy)

](
1−

( y

λT

)2 )
hµ(f)(y)dy

= x−2µ−2

{[
(xy)µ+1Jµ+1(xy)

(
1−

( y

λT

)2 )
hµ(f)(y)

]y=λT

y=T
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−
∫ λT

T

(xy)µ+1Jµ+1(xy)
[(

1−
( y

λT

)2 ) d

dy
(hµ(f)(y))−hµ(f)(y)

2y

(λT )2
]
dy

}

= x−2µ−2

{
−(xT )µ+1Jµ+1(xT )

λ2 − 1
λ2

hµ(f)(T )

−
∫ λT

T

(xy)µ+1Jµ+1(xy)
(
1−

( y

λT

)2 )
y
(1

y

d

dy

)(
hµ(f)(y)

)
dy

+
2

(λT )2

∫ λT

T

(xy)µ+1Jµ+1(xy)yhµ(f)(y)dy

}

= −T 2µ+2(xT )−µ−1Jµ+1(xT )
λ2 − 1

λ2
hµ(f)(T )

−
∫ λT

T

y2(µ+1)+1(xy)−µ−1Jµ+1(xy)
(
1−

( y

λT

)2 )(1
y

d

dy

)
(hµ(f)(y))dy

+
2

(λT )2

∫ λT

T

y2(µ+1)+1(xy)−µ−1Jµ+1(xy)hµ(f)(y)dy,

for every x, T ∈ (0,∞) and λ ∈ (1,∞).
Now we can write

IT (f, µ, λ; x) = −T 2µ+2(xT )−µ−1Jµ+1(xT )hµ(f)(T )

+
2

(λ2 − 1)T 2

∫ λT

T

y2(µ+1)+1(xy)−µ−1Jµ+1(xy)hµ(f)(y)dy

+ IT (f, µ + 1, λ;x),

for every x ∈ (0,∞), λ ∈ (1,∞) and T ∈ (0,∞).
By repeating the argument one obtains

IT (f, µ, λ;x) = −T 2µ+2
k∑

j=1

(xT )−µ−jJµ+j(xT )hµ+j−1(f)(T )T 2(j−1)

+
2

(λ2 − 1)T 2

k∑

j=1

∫ λT

T

y2(µ+j)+1(xy)−µ−jJµ+j(xy)hµ+j−1(f)(y)dy

+IT (f, µ + k, λ;x),

for every x, T ∈ (0,∞) and λ ∈ (1,∞).
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We now analyze each of the three terms of the above sum. Firstly we
note that by proceeding as in the case k = 0 (5) implies that

(6) lim
λ→1+

lim sup
T→∞

|IT (f, µ + k, λ; x)| = 0, for every x ∈ (0,∞).

Moreover, since for every ν ≥ −1/2,
√

zJν(z) is a bounded function on
(0,∞), there exists C > 0 such that

∣∣∣T 2µ+2
k∑

j=1

(xT )−µ−jJµ+j(xT )hµ+j−1(f)(T )T 2(j−1)
∣∣∣

≤ Cx−µ−1/2
k∑

j=1

x−jT j+µ−1/2|hµ+j−1(f)(T )|,

for every T, x ∈ (0,∞).

Hence, since x−(µ+3/2−j)f ∈ Lµ for every j = 1, 2, . . . , k, by virtue of the
Riemann Lebesgue Lemma (Lemma 2.3) for the Hankel transformation we
conclude that

(7)
lim

T→∞
T 2µ+2

k∑

j=1

(xT )−µ−jJµ+j(xT )hµ+j−1(f)(T )T 2(j−1) = 0,

for every x ∈ (0,∞).

Finally, again taking into account that
√

zJν(z) is a bounded function
on (0,∞) for every ν ≥ −1/2 there exists C > 0 such that

2
(λ2 − 1)T 2

∣∣∣∣∣∣

k∑

j=1

∫ λT

T

y2(µ+j)+1(xy)−µ−jJµ+j(xy)hµ+j−1(f)(y)dy

∣∣∣∣∣∣

≤ Cx−µ−1/2λ

(λ2 − 1)T

k∑

j=1

x−j

∫ λT

T

|hµ+j−1(f)(y)|yµ+j−1/2dy

≤ Cx−µ−1/2λ

λ + 1

k∑

j=1

x−j sup
y>T

∣∣∣hµ+j−1(f)(y)yµ+j−1/2
∣∣∣ .
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Hence by invoking Lemma 2.3 we infer

(8)

lim
T→∞

2
(λ2 − 1)T 2

×
k∑

j=1

∫ λT

T

y2(µ+j)+1(xy)−µ−jJµ+j(xy)hµ+j−1(f)(y)dy = 0

for every λ ∈ (1,∞) and x ∈ (0,∞).
By combining (6), (7) and (8) we conclude that

lim
λ→1+

lim sup
T→∞

|IT (f, µ, λ;x)| = 0, for every x ∈ (0,∞).

