Conditional probability measures
on propositional systems

By I. G. KALMAR (Debrecen)

We define the notion of conditional probability space in a general case when the propositions
(events) form a not necessarily distributive orthomodular o-lattice. Having discussed the basic
properties and consequences of our axiomatic system, a chain-representation of conditional proba-
bility is given.

1. Introduction

The development of modern probability theory goes back to 1933 when A. N.
KoLMOGOROV published his axiomatic system. Later on, this axiomatic system was
generalized by many authors in a way that they, for example, exchanged probability
for conditional probability. The most systematic foundation is due to A. Rényi
who defined and examined conditional probability spaces (REnvi (1955), (1956)).
This work was continued by A. CsAszARr (1955), P. H. Krauss (1968), L. E. DuBINS
(1975), and others.

Rényi mentioned that his theory can be used in quantum physics. But it is
known that the propositions (events) of a quantum mechanical system fail to form
a Boolean algebra (BIRKHOFF (1936)), so the conditional probability space defined
by Rényi is not useful in quantum mechanics. Generally the propositional system
of a physical system is supposed to be an orthomodular o¢-lattice. (See VARADARAJAN
(1955), ProN (1972), for example.) However, the probabilistic interpretation of
quantum mechanics suggests that certain probability measures (pure states) can be
interpreted on the propositional system as conditional probability measures (See
PIrON (1972).)

To be consistent with the above mentioned facts we shall in this paper define
the conditional probability measures on orthomodular o-lattices. It will come to
light that our system contains the conditional probability space of Rényi and the
quantum mechanical propositional-state structure as special cases.

2. Basic concepts and notations

Let % be a partially ordered set with first and last elements 0, 1, respectively
that is closed under the complementation a~»a satisfying also

(1) (at)t =a and

(i1) bt=al if a=b.
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Such a complementation is called orthocomplementation. If the least upper bound
and greatest lower bound of a, bc¥ exist, we denote them by aVb and a/b,
respectively.

Wecall a, be & to be orthogonal and write a | bif a=b'. We say that a, bc ¥
are compatible and write a<-b if there exists a Boolean sublattice B in & con-
taining a and b.

If &% is a partially ordered set with first and last elements 0,1 and ortho-
complementation |, furthermore the lLu.b. and g.lb. exist for all countable
subsets of %, then we say that % is an orthocomplemented c-lattice. An ortho-
complemented lattice is orthomodular if

b=c implies ¢ = bV (cAbt) (b, ccL).
The following propositions are well known in an orthomodular lattice .Z.

Proposition 2.1 ([9, Theorem 2.25]). If one of the three elements a,b,c of
& is compatible with each of the two others, then triplet (a,b,c) is distributive

that is

aA(bVc) = (aAb)V(alc)
and

aV (bAc) = (aVb)A(aVc)

Proposition 2.2 ([9], [12]). The following statements are true in %£:
(a) a=b=a-b,

(b) alb=a<«b,

(c) a—b=a<b',

(d) a«~be(@Vbt)Ab=alb,

(e) £ is distributive if and only if a<-b for all a,bc %,

(f) aﬂb,-zsa«-\lfb,, “""'/‘\bs

Proposition 2.3 For every a,bc¥ we have

(aVb): =atAbt
and
(aAb)t = alVbt.

A measure p on an orthocomplemented o-lattice .% is a non-negative function
on % that is o-additive, i.e.,

@.1) w(Y @) = 3 na)
if the as are orthogonal element of . If we require (2.1) only for finitely many
a;, then p is called finitely additive measure.

We call the measure (finitely additive measure) probability measure ( finitely
additive probability measure) if it satisfies also u(l)=1. One can find a detailed
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examination of the above mentioned notions in MAEDA (1970), PiroN (1976),
VARADARAJAN (1955), for example. A systematic review of the field can be found
in PiroN (1976).

Note on symbols: In some cases it will be used the usual logical operations: =, <.

3. The generalized conditional probability space and its special cases

The starting point for our investigation is a triple (&, %., p) with the following
three properties:

(A) Z=2(V, A\, 1,0,1) is an orthomodular o-lattice whose elements
are called events.

(B) Let %=\ {0}. Assume that there exist a subset %, of %, and a mapping
(x,2)=p(x|z) of X%, into [0, =) such that p(x|z) for every fixed z¢Z. is
finitely additive measure on % and p(z|z)=1 also holds. p(x|z) is the so-called
conditional probability of the event x under the condition z.

