
Publ. Math. Debrecen

50 / 3-4 (1997), 287–303

The factorization method in the
field of Mikusiński operators

By DJURDJICA TAKA�CI (Novi Sad) and ARPAD TAKA�CI (Novi Sad)

Abstract. We consider certain second order differential equations with variable
coefficients in the field of Mikusiński operators, F . We construct their discrete analogue
and, using the factorization method, solve the obtained difference equation and analyze
the character of its solution. Then we show that the solution of this difference equation
can be treated as the approximate solution of the corresponding initial differential
equation in the field F , by estimating the error of approximation.

1. Notations and notions

The elements of the Mikusiński operator field, F , are called operators.
They are quotients of the form

f

g
, f ∈ C+, 0 6≡ g ∈ C+,

where the last division is observed in the sense of convolution

f(t) ∗ g(t) =
∫ t

0

f(τ)g(t− τ) dτ, t > 0.

Any continuous function a = a(t) with support in [0,∞) can be
observed as an operator, which we shall simply denote by a. Then we
say that the operator a represents the continuous function a(t) and write
a = {a(t)}. Let us denote by Fc the subset of F consisting of the opera-
tors representing continuous functions. For example, we have the integral
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operator l (representing the constant function 1 on [0,∞)) and its positive
powers lα:

l = {1}, lα =
{

tα−1

Γ(α)

}
, α > 0.

Also, among the most important operators are the inverse operator
to l, the differential operator s, while I is the identity operator. This
means that it holds

ls = I.

By FI we denote the subset of F consisting of the elements of the
form αI, for some numerical constant α.

For the theory of differential equations, the following relation, con-
necting the operator representing the n-th derivative of an n-times differ-
entiable function x = x(t) with the operator x is essential:

{x(n)(t)} = snx− sn−1x(0)− . . .− x(n−1)(0)I.

In this paper, we shall analyze the type I convergence ([2], p. 157).
In particular one can show that the infinite series

∞∑

i=1

φi,

where φ ∈ Fc, converges and its sum is an operator from Fc.
The operators can be compared only if they are from Fc. So for two

operators a = {a(t)} and b = {b(t)} from Fc we define

a ≤ b iff a(t) ≤ b(t) for each t ≥ 0

(see [2], p. 237). Clearly, a = b iff a(t) = b(t), t ≥ 0.
Analogously, we shall say for two operator functions that

a(x) ≤T b(x), x ∈ [c, d],

if a(x) and b(x) are representing continuous real valued functions of two
variables, a(x) = {a(x, t)}, b(x) = {b(x, t)} and

a(x, t) ≤ b(x, t) for t ∈ [0, T ], x ∈ [c, d].

The absolute value of an operator a from Fc, a = {a(t)}, denoted by
|a|, is the operator |a| = {|a(t)|}. Also, we put |a(x)| = {|a(x, t)|}.

If the operators a and b are from Fc, then it holds

|a + b| ≤ |a|+ |b|,

|ab| =
∣∣∣
∫ t

0

a(τ)b(t− τ)dτ
∣∣∣ ≤ |a||b|,
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and

|a| ≤T α(T )l, where α(T ) = max
t∈[0,T ]

|a(t)|.

2. Introduction

Let us consider the differential equation

spu′′(x) + B(x)squ′(x) + C(x)sru(x) = f(x),

or

u′′(x) + B(x)sq−pu′(x) + C(x)sr−pu(x) = lpf(x),(1)

with the conditions

(2) u(0) = E, u(1) = F,

in the field F . In (1), p, q, r are positive integers, s is the differential op-
erator, B(x), C(x) and f(x) are the given and u(x) the unknown operator
functions.

In (1), we assumed that lpf(x) are operator functions representing
continuous function of two variables and in (2), we assumed that E and F
are operators which can be written as

(3) E = sσ(E1I + Ec), F = sσ(F1I + Fc),

where σ ∈ Z, E1, F1 are numerical constants and Ec, Fc are operators
representing continuous functions.

In this paper we construct a discrete analogue in the field F for the
differential equation (1) with (2), present a method for the exact solution
of this difference equation with variable coefficients, similarly as it was
done for numerical difference equations in the book [1].

As is usual in numerical analysis, for h > 0 instead of u′(x) we shall
take

u(x + h)− u(x− h)
2h

and also instead of u′′(x) we shall put

u(x + h)− 2u(x) + u(x− h)
h2

.
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So we obtain the difference equation in the field F corresponding to (1):

(4)
u(x + h)− 2u(x) + u(x− h)

h2
+ B(x)sq−p u(x + h)− u(x− h)

2h
+C(x)sr−pu(x) = lpf(x).

For N ∈ N, we define h = 1
N , and put x0 = 0, xn = xn−1 + h, i.e.,

xn = n
N , n = 1, 2, . . . , N − 1. Moreover, we define the operators fn, for

n = 1, 2, . . . , N − 1, by fn = f(xn), and the numerical constants Bn and
Cn, for n = 1, 2, . . . , N − 1, by Bn = B(xn) and Cn = C(xn).

Then the equation (4) can be written as the difference equation with
variable coefficients

(5) anun−1 + bnun + cnun+1 = lpfn, n = 1, 2, . . . , N − 1.

The conditions (2) correspond to

(6) u0 = E, uN = F,

where an, bn and cn, n = 1, 2, . . . , N − 1, are operators from the field F .
Putting

r1 = q − p and r2 = r − p,

we have

an =
I

h2

(
I − sq−pBnh

2

)
=: αI − sr1βn,(7)

bn = − I

h2

(
2I − sr−pCnh2

)
=: −2αI + sr2γn,(8)

cn =
I

h2

(
I +

sq−pBnh

2

)
=: αI + sr1βn.(9)

In the previous relations α := I
h2 , βn := Bn

2h and γn := Cn, n =
1, 2, . . . , N − 1, are assumed to be nonzero numerical constants.