Now the result follows from Theorem 2.1. ¤
Theorem 2.3. Let f ∈ Lµ be such that x−µ−1/2f ∈ Lµ, x2kf ∈ Lµ

and x−µ+k−3/2f ∈ Lµ, for some k ∈ N ∪ {0}. Then

lim
T→∞

ST (f, µ;x) = f(x), for every x ∈ Af ,

provided that lim
y→∞

y2(µ+k+1)|hµ+k(f)(y)| < ∞.

Proof. It is clear that there exist C and y0 ∈ (0,∞) such that

y2(µ+k)+1|hµ+k(f)(y)| ≤ C

y
, for every y ∈ (y0,∞).

Hence for every T ≥ y0 and λ ∈ (1,∞) one has
∫ λT

T

y2(µ+k)+1|hµ+k(f)(y)|dy ≤ C

∫ λT

T

dy

y
= C log λ.

Then

lim
λ→1+

lim sup
T→∞

∫ λT

T

y2(µ+k)+1|hµ+k(f)(y)|dy = 0,

and by invoking Theorem 2.2 we conclude the proof. ¤
Theorem 2.4. Let f be in Lµ such that x−µ−1/2f ∈ Lµ, x2kf ∈ Lµ

and x−µ+k−3/2f ∈ Lµ, for some k ∈ N ∪ {0}. If

(9) lim
x→∞

1
x

∫ x

0

y2(µ+k+1)|hµ+k(f)(y)|dy

is finite, then lim
T→∞

ST (f, µ;x) = f(x) for every x ∈ Af .
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Proof. For every T ∈ (0,∞) and λ ∈ (1,∞), we have
∫ λT

T

y2(µ+k)+1|hµ+k(f)(y)|dy

≤ 1
T

(∫ λT

0

y2(µ+k+1)|hµ+k(f)(y)|dy −
∫ T

0

y2(µ+k+1)|hµ+k(f)(y)|dy

)
.

If L = lim
x→∞

1
x

∫ x

0
y2(µ+k+1)|hµ+k(f)(y)|dy, then for every ε > 0

∫ λT

T

y2(µ+k)+1|hµ+k(f)(y)|dy ≤ λ(L + ε)− (L− ε)

for T sufficiently large and λ ∈ (1,∞).
Hence, the arbitrariness of ε allows us to write

lim sup
T→∞

∫ λT

T

y2(µ+k)+1|hµ+k(f)(y)|dy ≤ (λ− 1)L for every λ ∈ (1,∞).

Thus we conclude

lim
λ→1+

lim sup
T→∞

∫ λT

T

y2(µ+k)+1|hµ+k(f)(y)|dy = 0

and our result is deduced from Theorem 2.2. ¤
Note that (9) is equivalent, under the imposed requirements for the

functions f , to the following condition

(10) lim
x→∞

1
x− x0

∫ x

x0

y2(µ+k+1)|hµ+k(f)(y)|dy < ∞

for some x0 ∈ (0,∞). (10) is analogous to the condition that appears in
Theorem 4 [11].

Remark 1. Results established in Theorems 2.1–2.4 complete well-
known results about convergence of ST (f, µ;x) (see, for example, Corol-
lary 2 [9] and Corollary 3.2 [4]).

Remark 2. The results in this Section hold when −1/2 < µ < 1/2.
This condition allows to establish Lemma 2.1. It is well-known ([19]) that
for every f ∈ Lµ lim

T→∞
σβ

T (f, µ; x) = f(x), a.e. x ∈ (0,∞), provided that

−1/2 < µ < β − 1/2, where

σβ
T (f, µ;x) =

∫ T

0

y2µ+1(xy)−µJµ(xy)
(
1− (

y

T
)2

)β

hµ(f)(y)dy,

x ∈ (0,∞).
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However our technique is not suitable when β is not equal to 1. It
is an open problem to obtain results similar to the ones established in
Theorems 2.1–2.4. Thus we could obtain conditions to reconstruct a radial
function f from the Fourier transform of f because the n-dimensional
transform of radial functions reduces to Hankel transform.