©) If x,y,z¢%, x+»y and z,(zVxLi)AxeZ,, then

p(xAy|2) = p(x|2) p(¥](zVxL)Ax).

For brevity (¥, %., p) with properties (A), (B), (C) will be called generalized
conditional probability space or GS. We shall call the function p of two variables
conditional probability.

In some instances other properties of p are also obeyed, for example the fol-
lowing two:

(D) If xVyeZ,., then r(x|xVy)+p(y|xVy)=0.

(B) If zVx)A(zVxL)e¥,, then p(z|(zVx)A(zVx+))=0.

Now let us see the most important special cases of the GS. In these cases prop-
erties (D), (E) hold too.

Example 3.1. (The case of classical probability theory.)
Let (H, o/, Q) be a probability field. Define o7, as the set of B’s for which
Q(B)=0. Let

Q(4AB) .
ABYy==———- if A4 h
q(4|B) 0B) €, Besd,
Then (&, /., q) is obviously a GS with properties (D), (E).

On the other hand let (%, %., p) be a GS and assume that % is distributive
and p is o-additive in its first variable. Then from a theorem of Loomis (1947)
it follows that there exist a measurable space (2, #) and a o-homomorphism
h from # onto Z. If 1¢%,, then let

P(A) = p(h(A)|h(Q) = p(h(A|1), AcF.
Now (Q, #, P) is a probability field. If P(B)=0, then we can define

P(AB)

P(4|B) = 7
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and if h(B)eZ,, then
P(A|B) = p(h(A)|h(B)).

Example 3.2. (The case of conditional probability space of Rényi.)

Let (H, s, o,, R) be a conditional probability space in the sense of Rényi,
i.e., H is a non empty set; &, is a g-algebra of subsets of H; 7, is a non empty
subset of «; and finally R is a function of two variables on &, X/, with the
following properties:

(i) F(4|B)=0, if Acof, and Besl,; moreover P(B|B)=1, if Beg,.
(u) For any fixed BesZ, R(A|B) is countably additive set function of A¢c.e/,.
(i) R(A|BC)R(B|C)=R(AB|C), if A,Besd,, C, BCcst,.

Then (s4,, &4, R) is a GS, and properties (D), (E) also hoid.

On the other hand let now (%,.%,, p) be a GS and assume that % is distri-
butive, p is g-additive in its first variable.

Similarly as in Example 3.1, there exist a measurable space (2, #) and ¢- homo-
morphism A& of # onto %. Let G denote the set of B’s for which B¢# and
h(B)eZ,. Let

S(A|B) = p(h(A)Ul(B)), AEF, BEG.

Then (Q, #, G, S) is a conditional probability space in the sense of Rényi.

Example 3.3. (Classical modell of quantum mechanics.)

Let s be a separable complex Hilbert space with dim #=2. Let 2(xX)
and 2./(#) be the projection lattice and the set of atomic projections of # re-
spectively. Then 2(#) is a complete orthomodular lattice and 2 () is composed
of the atoms of Z(X). Let xcP(K); zcP (HK), then a vector ¢ of H can be
chosen such that z¢=¢, |¢|=1. Define

q(x|2) = (@, x¢),

where the inner product igo, xp) does not depend on ¢ (z¢=9, |@|=1). It is
known that in this case g(x|z) for fixed z is a probability measure (state) on 2(H#).
Furthermore, the so-called pure states can be identified with the atoms z of 2(X%).
(See Varadarajan (1955), Theorem 7.23.) Let us see the triple (2(#), 2.(X), q).
With notations Z=2(¥#), L.=P(K), p=q, properties (A), (B), (D) hold. But
it is easy to see that ¢(x|z)=0 if and only if x|z, thus (E) also hold. It can be
proved that if x is not orthogonal to z; x€2(#), z¢ 2(#), then (zVxL)AxeP(H)
Moreover, as it was shown by PIRON (1976) property (C) is also satisfied. Combining
the facts mentioned above, we arrive at the statement that (2(¥), 2(X),q) is
a GS and satisfy (D) and (E).

