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Optimal control for linear systems
described by m-times integrated semigroups

By N.U. AHMED (Ottawa)

Abstract. In this paper we consider the question of existence of optimal controls
and necessary conditions of optimality for a general class of linear functional differential
equations described by m-times integrated semigroups and m-times integrated solution
family. For linear systems with quadratic cost functionals this generalizes similar results
of the author [8] for ordinary functional differential equations (equations governed by
0-times integrated solution family) on Banach spaces.

1. Introduction

In this paper we consider optimal control for a class of evolution equa-
tions where the infinitesimal generators are not of Hille-Yosida type. These
are the generators of m-times integrated semigroups and m-times inte-
grated solution family covering the so called distribution semigroups of
Lion [see Fattorini 7]. C0-semigroups are covered by m-times integrated
semigroups which in turn are covered by the so called m-times integrated
solution family. In section 3 we give a brief review of some of these results
as required in the paper. In section 4 we formulate a linear quadratic
control problem and prove the existence of optimal controls and the nec-
essary conditions of optimality. In section 5 we present a computational
algorithm.
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2. m-times integrated solution family

Let us consider the following integro-differential equation

(2.1)
(d/dt)x =

∫ t

0

da(s)Ax(t− s)ds, t ≥ 0,

x(0) = ζ,

where A is generally an unbounded linear operator in a Banach space X.

Definition 2.1. A strongly continuous operator valued function S(t),
t ≥ 0, in X is said to be the solution operator of the Cauchy problem (2.1)
if
(i) S(0) = I (identity operator)
(ii) there exist constants ω ∈ R and M ≥ 1 such that

‖S(t)‖L(X) ≤ Meωt, for t ≥ 0.

(iii) For ζ ∈ D(A), S(.)ζ ∈ C([0, T ], X) ∩ C1((0, T ), X), S(t) commutes
with A on D(A) and satisfies equation (2.1) for all t ∈ I.
Thus the solution of equation (2.1) is given by x(t) = S(t)ζ, t ≥ 0. We

call the pair (A, a) the (infinitesimal) generator of a strongly continuous
solution family S(t), t ≥ 0, if it generates the solution operator for the
homogeneous Cauchy problem (2.1).

Note that if a(t) ≡ 1, for t ≥ 0; and a(t) ≡ 0 for t < 0, then the system
(2.1) reduces to a differential equation and S(t), t ≥ 0, is a C0-semigroup
with infinitesimal generator given by A. If a(t) = t, then the system (2.1)
is equivalent to a second order evolution equation

(d2/dt2)y = Ay, t ≥ 0, y(0) = 0, ẏ(0) = ζ.

In case of viscoelastic problems the operator A is given by the restriction
of the laplacian on divergence free vector fields in a suitable L2 space and
the function a is given by

a(t) = a0 + a1t +
∫ t

0

a2(s)ds

with a0 ≥ 0, representing the Newtonian viscosity, a1 ≥ 0 representing the
elasticity modulus and a2(t) ≥ 0, t ≥ 0, is a nonincreasing function with
limt→∞ a2(t) = 0 representing the second law of thermodynamics [see 8].
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A result characterizing the generators of solution operators for integro-
differential equations of the form (2.1), generalizing Hille-Yosida theorem,
is due to Da Prato and Ianelli [5].

Using the solution operator corresponding to the generator, (A, a), one
can then construct the mild solution of the nonhomogeneous equation:

(2.2)
ẋ(t) =

∫ t

0

da(s)Ax(t− s) + f(t), t ∈ I,

x(0) = ζ,

as

(2.3) x(t) = S(t)ζ +
∫ t

0

S(t− s)f(s)ds, t ∈ I,

exactly as in the case of differential equations. If ζ ∈ D(A) and f ∈
C1(I, X), then x, given by expression (2.3), is a classical solution satisfying
the equation (2.2).

Optimal control problems for such systems including semilinear ones
have been considered in the literature [8].

Recently Arendt and Kellerman [6] has generalised the result of
Da Prato and Ianelli [5] to m-times integrated solution family. This
is in the same spirit as the generalization of the theory of classical C0-
semigroups to m-times integrated semigroups.

