Preseminormed spaces

By A. SZAZ (Debrecen)

Introduction

In this paper, we introduce the notion of preseminormed spaces and initiate a
systematic study of them. Preseminormed spaces are, in some sense, equivalent to
topological vector spaces, but seem to be more convenient for the purposes of appli-
cations and teaching. Seminormed spaces have formerly been used by LARSEN [4] in
a quite similar sense.

In § 1, we define a real-valued function p on a vector space X to be a preseminorm
on X if (a) lim p(Ax)=0 for all x€X, (b) p(Ax)=p(x) for all |A|=1 and x€X,

and (c) p(x+ y) =p(x)+p(y) forall x, y€X. Moreover, we list the basic properties
of preseminorms. Preseminorms are more general and for some purposes more sui-
table than seminorms, and they have previously been used, under various names,
mainly in the proofs of the metrization theorem of topo]ogical vector spaces.

In § 2, we define a pair X(P)=(X, P), where P is a nonvoid family of presemi-
norms on X, to be a preseminormed space, and consider X to be equipped with the
weakest topology Tp for which all the balls B,(x,r)={y€X: p(x—y)<r}, where
peP, xeX and r=0, are open. Usmg nets, we prove quite easily that X(7p) is
a topological vector space, and Tp is the weakest translation-invariant topology on X
for which each p€ P is continuous. Formerly, it was known that preseminorms can
be used to define a vector topology, and each vector topology can be defined by prese-
minorms [6]. Moreover, the corresponding fact for seminorms has been greatly uti-
lized by several authors. However, our treatment here seems still to be new enough.

In § 3, we define two families of preseminorms to be equivalent if they induce the
same topology, and investigate the various possible operations on preseminorms from
the point of view of this equivalence. The most important fact derived here is that a
countable family of preseminorms can always be replaced by a single equivalent one.
The results of § 3 are then used in § 4, where we prove the metrization and normality
theorems of preseminormed spaces, which are very similar to those of topological
vector spaces, in a surprisingly easy way.

Finally, we remark that in a continuation of this paper the projective and induc-
tive limits of preseminormed spaces by linear relations will be investigated.
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§ 1. Preseminorms

Definition 1.1. A real-valued function p on a vector space X over K (=R or C)
is a preseminorm on X if
(a) E‘inap(_ﬁ.x)ZO for all xeX,

(b) p(ix)=p(x) for all |i|]=1 and x€X.
() p(x+y)=p(x)+p(y) for all x, yeX.

A preseminorm p is a prenorm if p(x)=0 implies x=0.

Remark 1.2. The notion of a preseminorm extends that of a seminorm¥*)
[5, p. 24].

KOTHE [3, p. 163] and WAELBROECK [6, p. 2] would call such a function an “(F)-
seminorm” and a “‘J-seminorm”, respectively.

The condition (a) can be weakened, namely it is enough to suppose only that
»lirgp(n“x)=0 for all x€X.

Theorem 1.3. Let p be a preseminorm on X. Then

(1) p(0)=0,

(2) p(x)=0 for all x€X,

(3) p(Ax)=p(x) for all |A|=1 and x€X,

@ p(AxX)=p(ux) for all |A|=|u| and x€X,

(5) p(nx)=np(x) for all integer n=0 and x€X.

©) |[p(x)—p()|=p(x—y) for all x,ycX.

PRrOOF. By (a), p(0)=!lil13 p(A0y=0. If |A|=|u| and w0, then by (b)

>
pU) = p (2 (9) = p(0).
Properties (2) and (3) follows immediately from (4). Finally, (5) and (6) can be derived
from (c) on the usual way.

Corollary 1.4. Let p be a nonzero preseminorm on a one-dimensional vector space
X. Then p is a prenorm on X.

Proor. If x€X, then by (2), (4) and (5), we have
= p(4x) = ([|A1+)p(x)

for all A€K, where [ ] denotes the entire part function.

*) Meantime, we observed that a little more general functions than preseminorms were for-
merly used for similar purposes by WiLansky [Modern Methods in Topological Vektor Spaces,
Mec Graw-Hill, New York, 1978] under the name “paranorms™.



Preseminormed spaces 219

Corollary 1.5. Let p be a preseminorm on X, x¢X such that p(x)#0, and
(%) a net in K. Then

(i) li:n p(A,x)=0 and (ii) li:n |Ae|=0

are equivalent.

PROOF. By (a), it is clear that (ii) implies (i). Suppose now that (i) holds, and let
&¢=>0. Then, since by Corollary 1.4 p(ex)=0, there exists o, such that p(4,x)<p(ex)
for all a=a,. Hence, by (4), it follows that |1,|<e for all a=a,.

Corollary 1.6. Let p be a preseminorm (prenorm) on X. Then the function d,
defined on XXX by

dy(x,y) = p(x—y)
is a translation-invariant semimetric (metric) on X.

§ 2. Preseminormed spaces

Definition 2.1. If P is a nonvoid family of preseminorms (seminorms) on X,
then the ordered pair
X(P)= (X, P)

is a preseminormed (seminormed) space.