4. Some remarks on the GS

1. Analyzing a (phisical) system from a probabilistic point of view we may set
out from our previous knowledge about the system. This knowledge may be the
occurrence of one or more events. Example 3.3 shows that in quantum mechanics
the previous information (state) concerning the system is interpretable as an atom
of the proposition system.
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Returning now to the axiomatic system (A),(B),(C), the quantity p(x]z)
must be considered as the probability of the occurrence of x under an a-priori
knowledge, namely, that z certainly occurs. Thus, axiom (C) means the following.
If x<-y and we previously know the occurrence of z, moreover we perform an
experiment,and x occurs, then immediately after the experiment the event (zVx+)Ax
will certainly occur.

A similar argument was put forth by PIRON (1972) in the special case when
x is an atom and the experiment is ideal and of the first kind. Then property (C)
is easily justified by using the role of composition of probability.

2. Let us assume that p(x|z)=p(y|z)=0. Since generally the occurrence of
xVy does not imply the occurrence of x or y, so p(xVy|z)=0 does not follow,
from the preceding condition. It seems an easier condition is more reasonable,
as follows: if xVyeZ,, then p(x|xVy) or p(y|xVy) is positive. This is exactly
property (D).

3. Property (E) is probably independent of (A), (B), (C), and (D), but in some
special cases it is a consequence of the others.

We shall say that the conditional probability is positive, if

p(x|z)=0 ifand only if x1z.

The reader can readily verify the following statements: Let (¥,%,,p) be
a GS, then

(a) if p is positive, then (E) holds,
(b) if x<+z and (zVx)A(EVxi)eZ,., then p(2)(zVx)A(zVxi)=>0.
(¢ if zVX)A(zVx+t), 1€Z, and p(z|1)=0, then

p(z|1) = p(z|(zVx) A (zVxH))p((zV x)A(zV x))1)

and consequently
p(zl(zVX)A (zVx+)) > 0.

5. Elementary properties of conditional probability

In this section we prove fundamental properties of conditional probability
that will be frequently used.

Proposition 5.1. Let yc%,.. Then the following statements are true.

(@) r(1»=1, p(0[y)=0.
() (x| =1 forall xc 2.
(i) p(-|y) is monotone increasing.
(v) r(x|n)=1if x=y.
(v) p(x[»)=0 if xLy.

Proo¥. (i) By (O)
p(*1y) = p(y+Ally) = p(1]y)-p(*|»)

p(1]y) = p(+pO*y) = 14+p(+y),

and

which imply (i).
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(ii) With the help of (i) we have
1=p(1]y)=p(x[y)+p(x*+|y) thus p(x[y)=1.
(iii) Let x,=x,, then x;=x,V(xsAxi), where
x; L(xaAxy), so p(xa)=p(x;)+p(xs Axi).

(iv) From the finitely additivity we get that if x=y, then p(x|y)=p(y|y)+

+p(xAy+|y)=1. By (i) p(x|[y)=1, so p(x|y)=1.
(v) If x1y, then

1=p(xVy|»)=p(x|»)+ p(y|y)=p(x|y)+1. Hence p(x|y)=0. Q.e.d.
Proposition 5.2. Let zc¢%., then

() p(x|2)=p((zVx+)Ax|z) for all xc%,
(1) if additionally x<-z, then p(x|z)=p(x/z|z).

Proor. (1) By Proposition 2.3

(zVxHHAX):E = (24 Ax)Vxt
and consequently

p(VxH)Ax|z) = 1-p((zt AX)Vxt|z) = 1—p(z+ Ax|2)—p(x*|2) =
= 1—-p(x*[2)=p(x[2).
(ii) If x<-z, then (zVxi)Ax=zAx, so (i) implies (ii). Q.e.d.
As concerns positivity it is obvious that p is positive if and only if
pixl2)=1 & x= 2z

We have seen in Proposition 5.2 that in case of x«-y p(x|z)=p(xAz|z). If p is
positive, then the converse is also true as follows.

Proposition 5.3. If p is positive and y,(yVx+)\xec%,, then
p(xAyly) = pxly) & x <= y.

Proor. It will be sufficient to show that p(xAy|y)=p(x|y) implies x<y.
Since x<-xAy, by (C) we have

p(xAyly) = p(xA(xAp)y) = p(xY)p(xAy|(¥V xH)Ax).
p(x|y)=0 or p(xAy|(yVx+)Ax)=1.

Therefore

In case of p(x|y)=0 it follows that p(x+|y)=1, so according to positivity x+ =y,

ie, xLly. Hence x<-p. In case of p(x/\y|(yVx+)Ax)=1 it follows that
xAy=(Vx)Ax, ie, xAy=((Vxi)Ax.