For convenience of notation define

R(λ) ≡ (λ− â(λ)A)−1

Rm(λ) ≡ R(λ)/λm ≡ (λ− â(λ)A)−1/λm,m ∈ N0, λ > ω.

Definition 2.2. A family of strongly continuous operator valued func-
tions, S(t), t ≥ 0, in X is said to be an m-times integrated solution family
for the Cauchy problem (2.1), for some m ∈ N0, if

(i): There exist M > 0, ω ∈ R such that ‖S(t)‖ ≤ Meωt,
for all t ≥ 0,

(ii): S(0) = I for m = 0, S(0) = 0 for m > 0,

(iii): Rm(λ)ξ =
∫∞
0

e−λtS(t)ξdt for all λ > ω and ξ ∈ X.

The following result, essentially due to Arendt and Kellerman [6],
generalizes the generation theorem due to Da Prato and Ianelli [5].
The work of Arendt and Kellerman [6] is based on the theory of vector
valued Laplace transforms due to Arendt [3]. For details see also [2,4].
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Lemma 2.3. Necessary and sufficient conditions for the pair (A, a) to
be the generator of an m + 1-times integrated solution family S(t), t ≥ 0,
are

(1): A is a closed operator with domain and range in X and a ∈
BVloc(R+) satisfying

∫∞
0

e−ωt|da(t)| < ∞, â(λ) 6= 0, (λ/â(λ)) ∈ ρ(A), for
λ > ω.

(2): There exists a number M ≥ 0 and ω ∈ R, such that for λ > ω,

‖(λ− ω)n+1R(n)
m (λ)/n!‖ ≤ M for all n ∈ N.

If A is also densely defined then the pair (A, a) is the infinitesimal generator
of an m-times instead of m + 1-times integrated solution family.

Proof. See [6; 1].

Similar to the result for m-times integrated semigroups [2, Theo-
rem 2.5.12, p. 59], one has the following result for m-times integrated
solution family.

Consider the nonhomogeneous system (2.2) and suppose that the pair
(A, a) is the generator of an m-times integrated solution family S(t), t ≥ 0.
Define

(2.4) y(t) ≡ S(t)ζ +
∫ t

0

S(t− s)f(s)ds, t ∈ I.

Then, the system (2.2) has a classical solution if, and only if,
y ∈ Cm+1(I, X) and in that case the solution x is given by, x = Dmy,
where Dm denotes the m-th derivative with respect to t ∈ I.

A set of sufficient conditions that guarantee the smoothness require-
ment of y, given by the expression (2.4), and hence the existence of a
classical solution of the Cauchy problem (2.2), is given in the following
theorem.

Theorem 2.4. Consider the Cauchy problem (2.2) and suppose that
the pair (A, a) is the generator of an m-times integrated solution family
S(t), t ≥ 0. Then, the system (2.2) has a unique classical solution, x ∈
C(I, X) ∩ C1((0, T ), X), if ζ ∈ D(Am+1) and f ∈ Cm+1(I, X) satisfying
the condition f (k)(0) ∈ D(Am−k) for 0 ≤ k ≤ m− 1

Proof. [See 6, Theorem 1.8, p. 30].
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3. Generalized solutions

Note that for existence of solution, according to Theorem 2.4, the
smoothness requirement of the data (ζ, f) is rather too severe and therefore
very limited for application. For applications to control problems one
would like to consider solutions of (2.2) for more general data like ζ ∈ X
and f ∈ L1(I, X). For this one must must generalize the notion of solution.
A notion of generalized solution was recently introduced by the author in
[1] for the Cauchy problem (2.2) as follows.

Let X be a separable reflexive Banach space with dual X∗. Let

(3.1) Wm,1(X∗) ≡ {φ ∈ L1(I, X∗) : Dkφ ∈ L1(I, X∗), 0 ≤ k ≤ m}.
The space Wm,1(X∗), furnished with the norm topology given by

‖φ‖W m,1(X∗) ≡
m∑

k=0

‖Dkφ‖L1(I,X∗),

is a Banach space. Let ∂I ≡ {0, T} denote the two end points of the
interval I and

Wm,1
0 (X∗) ≡ {φ ∈ Wm,1(X∗) : Dkφ|∂I = 0, 0 ≤ k ≤ m− 1}

denote the completion in the topology of Wm,1(X∗) of the vector space
Cm

0 ((0, T ), X∗) of m-times differentiable functions on (0, T ) with compact
supports. Clearly the dual of the Banach space Wm,1

0 (X∗) is given by
W−m,∞(X).