If X(P) is a preseminormed space, then X is considered to be equipped with the
weakest topology Tp for which all the balls

B,(x,r) = {yeX: p(x—y)<r},

where p€ P, x€ X and r= 0, are open.
When no confusion seems possible, we shall simply write X instead of X(P)
or X(Tp).

Remark 2.2. Seminormed spaces have formerly been used by LARSEN [4] in a
quite similar sense.

The next two propositions, whose proofs are left to the reader, can be generalized
to “‘semimetrized spaces”.

Proposition 2.3. Let X(P) be a preseminormed space, xc¢X and VCX. Then
the following are equivalent:

(1) V is a neighborhood of x in X(Tp),
(ii) there exists {p}i-yC P and r=0 such that

N B, (x,n) c V.
k=1

Remark 2.4. If P is directed in the sense that for each p,, p.€ P there exists
p€P suchthat p,=p and p,=p, then instead of (ii), we may write that there exists
pEP and r=>0 such that B (x,r)cCV.

1*
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Proposition 2.5. Let X(P) be a preseminormed space, (x,) a net in X, and x€X.
Then the following are equivalent:

(1) xElilnx, in X(Tp),

(ii) liin p(x,—x)=0 for all peP.

Theorem 2.6. Let X be a preseminormed space over K. Then
(i) the mapping (x, y)—x+y of XXX into X is continuous,
(i) the mapping (4, x)—Jx of KXX into X is continuous.

Proor. We shall prove only (ii), the proof of (i) is similar, but simpler. To this
end, suppose that (4, x)€KxXX and (4,, x,) is a net in KX X such that

(4, x)€lim (4,, x,).
Then, by a well-known property of the product topology, we have

A€lim4A, and x€limx,.
x x
Hence, by Proposition 2.5, it follows that
lim[A,—4 =0 and limp(x,—x)=0

for all p€P, where P is the family of preseminorms given on X.
Using properties (c), (4) and (5) of preseminorms, we get

P(AeX,— %) = p((A— A%, — X))+ p((2,— 2)x) + p(A(x,—X)) =
= ([[A— A1+ Dp (x, = x) + p((A— %) + {121+ Dp (x,—x)
for all pe P. Hence, it is clear that
liEn p(2,x,—2x) =0

for all peP. Thus, again by Proposition 2.5,

Ax€lim 4, x,,

which implies (ii). (This proof is more natural than the one given for seminorms in
5, p. 271)

Remark 2.7. The above theorem shows that if X(P) is a preseminormed space,
then X (T5) is a topological vector space. On the other hand, it is not very hard to show
that each topological vector space can be obtained in this manner. (See for instance,
[2, p. 52] or [6, p. 2].) Thus, preseminormed spaces are suitable alternatives for topolo-
gical vector spaces.

Theorem 2.8. Let X(P) be a preseminormed space. Then Tp is the weakest trans-
lation-invariant topology on X for which each p€ P is continuous.
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Proor. By (i) in Theorem 2.6, it is clear that T is translation-invariant. More-
over, a similar argument as in the proof of Theorem 2.6 shows that each p€P is
continuous for Tp.

Suppose now that T is a translation-invariant topology on X for which each
p€P is continuous. Then

B,(x,r) =x+B,0,r) = x+p~*(Q—r, D

belongs to T for all peP, x€X and r=0, whence Tpc T follows.

Definition 2.9. A family P of preseminorms on X is separating if for each
0#x€X there exists p€P such that p(x)=0.

Theorem 2.10. Let X(P) be a preseminormed space. Then the following are equi-
valent:

(1) TP is T(n
(ii) P is separating,
(iii) Tp is Hausdorff.

PrROOF. An application of Proposition 2.3 and simple calculation with balls.

§ 3. Equivalence of preseminorms

Definition 3.1. 1If P and Q are nonvoid families of preseminorms on X, then we
write

(a) P<Q if Tpc Ty,

(b) P~Q if Tp=T,.
(The relations < and ~ are to be read “is weaker than™ and “‘is equivalent to”,
respectively.)

Theorem 3.2. Let P and Q be nonvoid families of preseminorms on X. Then the
following are equivalent:

(i) Q<P,

(ii) each q<Q is continuous for Tp.
Proor. This follows at once from Theorem 2.8.

Corollary 3.3. Let P be a nonvoid family of preseminorms on X, and denote by
P the family of all preseminorms on X which are continuous for Tp. Then P is the lar-
gest family of preseminorms on X such that P~ P.

Remark 3.4. A nonvoid family P of preseminorms may be called rotal if P=P.
Note that if P and Q are total families of preseminorms on X, then we have P~Q
if and only if P=0Q.

Proposition 3.5. Let X(P) be a preseminormed space and q be a preseminorm on
X. Then the following are equivalent:
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(i) q is continuous for Tp,
(1) B,(0,r) is a neighborhood of 0 in X(Ty) for all r=0,
(iii) if (x,) is a net in X such that lim p(x,)=0 for all p€c P, then li:n q(x)=0.

Proor. Simple application of Propositions 2.3 and 2.5.