By Proposition 2.2 xAy=(yVx+)Ax implies x«y. Q.e.d.
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Remark. Proposition 5.2 shows that generally xAy=0 does not imply
p(x|y)=0 because one can easily prove that

X1y < x«y and xAy=0.
Proposition 5.4. The following two statements are true.
G) If xVy, xVyVze., then

(5.1) p(y[xVyVz)=p(yixVy)p(xVyV2).
(i) If y,yNze¥, and x=y, then
(5.2) p(x|yVz) = px[»)p(ylyV2).

PrOOF. (i) Let us set y=u, xVy=v and xVyVz=w. Then v-w and
(wVovi)Av=wAv=v, and by (C)

p(ulvlw) = p(ulv)p(v|w).

(i) Let now x=y, then x<«-y and ((zVy)Vy+)Vy=(ypz)Ay=y. Hence
by (C) it follows (5.2). Q.e.d.

6. Representation of conditional probability

Now we shall investigate the problem of representation of conditional proba-
bility by an “ordered” set of measures on .. When % is distributive (Boolean
algebra) this was discussed by several authors, e.g. RENYI (1956), KrAuss (1968).
We use a natural ordering of % induced by the conditional probability p in a similar
manner as it was introduced by REny1 (1956).

Throughout this section (&2, %.,p) denotes a GS such that properties (D) (E)
hold and it will be assumed that Z.=%,={z¢%|z#0}. The last assumption is
very useful because it makes the survey of the structure of conditional probability
easy.

Firstly we introduce a new notion. For every x, ye%?, xVy=#0 let xSy
if p(y|xVy)=0, and xcy if p(x|xVy)=0. For these relations we have the
following statements:

Proposition 6.1. Let x,y,zc.¥ and xVyec%,, then

() If x=y, then xCy.

(i) Either xSy or ySx.
(iii) xSyexVyCy.

(iv) xcyexZSy and yEx.
W) If xSy,ySz, then xSz

PROOF. Since statements (i)—(iv) are trivial, we prove only (v). Let us assume
that xSy and ySz. We have to distinguish two cases:
(a) If p(y|xVyVz)=0, then by (5.1)

plylxVyVz) = p(ylxVy)p(xVylxVyVz),
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hence according to p(y|xVy)=>0 we have p(xVy|xVyVz)=0. Then from property
(D) we get p(z|xVyVz)=0. However,

p(z|lxVyV2z) = p(z|xV 2)p(xV z|xV yV 2),

and consequently p(z|xVz)=0, ie. xSz.
(b) If p(y|xVyVz)=>0, then p(yVz|xVyVz)=>0 and by (5.1)

p(z|xVyVz) = p(z|yV 2)p(yVz|xV yV 2),
where p(z|yVz)=0 by assumption. Thus p(z|xVyVz)=0; hence
p(z|xVyVz) = p(z|xV y)p(xV z|xV yV 2)

implies p(z|xVz)=0, ie., xSz Q.e.d.

In any complemented lattice L one can introduce the following operation
of two variables:

If z, x€L, then let zxx=(zVx+)Ax. Here L isthe complementation in L.

Now, for star mapping, the following statement is true. The proof is omitted
because it is very simple to verify by the definition.

Proposition 6.2. Let % be an orthomodular o-lattice as before. Then the star
mapping on ¥ =% possesses the following properties: If x,v,z€% then

(i) zxz=z.

@) zex=0, If zix

(iii) (z*x)*y=0, if xLy.

(iv) (z*x)*xx=z%x.

(V) z#(z*x)=z%X.

(Vi) zxz=xAx & x «~ z.

(vii) (z*x)*y=(*))xx=z%x, if x=y.

(viii) (V z)*x=V (z;*x), if {z} is countable and z;c%.
i i

The notation of operation # allows us to define an ideal in % as a non empty
subset I of % such that
(a) if zel, then zxxel for all xe 2,
(h) ]f Z, ZSEI, thcn ZIVZSGI.
We now set
I(x) = {yeZ|y S x}

It(x) = I(x)\{LCJ 1(y)}, if x€%,.

and

For I(x) we shall prove the following:
Proposition 6.3.

