On quadratic set valued functions

By KAZIMIERZ NIKODEM (Katowice)

Let (X, ||-|) be an arbitrary real normed space and let 2¥ denote the family of
all subsets of X. For s, 1€R — the set of all real numbers — and sets 4, BC X we
put sd+tB:={x€X: x=sa+1th, acA, b€B}. A set valued function (abbreviated
to s. v. function in the sequel) U: R-2* will be called quadratic iff for all s, 7€R

(1) U(s+10)+U(s—1t) = 2U(s)+2U(0).

It is easy to see that if a set FC X is convex then the s.v. function U defined by the
formula
(2) U(t) = 1*F, I(€R,

is quadratic, but in general the converse implication is not true. In this paper we give
some conditions for a quadratic s.v. function whose values are convex and compact
subsets of X to be of the form (2). Analogous theorems for quadratic functionals were
proved by S. KUREPA [3]. The results given here are a generalization of theorems pre-
ved by D. HENNEY [2].

Let C(X) denote the collection of all compact and non-empty subsets of X and
CC(X) — the family of all convex members of C(X). C(X) with the Hausdorff
distance D is a metric space. We say that the s.v. function U: R—2% is bounded on
a set AcCR iff there exists a ball K(O,r):={x€X: |x[|<r} such that U(r)c
cK(@,r) for all t€A.

The main result of this paper is the following

Theorem 1. Let ACR be aset of positive inner Lebesgue measure or of the second
category with the Baire property. If an s.v. function U: R—~CC(X) is quadratic and
bounded on A then U(t)=t*U(1) for all t€R.

To prove this theorem we need the following three lemmas.

Lemma 1 (see [5]). If A, B,C€CC(X) and k is a positive number, then
D(A+C, B+C)=D(A, B) and D(kA,kB)=kD(A, B). In particular, if A+C=
=B+C, then A=B.

Lemma 2. /fan s.v. function U: R—~CC(X) is quadratic, then for every rational
number q and every t€R we have U(qt)=q*U(t).

Proor. Putting in equation (1) s=7r=0 we get U(0)+U(0)=2U(0)+2U(0),
whence, because of the convexity of U(0), 2U(0)=4U(0). From here U(0)={O},
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because U(0) is bounded. Now, fix an arbitrary n€N (N denotes here the set of all
positive integers) and assume that U(kt)=k2U(1) for every keN, k=n. Then
using equation (1), we obtain

U((n+1)t)+(n—1)*U(1) = 2n2U(1)+2U (1),
and so, because of the convexity of U(7),
U((n+1)0)+(n—12U1) = @n*+2)U@) = (n+ 12+ (n—1)2)U(1) =
=m+1D)2UNO+m—-1)2U®).
From Lemma 1, we get U((n+ 1)t )=(n+1)*U(¢). Thus the equality U(nt)=n*U(t)
holds for every n€N and t€R. Since for meN U(r):U[m m-t-]:meU[%], we

have also U [%] =$U(r). This implies U(qt)=¢*U(t) for every positive rational

g and 7€R. To finish the proof it suffices to observe that the s.v. function U is
even. Indeed, setting s=0 in equation (1), we obtain

U)+U(—0) =2{0}+20@1) = U@+ U(),
whence, by Lemma 1, U(—-t)=U(t). O

Lemma 3. Let ACR be a set of positive inner Lebesgue measure or of the second
category with the Baire property. If a quadratic s.v. function U: R—CC(X) is boun-
ded on A, then it is bounded on a neighbourhood of zero.

PRrROOF. Let K(@, r) be such a ball that U(z) < K(©, r) for t€ A. Consider the
set H(A):={tcR: AN(A+1)N(A—1)#0}. If tc H(A), then there exists a point
s€R such that s, s—1t, s+1€A. Hence, using equation (1), we obtain

U(s)+U(f) = %[U(s +0)+U(s—10)C -;-[K(Q, r+K(O, r)] = K(O, r).

Let us fix x€U(s) arbitrarily. Then x€K(@, r), and so
U)cUN+U@B)—x < KO, r+K(O,r) = K(O, 2r),

which means that U is bounded on the set H(A). Since A has a positive inner Lebes-
gue measure or it is of the second category with the Baire property, H(A) contains a
neighbourhood of zero (see [4]). This concludes the proof. [J

PROOF OF THEOREM 1. By Lemma 3, there exists a positive rational number o
such that the s.v. function U is bounded on the interval [0, ¢]. Hence and from the
fact that the set U(1) is compact, there exists a ball K(@, r) containing all the sets
U(r) and 12U(1) for 1€[0, ¢]. Hence D(U(r), t*U(1))=2r for t€[0, ¢]. Let us put

d = sup {D(U(1), 2U(1)): €0, o]}
and suppose that d=0. Then there exists a number #,€(0, ¢] such that D(U(z,),
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rgU(l)):-%d. Without any loss of generality we may assume that 1,€ [%, g], for
otherwise there exists a rational number g such that g€ [%, g] whence

D(U(gty), ¢*AUW) = ¢D(U W), BUM) > ¢ 3 d = 5 d.