Theorem 3.6. Let X be a vector space over K, and denote by P the family of all
preseminorms on X. Then the following assertions hold:

() If p1,ps€P and p=p,+py, or p=max{p,, ps}, then peP and

p~{Py; pa}. .
(2) If peP, ¢>0 and g=cp or g=min {p,c), then qcP and q~p.
(3) If (p)acr is a uniformly convergent net in P and p =li:n Pazs then peP and

pP< {pu}IE I
(4) If (p)zcr is a family in P such that the series Zp, converges uniformly, and

p= %‘_pa then peP and p~{p.}acr-

Proor. Routine, but lengthy computation.

Remark 3.7. Note that the second part of (2) is not true for seminorms, and
each bounded seminorm is identically zero. These are the main disadvantages of
seminorms.

Definition 3.8. A nonvoid family P of preseminorms is saturated if p,, p,€ P
implies that max {p,, p,}€P.

Remark 3.9. The importance of this notion lies in the fact that if P is a saturated
family of preseminorms on X, then for each {p,}i., P there exists p€ P such that

B,(x,r)= () B, (x,r) for all x¢X and r=0.
k=1
Corollary 3.10. Let P be a nonvoid family of preseminorms on X, and denote by

P* the family of all max {p}; -1, where {p,}i_1C P. Then P* is the smallest saturated
family of preseminorms on X such that Pc P*, and moreover P*~ P.

Remark 3.11. The family P* will be called the saturated hull of P. Note that
PcP*cP, and P is also saturated.

Corollary 3.12. Let P be a nonvoid countable family of preseminorms on X. Then
there exists a preseminorm p on X such that p~ P.

Proor. If P={p,}i-., then we may define p= E’q,,, where g,=min {p,,27"}.
n=1

Corollary 3.13. Let P be a nonvoid finite family of seminorms on X. Then there
exists a seminorm p on X such that p~P.
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§ 4. Metrizability and normality

Theorem 4.1. Let X(P) be a preseminormed space. Then the following are equi-
valent:

(1) there exists a preseminorm p on X such that p~ P,
(ii) there exists a countable base for the neighborhood system of 0 in X.

Proor. If (i) holds, then by Proposition 2.3, it is clear that {B, (0, %]]“ is
n=1
a local base at 0 in X.

To prove that (ii) also implies (i), suppose now that {V,}>~, is a local base at 0
in X. Then, by Corollary 3.10 and Remark 2.4, for each n, there exists p,€ P* and
r,=0 such that B, (0,r,)<¥,. Hence, by Proposition 3.5 and Theorem 3.2, it is
clear that {p,};=,~P. Moreover, by Corollary 3.12, there exists a preseminorm p
on X such that p~{p.Ji,.

Definition 4.2. A subset A of a preseminormed space X (P) is bounded if for each
p€P and r=0, there exists a positive integer n such that 4 cnB,(0, r).

Remark 4.3. If A is a bounded subset of a preseminormed space X(P), then A
is also a bounded subset of the semimetrized space X(Dp), where Dp={d,: p€ P}.
(This means that the d,-diameter of A is less than + < for all p€ P.) However, the
converse is not, in general, true. Thus, the above concept of boundedness must be
handled with care.

Fortunately, if X(P) is a seminormed space, then the two notions of boundedness
coincide, since in this case we have B,(0,r)=rB,(0,1) for all peP and r=0.

The next proposition, whose proof is again left to the reader, clarifies the above
definition further.

Proposition 4.4. Let X be a preseminormed space over K, and Ac X. Then the
following are equivalent:

(i) A is a bounded subset of X,
(i) for every neighborhood V of 0 in X, there exists a positive integer n such that
AcnV,
(iii) if (x,) is a net in A and (4,) is a null net in K, then (1,x,) is a null net in X.*)

Remark 4.5. The condition (iii) can be weakened, namely it is enough to sup-
pose only that for any sequence (x,) in 4, (n"'x,) is a null sequence in X.

Theorem 4.6. Let X(P) be a seminormed space. Then the following are equivalent :
(i) there exists a seminorm p on X such that p~ P,
(1) there exists a bounded neighborhood V of 0 in X.

PROOF. It is clear that (i) implies (ii). Suppose now that (ii) holds. Then, by
Corollary 3.10 and Remark 2.4, there exist peP* and r=0 such that B,(0,r)c V.

*) A further equivalent condition is that lim sup p(ix)=0 for all peP if A=0.
A=-0OxcAd



224 A. Sz4z: Preseminormed spaces

Moreover, by Definition 4.2, for any g¢P and s>0, there exists a positive integer n
such that %B,(O, r)< B,(0, 5), and thus by Proposition 3.5, ¢ is continuous for T,.
Hence, by Theorem 3.2, it is clear that p~ P.

Remark 4.7. If X(P) is a preseminormed space, V is a bounded convex neigh-
borhood of 0 in X, and p is the Minkowski functional of the balanced core of V,
then one can show similarly that p~ P.

However, from the point of view of applications, Theorems 4.1 and 4.6 and the
above fact are much less important than Corollaries 3.12 and 3.13.
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