(1) I(x) is an ideal in & for every xc%,.
(i) {I(y)|yeZ,} is linearly ordered by set inclusion and

I)cI() & yCz,

where C means the proper inclusion.
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Proor. (i) Let y,, y,€I(x), then by Proposition 6.1 (ii)—(iii)
NEY: o y»Ey, ie, NnVyEy or yVy,Sy.

According to the transitivity of < in any case y,Vy,Sx, that is, y,Vy,€l(x).
Let now zel(x) and yeZ. If z=0, then z*x=0¢/(x) trivially. If z+0, then
[GVy)ArIVz=(zVy-)A(zVy); hence by property (E) p(zl(z#y)Vz)=
=p(z|(zVy+)A(=Vy))=0, ie., zxySz. By zCx it follows z*yel(x).

(ii) This obviously follows from Proposition 6.1/(ii)). Q.e.d.

Proposition 6.4. If X, X,€2Z, 1, y2€%, X,VXa=0Ays and  p(xs|y)),
p(xy|y)=0, then
P (x| y0)p(Xalye) = p (x| y2)p(x2|yy).

PrOOF. By our conditions x;, X;= yy, Vs, SO Xy, X3 < yy, yp. Furthermore,
0<p(xy|y)=p(x3/»Vx;), and consequently y,Sx,. Similarly also y,Sx,.
Then by the transitivity

NSy and y, & 0.

Now, with the help of (5.2) we have
pxalnVye) _ pGalydpnlnVye) _ pGalydp(alyn Vs,
p(xalVye)  pCraly)pnnVyd — p(xalydp(alnVy)
hence the statement follows. Q.e.d.
Let xe%,, yel(x), then p(x|xVy)=0, so we can define

_pWIxVy)
m=0) = p(x[xVy)

For fixed x€%, m, is a function on J(x). The following proposition is true:
Proposition 6.5. For every fixed xc%, m, has the following properties:

(1) m, is finitely additive measure on I1(x). If p is o-additive, then m is also
o-additive.
(i) If yelI(x), then

m.(»)=0 & Iy)c I(x) (i.e. ycx).

(iii) If xVyel*(2), then m/(x)+m/(y)=0.
(iv) For all zel(x), ze%, and ye ¥

6.1) m,(vA2) = p(rAz|z)m, ().

) If I(x)=I(y) and zcI(y), then

Proor. (i) It is sufficient to prove for (i) that m, finitely additive. Let y, zeI(x)
and assume y|z. Then

pPOVzIxVyVZ) _ prIxVyVz)  p(elxVyVa) _
p(xixVyVz)  p(xlxVyVz)  p(xlxVyVz)

m,(yVz) =
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By Proposition 6.3
_ pOIXVY)  p(zlxV2)
p(x|xVy) " p(x|xVz)
o-additivity of m, can be proved in a similar manner, assumed that p is g-additive.

= m,(y)+m,(p).

(ii) Since p(y|xVy)=0 if and only if ycx, (ii) is obvious.
(iii) Let xVyelI*(z), then from Proposition 5.4 it follows that

(6.2) p(x|xVyVz) = p(x|xV2)p(xV z|xV yV 2).

i pIxVyVz) = p(ylyVp(yVzlxVyV 2),
an

(6.3) p(x[xV yVz) = p(x|xV y)p(xV y|xV yV 2),
p(yIxVyVz) = p(y|xVy)p(xVy|xVyVz).

In according to xVyel*(2)
p(xVylxVyVz)
p(zlxVyVz)

hence by (6.3) and Proposition 6.1/(ii) we have
p(x|xVyVz)+p(yxVyVz) > 0.

=)

m:(xvy) o

Then by (6.2) we get
p(x|xV2)+p(ylyVz) > 0.

p(x|xVz) _rQlyV2)
p(z]xVz) » my(y)= plzlyVz)

m.(x)+m.(y) > 0.

(iv) Let zelI(x), ze%y, ye&. If m(2)=0, then the statement is trivial. If
m(z)=0, then p(z|xVz)=0 and by Proposition 6.4

p(yAzIxV (yAz2)) _ p(yAzlxV?z) "

Since m,(x)= , it follows

m.(yAz) = p(x[xV(yAz)) —  p(x|xV2)
= p(yApitl)f\fzzl)xv 2 p(yAz|z)m,(2),

where we used equality
p(yA2)|xV2) = p(yAz|2)p(z|xV 2).