Consider the Cauchy problem (2.2). Suppose ζ ∈ X, f ∈ L1(I, X) and
the pair (A, a) is the generator of an m-times integrated solution family,
S(t), t ≥ 0. Define

(3.2) y(t) = S(t)ζ +
∫ t

0

S(t− s)f(s)ds

Definition 3.1. A (generalized) function x mapping I to X is said to
be a generalized solution of the Cauchy problem (2.2) if

(i): x(0) = ζ and

(ii):
∫

I
〈x(t), φ(t)〉X,X∗ dt = (−1)m

∫
I
〈y(t), Dmφ(t)〉X,X∗ dt, for all φ ∈

Wm,1
0 (X∗), where Dm denotes the distributional derivative of order

m with respect to time t ∈ I.

We need the following result which appeared recently in [1, Theo-
rem 4.2, p. 55].
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Theorem 3.2. Consider the system (2.2) and suppose that the pair
(A, a) is the generator of an m-times integrated solution family for some
m ∈ N0 with the corresponding solution operator S(t), t ≥ 0. Suppose

D(Am+1) = X. Then, for each ζ ∈ X and f ∈ L1(I, X), the system (2.2)
has a unique generalized solution x ∈ W−m,∞(X).

This result has also been extended by the author to stochastic systems
[1, Theorem 5.4, p. 60]. Our major concern here is optimal control for
deterministic systems described by m-times integrated solution family.

4. Optimal control: existence and necessary conditions

In this section we shall make use of the above results to formulate
and solve the classical linear quadratic regulator problem for the system
(2.2) which is governed by the infinitesimal generator (A, a) of m-times
integrated solution family. We wish to note that up to the present time
no such results exist in the literature. In this sense the results presented
here are new.

The very first question is how do we formulate a regulator problem
when the solutions are not ordinary vector-valued functions but instead
vector-valued generalized functions? Here, we shall first give a reasonable
formulation. Consider the control system:

(4.1)
(d/dt)x =

∫ t

0

da(s)Ax(t− s) + B(t)u(t), t ∈ I

x(0) = ζ,

where B is a suitable operator valued function and u is the control policy.
Let Y be another separable reflexive Banach space with dual Y ∗,

Uad ⊂ Lp(I, Y ) the class of admissible controls, and B ∈ Lq(I,L(Y,X))
with 2 ≤ p ≤ ∞ satisfying 1/p + 1/q = 1 where q ≥ 1 is the conjugate of
p. For simplicity of notation, set Wm,1

0 (X∗) ≡ X . Since X is a reflexive
Banach space the dual of X is given by X ∗ = W−m,∞(X). Let Q ∈
L+

n (X ∗,X ) where L+
n (X ∗,X ) is the space of positive nuclear operators

from X ∗ to X and let R be a positive operator from Lp(I, Y ) ≡ Lp(Y ) to
Lq(I, Y ∗) ≡ Lq(Y ∗). For the cost functional we take

(4.2) J(u) ≡ (1/2) 〈Q(x− xd), x− xd〉X ,X∗ + (1/2)〈Ru, u〉Lq(Y ∗),Lp(Y ),

where xd ∈ X ∗ is the desired trajectory. The objective is to find a control
policy that imparts a minimum to the functional (4.2) subject to the dy-
namic constraint (4.1). It is well known that every such nuclear operator
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has the representation
Q =

∑

i≥1

λiφi ⊗ φi

where {φi} ∈ X , i ∈ N, is a suitable basis. Thus for every ζ ∈ X ∗

〈Qζ, ζ〉 =
∑

λi 〈φi, ζ〉2X ,X∗ .