3. A new inversion theorem for the Hankel transformation

Different inversion theorems for Hankel transformations have been es-
tablished (see, for example, [7], [8], [14], [16] and [20]). We now prove,
inspired by the work of T.G. Genchev [6] on the Fourier transform, a
new inversion theorem for the Hankel transformation. We note that our
inversion theorem holds for those measurable functions f on (0,∞) such
that x−µ−1/2f and x−µ−1/2hµ(f) are in Lµ. However the inversion for-
mulas for hµ established earlier by other authors apply to other functions.
Specifically Theorem 1 [14] (adapted to hµ by making a single change
of variable) holds provided that x−µ−1/2f ∈ Lµ and f is continuous on
(0,∞). A.L. Schwartz [16] established that if f ∈ Lµ, x−µ−1/2f is abso-
lutely integrable on (0, 1) and f is of bounded variation in a neighborhood
of x then

(11) lim
y→∞

∫ y

0

(zx)−µJµ(zx)z2µ+1hµ(f)(z)dz =
f(x + 0) + f(x− 0)

2
.

In Theorem 5.1-1 [21] it is showed that (11) holds provided that
x−µ−1/2f ∈ Lµ and f is of bounded variation in a neighborhood of x.
Inversion theorems proved in Corollary 2.10 [7] and Corollary 2.e [8] hold
when f ∈ Lµ and hµ(f) ∈ Lµ.

Theorem 3.1. Let µ ≥ −1/2 and let f be a measurable function
on (0,∞) such that x−µ−1/2f ∈ Lµ and x−µ−1/2hµ(f) ∈ Lµ. Then
hµ(hµf)(x) = f(x) for almost every x ∈ (0,∞).

Proof. Let 0 < a < b < ∞ and define

ϕa,b(x) =

{
x−µ−1/2, if x ∈ (a, b)

0, otherwise.

By invoking [16] we can obtain

(12)
lim

T→∞

∫ T

0

x2µ+1(xy)−µJµ(xy)hµ(ϕa,b)(x)dx = ϕa,b(y)

for almost every y ∈ (0,∞).
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By invoking Fubini’s Theorem it is easy to see that

(13)
∫ ∞

0

hµ(hµf)(x)ϕa,b(x)x2µ+1dx =
∫ ∞

0

hµ(f)(x)hµ(ϕa,b)(x)x2µ+1dx.

Also, for every m ∈ N one has

∫ m

0

hµ(f)(x)hµ(ϕa,b)(x)x2µ+1dx

=
∫ ∞

0

f(x)x2µ+1

∫ m

0

y2µ+1(xy)−µJµ(xy)hµ(ϕa,b)(y)dydx.

Let m ∈ N. According to 5.11 (8) [20] we have

xµ+1/2

∫ m

0

y2µ+1(xy)−µJµ(xy)hµ(ϕa,b)(y)dy

=
∫ b

a

(xz)1/2

∫ m

0

yJµ(zy)Jµ(xy)dydz =
∫ b

a

(xz)1/2

x2 − z2

×
(
xmJµ+1(xm)Jµ(zm)− zmJµ(xm)Jµ+1(zm)

)
dz, x ∈ (0,∞).

Hence by virtue of Lemma 7 [12] there exists C > 0 such that

∣∣∣xµ+1/2

∫ m

0

y2µ+1(xy)−µJµ(xy)hµ(ϕa,b)(y)dy
∣∣∣ ≤ C,

x ∈ (0,∞) and m ∈ N.

Then, since x−µ−1/2f ∈ Lµ, by (12) and (13) the dominated conver-
gence theorem leads to

∫ ∞

0

hµ(hµf)(x)ϕa,b(x)x2µ+1dx =
∫ ∞

0

f(x)ϕa,b(x)x2µ+1dx.

We conclude that if ϕ is a step function with compact support on
(0,∞) then

∫ ∞

0

xµ+1/2
[
hµ(hµf)(x)− f(x)

]
ϕ(x)dx = 0.

Hence hµ(hµf)(x) = f(x) for almost every x ∈ (0,∞) and the proof
is finished. ¤
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