(v) Let I(x)=I(y) and z€I(y). Then by Proposition 6.4

_p(zlxvVz)  p(zlxVyV2)
() = P VD) — PRV IV2)

and
_p(lyvz) _ p(lxVyva)
plyvz)  pUIxVyV2)

m,(2)
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Hence
p(yIxVyVz2) _p(y[xVy)
p(x|xV yVz) i p(x|xVy)

As we have seen in (ii) of the preceding Proposition

m,(x) =0 & z€I7(x).

m.(z) = m,(z) = m,(y)m,(z2) Q.ed.

If zeI *(x), then by (6.1)
m, (y/ z)
m(z)

Here in general p(yAz|z)#p(y|z) (see Proposition 5.3). However, according to
Proposition 5.2/(ii) the following statement is true:

Proposition 6.6. IfycI(x), zeI *(x) and y<-z, then

p(yAz|z) =

_m.(yA2)
r(y|2) —w-

We should remark that m, is generally not bounded, but in a special case,
when p is positive, an important theorem is valid as follows:

Proposition 6.7. If p is positive, then there exists a finitely additive probability
measure v on £ that for all yc¢ ¥, z¢ %,

v(yAz)
v(z)
if and only if y<-z. If p is o-additive, then v is also o-additive.

ProoF. Let z€%,, then from the positivity it follows y(z)=1(1) and ZL,=1%(1).
Let x¢% and

p(y]2) =

() = my(x) = 2 = p(al.
Then by (6.1) we have
POl =102

if y++z, and from Proposition 5.2/(ii) it follows that

p(yl2) # v—(v)E—!'z\)z—), if y«z Q.ed.

The most important results of this section can be summarized in one theorem
which will be called the representation theorem.

Theorem 6.8. Let (%, %,.,p) be a GS with properties (D) and (E). Let us
assume that £,=%,, then there exists {I,,m,,yel'} such that

(i) For every yeI' I, is an ideal in & and the family {I,,yeI'} is linearly
ordered by set inclusion.
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(i) For every yeI' m, is a finitely additive measure on I, and for arbitrary
xel, m(x)=0 if and only’if xcI}. If p is o-additive, then m., is c-additive, too.

Here
I,',"-——],\{ U Ip}.
p:l,cl,

(i) If xVyel}, then m(x)+m (y)=0.

(iv) For all xc%, there exists ycI' so that xcl}.

(v) For all yeI' there exists at least one element of I .

(i) If I,=1I, (y, BeI'), then there exists a positive real number k such that

m.,(x) = kmg(x)
Sfor all x¢l,.
(vii) For every yeI' and z€l,, xe&

m, (xAz) = p(xAz|z2)m,(2).

When 2 is a Boolean algebra an analogous thecorem was proved by Krauss
(I5), pp. 232). Following Krauss the family {7,, m,,y€I'} is said to be a chain-
representation of p, if (i)—(vii) of Theorem 6.8 hold.

Our next object is to discuss the nature of chain-representations. Assume that
there exist two chain-representations {/,,m,,yel'} and {I,,m,, ®€Q} of p

such that
{Llvel} = {I,|0cQ}

and if I,=1,, then there exists ¢>0 with m,=cm,,. In this case there is no essential
difference between the two chain-representations. Such chain representations will
be called equivalent.

Theorem 6.9. Let (¥, %;, p) be the same as in Theorem 6.8. Then any two
chain-representations of p are equivalent.

Proor. It is enough to prove that an arbitrary chain-representation {/,, m,,
y€l’} is equivalent with the the chain representation {/(x), m,, xc%,} which is
induced by p.

Let yel, then there exists x¢/;. We show that

(6.4) I, = I(x).
If yel,, then xVyel, and x«-xVy; hence

m,(x) = p(x]xV y)m,(xV y).
Since m,(x)=0, so p(x|xVy)=0, ie., yeI(x). Hence
(6.5) I, € I(x).

When conversely y¢ 7,, then there exists d¢I" such that ye/f and consequently
I,cl;, m(y)=0. However, by x¢l, x¢ I, ie., my(x)=0. From x<sxVy

ms(x) = p(x|xVy)ms(xV y).
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This implies p(x|xVy)=0, ie., y¢I(x). Then

(6.6) I(x) € I,.
Now (6.5) and (6.6) imply (6.4).
If ze%,, then there exists f<I" such that z¢J; and by similar arguments as
before we get I(z)=1;, i.e.,
(6.7) {{(x)|xeZL} = {L,lyeT}.
On the other hand, if /(x)=1,, then in case of w&/(x) we have
m,(w) = p(w|xVw)m,(xVw),
m, (x) = p(x|xVw)m,(xVw)
and
N _ P(wlxVw)
T

Hence it follows that
m,(w) = m, (x)m,(w)

for all wel(x)=I,. Since 0<=m,(x)=c, we have
(6.8) m, = cm,.