Without any loss of generality we may assume that ‖φi‖X = 1 for all
i ∈ N. Since in our case Q is positive, λi ≥ 0 and it follows from the
representation that

〈Qζ, ζ〉 =
∑

λi 〈φi, ζ〉2X ,X∗ ≤ Tr Q‖ζ‖2X∗ ,
where TrQ =

∑
λi < ∞.

Since xd ∈ X ∗ is fixed, for simplicity of presentation but without any
loss of generality, we may drop this term and consider instead the cost
functional given by :

(4.3)

J(u) ≡ (1/2) 〈Qx, x〉X ,X∗ + (1/2) 〈Ru, u〉Lq(Y ∗),Lp(Y )

= (1/2)
∑

λi 〈φi, x〉2X ,X∗ + (1/2)
∫ T

0

〈R(t)u, u〉Y ∗,Y dt,

where we have assumed that R is a multiplication operator given by
(Ru)(t) = R(t)u(t) where R ∈ Ls(I,L(Y, Y ∗)) with s = (p/(p− 2)).

First we give a result on the existence of optimal controls.
Theorem 4.1 (Existence of optimal control). Consider the control

problem (4.1)–(4.3) and suppose the assumptions of Theorem 3.2 hold.
Let Y be a reflexive Banach space, B ∈ Lq(I,L(Y, X)), Uad = Lp(I, Y )
with 2 ≤ p and q ≥ 1 such that (1/p) + (1/q) = 1, and there exists a
constant β > 0 such that 〈Rv, v〉Lq(Y ∗),Lp(Y ) ≥ β‖v‖2Lp(Y ). Then there

exists an optimal control.

Proof. First note that, under the given assumptions Bu ∈ L1(I, X)
for each u ∈ Uad. Hence, by Theorem 3.2, for ζ ∈ X and each u ∈ Uad,
equation (4.1) has a unique generalized solution x(u) ≡ x( . , u) ∈ X ∗ =
W−m,∞(X). Thus the the cost functional (4.3) can be rewritten as

(4.4) J(u) = J1(u) + J2(u).

where

J1(u) ≡ (1/2)
∑

λi

(∫

I

〈y(t, u), Dmφi(t)〉X,X∗ dt

)2

J2(u) ≡
∫

I

〈R(t)u(t), u(t)〉Y ∗,Y dt,
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and Dm represents the m-th order distributional derivative with respect
to time and y is given by

(4.5) y(t, u) = S(t)ζ +
∫ t

0

S(t− s)B(s)u(s)ds, t ∈ I.

Let
Inf{J(u), u ∈ Uad} = η,

and {un} a minimizing sequence so that

(4.6) lim
n→∞

J(un) = η.

Since the first term in (4.4) is non negative and R is coercive, the sequence
{un} is a bounded sequence and hence due to reflexivity of Lp(Y ), there
exist a subsequence, relabeled as {un}, and a control u0 ∈ Uad so that
un

w−→ u0 in Lp(Y ). Since B ∈ Lq(I,L(Y,X)) and Uad = Lp(Y ) and Y is
reflexive, it follows from (4.5) that

y(un) ≡ y( . , un) w∗−→ y( . , u0) ≡ y(u0)

in L∞(I, X). This, combined with the fact that every nuclear operator is
compact, implies that the first term, J1(u), of the cost functional is weakly
continuous on Lp(Y ). By virtue of positivity of the operator R, the second
term in the cost functional is weakly lower semi continuous and hence J
is weakly lower semicontinuous. Consequently

J(u0) ≤ Lim inf
n→∞

J(un).

Combining this with (4.6), we have J(u0) = η proving that u0 is the
optimal control.

Remark. Note that if Uad is a closed bounded convex subset of
Lp(I, Y ), the coercivity condition for R is not necessary.

Now we present necessary conditions of optimality for the problem
(4.1)–(4.3).