Now, the number 27, can be written in the form 2¢,=¢+s, where s€[0, ¢]. Applying
Lemma 2 and the triangle inequality we have

D(U(2t,), (2t)2U(1)) = D(UQ2ty) +U(g—s), Q12 U(1)+U(e—5)) =
= D(UQ2t)+U(e—s), 2)*U(1)+(e—5)*U(1))+
+D((21)2U (1) +(0—5)2U(1), (21,)2U(1)+U(g—5)).

Since U(e+s)+U(e—s)=2U(g)+2U(s), U(e)=¢*U(1) and
(o+s) U1+ (e—s)U() = 202U(1)+252U(1), we get
D(UQ2t))+U(e—s), (t)*U(1)+(e—s)*U(1)) =

=D(293U(l)+2U(s), 20°U(1)+2s*U(1)) = ZD(U(s), s“U(l)) =2
and
D(Q2t2 UM+ (e—9)2U), (22 U(1)+U(e—a)) =

=D((e—s)2U(1), U(e—s)) =d.
Thus, we have D(U(21,), (21,)*U(1))=3d.
On the other hand
D(U(Zro), (2!0)2U(l)) = D(4U(Iu), 4I§U(l)) = 4D(U(l‘o), I%U(l)) > 3d.

The contradiction just obtained implies that d=0 and, consequently, U(z)=1*U(1)
for every 1€[0, g]. Now, fix any 7€R and take a rational ¢=0 such that gr€[0, ¢].
By Lemma 2 and by the equality which has been proved previously, it follows that

U() = Ula) =z 440 (1) = £UQ),
which completes the proof. [
As an immediate consequence of this theorem we obtain the following

Corollary 1. If a s.v. function U: R—-~CC(X) is quadratic and continuous at
some point then it is of the form (2).

Now we shall introduce some further definitions. An s.v. function U: R—~C(X)
will be called measurable iff for every Borel set Bc C(X) (the topology in C(X)
is generated by the Hausdorff distance D) the counter-image U ~*(B) is a Lebesgue
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measurable set. We say that an s.v. function U: R—C(X) has the Baire property iff
for every open set 4 C(X) the set U ~'(A) has the Baire property. We say that an
s.v. function V: R—2X majorizes a s.v. function U: R-2* on a set FcR iff
U(t)c V(r) for every t(€F.

The next theorem presents another sufficient condition for a quadratic s.v. func-
tion to be of the form (2).

Theorem 2. Let V: R—C(X) be a measurable s.v. function (or an s.v. function
with the Baire property) and let ACR be a set of positive Lebesgue measure (or a
second category set having the Baire property). If an s.v. function U: R—CC(X) is
quadratic and if V majorizes U on A, then U is of the form (2).

PrOOF. Let B,:={FcC(X): Fc K(O, n)}, neN. Since compact sets are bound-
ed, C(X)=|J B,. Hence
n=1
v-yc) = U V-8 = U {ieR: V() = K(O, )},
n=1

n=1

and on the other hand, V~'(C(X))=R. Since V is measurable and B, are open sets
(see Theorem II—6 in [1]), the sets {r€R: V(r) < K(O, n)}, n€N, are Lebesgue mea-
surable sets. Therefore there exists an n,¢ N such that the sets {rc¢R: V(t) = K(O, n,)}
M A has a positive Lebesgue measure. Consequently, ¥ and hence also U 1s bounded
on a set of positive Lebesgue measure, which, by Theorem 1, completes the proof of
our theorem in the first case. The proof in the second case is quite analogous. [J

Corollary 2. If a quadratic s.v. function U: R—~CC(X) is measurable or has
the Baire property, then it is of the form (2).

Finally, we give some examples of quadratic s.v. functions which are not of the
form (2). Cleary, these functions do not fulfil the assumptions of the theorems proved
above.

Examples. Consider the following s.v. functions:
U,(1) .= +Q, I€R,
where Q denotes the set of all rational numbers;
Us () := [f (D), f()+17], (ER,

where f: R-R is adiscontinuous quadratic function (i.e. fis discontinuous and satis-
fies the equation f(s+1)+f(s—1)=2f(s)+2f(1), s, t€R);

Us(n) == J()F, I€R,

where f: R—-R 1is a discontinuous and non-negative quadratic function and Fis a
convex set.

It is easy to see that these s.v. functions are quadratic but they are not of the
form (2).
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