(6.7) and (6.8) imply the equivalence of {/(x), m,, xc%,} and {I,,m,,yel}.
Q.e.d.

It is not very difficult to construct two such GS(Z,%,, p) and (%, %,,1)
with properties (D), (E) that the chain-representations generalized by p and r
should be equivalent, but p7r. This means that the chain-representation does not
determine exactly p.

Let now a triple {7,, m,, yeI'} be given and assume that the statements (i)—(vi)
of Theorem 6.8 are true. If z€%,, then there exists a€l’ such that zelf, so
we can define

(6.9) q(x]z) =

m,(z *Xx)
my(2)
g(x|z) is obviously independent of the choise of «(z€l;). The following
statement may be proved:

Proposition 6.10. The function q: % X%, —~ [0, =) defined by (6.9) possesses
properties (C), (D), (E) and
(6.10) m,(xA\z) = g(xAz|z2)m,(2)

holds for all yeI', zel, and xe 2.

ProoF. Let z€l}, then
m,(z#(xAz)) _ m,(xAz)
m,(2) m,(z)

ie., (6.10) holds. If z¢l, but z¢I}, then m(2)=m/(zAx)=0, ie., (6.10) is
true also in this case.

q(xAz|z) =

L]
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Concerning property (C) we have to prove that if z,z#x¢c%,, zel} and
x++y then

(6.11) q(xAylz) = q(x|2)q(y|z *x),

m,(z% (x\p))  my(z%x) mB((z%x)*y)
my (Z) ki my (Z) ms (Z*x)

1e.,

where z#x€lf. Since x<-y: and x--(zVx'), the following calculations are
correct.
(z%x)%y = (VxtVyH)AXVyHAy = (2VxLVy)A(xAy) =
= (zV(xAyL))AxAY) = z%(xAy).

Thus, setting u=z*(xA\y), v=z#*Xx, we can write (6.11) in the form

my () my(v) my(u)
6.12 = .
049 my(z)  my(z) my(v)

Since vel,, vely, itis clear that I,S1,. Now we distinguish two cases. If vel},
then 7I,=1; and

my(u) _ m,(u)
mg(v)  my(v)’

ie., (6.12) holds. If v¢rf, then m,(v)=0 and I;cl,. However, from ucly
it follows wu¢ I}, that is m (u)=0. This implies (6.12) and consequently (6.11).
Now we shall prove that

(6.13) q(x)xVy)+q(y|xVy)=0
for all xVye4,, ie., (D) holds for g. Let xVycl}, then

m,((xVy)«x)  m,(x)
m,(xVy) — my(xVy)’

q(x[xVy) =

m,((xVy)*y) _ m,(»)
m,(xV y) m,(xVy)~

q(y|xVy) =

However, by (iii) of Theorem 6.8 we have

m, (x)+m,(y) = 0;
hence

) q(xlxVy)+q(»)|xVy) =0,
i.e., (6.13) holds.
Property (E) amounts to saying that
(6.14) q(zl(zVx)A(zVxt) =0,
if ze%,, xeZ. To prove (6.14) let us assume that zel;f, x¢.%. Then z*x¢l; and

(zVX)A(2VxL) = (z%xx)V zE T4,
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Furthermore, z=zV(z#Xx) implies 0<my((z*x)Vz). Hence

_mxx (V@) myd)
ie., (6 14)1(;1;.:\/?;:2\/xl)) & mo(ZV(Z aﬁx)) > mJ(ZV (z *x)) 0,

Remarks. One can easily verify the following statements:

1. In general function g defined by (6.9) is not finitely additive.
2. If x,«+z and x,1x,, then

q(x,V xg|2) = q(x4|2) + q(x.|2)

is also true.
3. From the preceding remark it follows that if z is in the centrum of 2,

then ¢(-[7) is a finitely additive probability measure. Furthermore, if % is
distributive, then ¢ is obviously the only conditional probability on % X%, such
that {/,, m,,y€l} is a chain-representation of p.
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