Theorem 4.2 (Necessary conditions of optimality). Let Uad be a closed
convex subset of Lp(Y ) and suppose u0 ∈ Uad and x0 ≡ x(u0) is the cor-
responding trajectory (generalized solution of (4.1)). Then, in order that
the pair {u0, x0} be optimal it is necessary that there exists a nontrivial
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ψ0 ∈ C(I,X∗) ∩ L∞(I,X∗) such that the following inequality and equa-
tions hold:

(4.7)

(1) :
∫

I

〈R(t)u0(t) + B∗(t)ψ0(t), u(t)− u0(t)〉Y ∗,Y dt ≥ 0,

for all u ∈ Uad,

(2) : − (d/dt)ψ0 =
∫ T−t

0

da(r)A∗ψ0(t + r) + γ0(t), ψ0(T ) = 0,

(3) : (d/dt)x0(t) =
∫ t

0

da(r)Ax0(t− r) + B(t)u0(t), x(0) = ζ,

where

γ0(t) ≡ (Qx0)(t) =
∑

λi 〈x0, φi〉X∗,X φi(t).

Proof. First we prove that u −→ x(u) is a Lipschitz continuous
map from Lp(Y ) to X ∗ and that it is Frechet differentiable. Indeed let
u, v ∈ Lp(Y ) and x(u), x(v) the corresponding (generalized) solutions of
equation (4.1). Then it is easy to verify that for any Θ ∈ X we have

(4.8)

∣∣∣∣
∫

I

〈x(u)− x(v), Θ〉X,X∗ dt

∣∣∣∣

=
∣∣∣∣(−1)m

∫

I

〈y(u)− y(v), DmΘ〉X,X∗ dt

∣∣∣∣
≤ M̃T (‖B‖Lq(I,L(Y,X)))(‖DmΘ‖L1(I,X∗))(‖(u− v)‖Lp(Y )),

where M̃T is a suitable constant depending on T and the constants M,ω
appearing in the inequality

‖S(t)‖ ≤ Meωt.

Hence

(4.9) ‖(x(u)− x(v))‖X∗ ≤ (M̃T ‖B‖)‖(u− v)‖Lp(Y ).

This shows that the map u −→ x(u) is Lipschitz and Frechet differentiable
as stated. From this fact it is easy to deduce that u −→ J(u) is Frechet
differentiable. Consider the pair {u0, x0} as described in the statement
of the theorem. By convexity, for any u ∈ Uad and 0 < ε < 1, uε ≡
u0 + ε(u − u0) ∈ Uad. Let xε denote the solution of (4.1) corresponding
to uε. Then by direct computation one can deduce that the Gateaux
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differential of J at u0 in the direction u− u0 is given by

(4.10)
J1(u0, u− u0) ≡

∫

I

{
〈R(t)u0(t), u(t)

−u0(t)〉Y ∗,Y +
〈
γ0(t), z0(t)

〉
X∗,X

}
dt,

where, as defined in the statement of the theorem, γ0 ∈ X and z0 is
the Frechet differential of x at u0 in the direction u − u0 which is the
(generalized) solution of equation

(4.11) (d/dt)z0(t) =
∫ t

0

da(r)Az0(t− r) + B(t)(u(t)− u0(t)), z0(0) = 0.

Since γ0 ∈ X , the adjoint equation given by

(4.12) −(d/dt)ψ =
∫ T−t

0

da(r)A∗ψ(t + r) + γ0(t), ψ(T ) = 0,

has a unique solution ψ0 ∈ C(I, X∗) ∩ L∞(I, X∗). This is (2) of equation
(4.7). We shall justify this later. Using this fact in (4.10) and recalling
that u0 is optimal, we obtain

J1(u0, u− u0) =
∫

I

〈R(t)u0(t) + B∗(t)ψ0(t), u(t)− u0(t)〉Y ∗,Y ≥ 0

for all u ∈ Uad.(4.13)

This proves (1) of equation (4.7). Thus we have derived all the necessary
conditions of optimality as stated in the theorem. To complete the proof,
we must justify the existence of a solution of the adjoint equation (4.12).
We show that the function

(4.14) ψ(t) ≡ (−1)m

∫ T

t

S∗(θ − t)Dmγ0(θ)dθ, t ∈ I,

is a solution of equation (4.12). Recall that γ0 ∈ X and hence Dmγ0 ∈
L1(I, X∗) and the integral is well defined since S∗(t), t ≥ 0, is a bounded
operator valued function in X∗. It is also clear from this expression that
ψ ∈ C(I, X∗) ∩ L∞(I,X∗). For ζ ∈ D(A), and m ≥ 0, it can be shown
[see 6, 1] that

