A note on a paper of Heatherly

By C. V. L. N. MURTY (Nagarjunanager)

We make the following remarks concerning Lemma 2.4 and Theorem 2.5 in [2]. We now present some examples in which the conclusions of Lemma 2.4 and Theorem 2.5 fails. Throughout this note N stands for a left near-ring.

Example 1. Let $N = \{0, 1, 2, 3, 4, 5\}$. Define addition as modulo 6 and multiplication by the following table (see CLAY [1] on (0, 1, 4, 3, 4, 1)).

	0	1	2	3	4	5
0	0	0	0	0 3 0 3 0 3	0	0
1	0	1	2	3	4	5
2	0	4	2	0	4	2
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	1	2	3	4	5

Then N is a finite near-ring with $a^2=a$ for all a. Here $N=N_1\oplus N_2$ where $N_1=\{0,3\}$ and $N_2=\{0,2,4\}$ are ideals of N. Clearly 3 is a nonzero right distributive element of N but 2 and 4 are not right distributive elements of N_2 . Hence in this case Lemma 2.4 and the first part of Theorem 2.5 (1) fails.

Example 2. Let N be a finite zero symmetric near-ring with a nonzero right distributive element d and contains no nonzero nilpotent elements. Let (G, +) be a finite non abelian group. Define on $N \times G$ addition as componentwise and multiplication as follows:

For (n, g), $(m, h) \in N \times G$,

$$(n, g)*(m, h) = (nm, h)$$
 if $g \neq 0$ $(nm, 0)$ if $g = 0$.

Then $(N \times G, +, *)$ is a near-ring (see PILZ [3]). Now obviously $N \times G$ is a finite near-ring without nilpotent elements and (d, 0) is a nonzero right distributive element. Here $N \times G$ is not abelian under addition. Thus the second part of Theorem 2.5 (1) fails.

Acknowledgement. I take this oppertunity to thank my Research Director Dr. Y. V. REDDY for his valuable guidance.

References

- [1] J. R. CLAY, The near-rings on groups of low order, Math. Z. 104 (1968), 364—371.
 [2] H. E. HEATHERLY, Near-rings with out nilpotent elements, Publ. Math. (Debrecen) 20 (1973), 201—205.
- [3] G. Pilz and Y. S. So, Generalized distributively generated near-rings, Arch. Math. 37 (1981), 150-153.

DEPARTMENT OF MATHEMATICS NAGARJUNA UNIVERSITY NAGARJUNANAGAR 522 510 A.P. INDIA

(Received November 12, 1982.)