S(t)ζ =

{
(tm/m!)ζ +

∫ t

0

(∫ s

0
da(r)AS(s− r)ζ

)
ds, m ≥ 1,

ζ +
∫ t

0

(∫ s

0
da(r)AS(s− r)ζ

)
ds, m = 0.
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Hence S(.)ζ ∈ C1((0, T ), X) and

(4.15) (d/dt)S(t)ζ=

{
(tm−1/(m−1)!)ζ+

∫ t

0
da(s)S(t− s)Aζ, m ≥ 1

∫ t

0
da(s)S(t− s)Aζ, m = 0.

It follows from equation (4.14) and (4.15) that

(d/dt) 〈ψ(t), ζ〉 = (−1)m+1

∫ T

t

〈
Dmγ0(θ), (θ − t)m−1/(m− 1)!ζ

〉
dθ

+(−1)m+1

∫ T

t

〈
Dmγ0(θ),

∫ θ−t

0

da(r)S(θ − t− r)Aζ

〉
dθ.(4.16)

Recalling that Dkγ0(t)|∂ = 0 for all 0 ≤ k ≤ m − 1, it follows from
elementary computation that

(4.17)
∫ T

t

〈
Dmγ0(θ), (θ − t)m−1/(m− 1)!ζ

〉
dθ = (−1)m

〈
γ0(t), ζ

〉
.

By integration by parts and using Fubini’s theorem and (4.14), one can
verify that

(4.18)

∫ T

t

〈
Dmγ0(θ),

∫ θ−t

0

da(r)S(θ − t− r)Aζ

〉
dθ

= (−1)m

∫ T−t

0

da(r) 〈ψ(t + r), Aζ〉 .

Substituting (4.17) and (4.18) into equation (4.16) we obtain, for all t ∈ I,

(4.19)
(d/dt) 〈ψ(t), ζ〉 = −

∫ T−t

0

da(r) 〈ψ(t + r), Aζ〉 − 〈
γ0(t), ζ

〉
,

for all ζ ∈ D(A).

Since ζ ∈ D(A) is arbitrary and, by our assumption, D(Am+1) and hence
D(A) is dense in X, it follows that ψ given by (4.14) is the unique solution
of the adjoint equation (4.12) and hence ψ0 = ψ is the unique solution of
(4.7)(2). This completes the proof.

5. A computational algorithm

In this section we briefly present an algorithm for computation of
optimal controls. Let ν denote the duality map:

ν : Lq(Y ∗) \ {0} −→ Lp(Y )
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satisfying
(ν(f), f)Lp(Y ),Lq(Y ∗) = ‖f‖2Lq

= ‖ν(f)‖2Lp
.

If Y is strictly convex and 1 < p < ∞ then Lp(Y ) is also a strictly convex
Banach space and in that case the duality map ν is single valued and
demicontinuous. Define the sequence of controls as follows

(4.20) un+1 ≡ un − εν(J1(un)), n ≥ 1,

where J1 denotes the Frechet derivative of J , and ε is a small positive
number. The first term of the sequence can be chosen arbitrarily from the
admissible class. Then one can verify using Lagrange formula (mean value
theorem) that

(4.21)
J(un+1) = J(un)− ε(J1(un), ν(J1(un))) + o(ε)

= J(un)− ε‖J1(un)‖2Lq(Y ∗) + o(ε).

The algorithm can then be summarized as follows. Given un solve equation
(4.7)(3) to obtain xn. Using xn compute γn replacing x0 by xn in (4.7).
Using this γn solve the adjoint equation (4.7)(2) to obtain ψn. Using
the pair {ψn, un} compute J1(un) ≡ Run + B∗ψn and define un+1 using
(4.20) and J(un+1) by (4.21). Stop if, for given tolerance, say δ > 0,
|J(un+1)− J(un)| ≤ δ; if not continue the process.

Remark. Here we have studied only linear problem. It would be in-
teresting to study the possiblity of extension of these results to semilinear
problems. In case m = 0, results for semilinear problems are available in
[8]. For m > 0, the author is not aware of any such result.
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