The discrete analogue for the differential equation (1) with conditions
(2), in the field F is the difference equation (5) with the conditions (6).

In Section 3 we construct the exact solution of equation (5) and ana-
lyze its character in the field of Mikusiński operators F .

In Section 4 we estimate the error of approximation and show that the
approximate solution of difference equation in the field F can be treated
as the solution of differential equation (1) and in special case the solution
of the partial differential equation with variable coefficients.
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In Section 5 we give an application of the analyzed operator differential
equation.

In papers [3], [4] and [6], the general form of the solution of difference
equation (5) was constructed in the field F and its character was analyzed.
In [7], a first order difference equation was observed. In all these papers
we also estimated the error of approximation.

3. The solution of operator difference equation

It is known that the field of Mikusiński operators has very good alge-
braic properties, which also means that the usual addition and multiplica-
tion with operators can be treated in the same way as with real numbers.
Therefore the solutions of the problem (5), (6) can be formed similarly as
is done for numerical difference equations (when the coefficients an, bn, cn

and also the solutions un are numerical constants). In the book [1], p. 51,
the exact solution of difference equation (5) with conditions (6) was con-
structed.

It can be shown, similarly as was done in [1], that in the field F the
solutions of the difference equation (5) with conditions (6) can be written
as

(10)
uN = F,

un = Ln+1/2un+1 + Kn+1/2, n = 0, 1, 2, . . . , N − 2, N − 1,

where L1/2 = 0 and K1/2 = E,

(11) L3/2 :=
−c1

b1
, K3/2 :=

a1E − f1

−b1
,

and the operators Ln+1/2 and Kn+1/2, 1 ≤ n ≤ N − 1, have the forms

Ln+1/2 =
−cn

bn + anLn−1/2
,(12)

Kn+1/2 =
fn − anKn−1/2

bn + anLn−1/2
.(13)

Let us express the operators Ln+1/2 and Kn+1/2 in the field F . In
order to obtain the character of the operator solution given by relation (10),
let us first analyze the dependence of character of the operators Ln+1/2

and Kn+1/2 on r1 and r2.

Theorem 1. Assume in equation (5) that the coefficients an, bn and
cn, 1 ≤ n ≤ N−1, are of the form (7), (8) and (9), respectively, and let the
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operator E be given by (3). If r2 > r1 > 0, i.e., r > q, then the operators
Ln+1/2 for n = 1, 2, . . . , N − 1, are from Fc and they can be written as

Ln+1/2 = −
(

lr2
α

γn
+ lr2−r1

βn

γn

)
(I + φn),(14)

where

φ1 =
∞∑

j=1

(
2

α

γ1
lr2

)j

,(15)

and

(16)

φn =
∞∑

j=1

(
2

α

γn
lr2 +

(
α

γn
lr2 + lr2−r1

βn

γn

)

×
(

lr2
α

γn−1
+ lr2−r1

βn−1

γn−1

)
(I + φn−1)

)j

.

Under the upper conditions, the operators Kn+1/2 can be written as

(17) Kn+1/2 = lκn · (KnI +Kc,n) , n = 1, . . . , N − 1,

where

(18)
κ1 = min{r2 + p, r2 − r1 − σ} and

κn = min{r2 + p, r2 − r1 + κn−1}, n = 2, . . . , N − 1.

In (17), Kn are numerical constants, while Kc,n are operators repre-
senting continuous functions, n = 1, 2, . . . , N − 1.

Proof. Using relations (11), (8) and (9) we can write

L3/2 =
−c1

b1
= − αI + sr1β1

−2αI + sr2γ1
= −

lr2 α
γ1

+ lr2−r1 β1
γ1

I − 2 α
γ1

lr2

= −
(

lr2
α

γ1
+ lr2−r1

β1

γ1

) ∞∑

j=0

(
2

α

γ1
lr2

)j

= −
(

lr2
α

γ1
+ lr2−r1

β1

γ1

)
(I + φ1).

The operator φ1 is from Fc; since by assumption r2 > 0 and r2 − r1 > 0,
the operator L3/2 is from Fc, also.
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In the same manner, the operator L5/2 can be transformed as follows:

L5/2 =
−c2

b2 + a2L3/2

= − αI + sr1β2

−2αI + sr2γ2 − (αI − sr1β2)
(
lr2 α

γ1
+ lr2−r1 β1

γ1

)
(I + φ1)

= −
(

lr2
α

γ2
+ lr2−r1

β2

γ2

)

×
∞∑

j=0

(
2

α

γ2
lr2+

(
α

γ2
lr2−lr2−r1

β2

γ2

)(
lr2

α

γ1
+ lr2−r1

β1

γ1

)
(I + φ1)

)j

.

Similar calculations give for n = 3, . . . , N − 1, the formula (14), with
φn−1 from (16):

Ln+1/2 =

= − αI + sr1βn

−2αI+sr2γn+(αI − sr1βn)
(
−

(
lr2 α

γn−1
+lr2−r1

βn−1
γn−1

)
(I+φn−1)

) ,

and thus we obtain the form (14). In particular, it follows that the oper-
ators Ln+1/2 are from Fc.

The operator K3/2 can be transformed as

(19)

K3/2 =
lpf1 − a1E

b1
=

lpf1 − (αI − sr1β1)sσ(E1I + Ec)
−2αI + sr2γ1

=
lp+r2f1 − (lr2α− lr2−r1β1)sσ(E1I + Ec)

γ1

∞∑

j=0

(
2lr2

α

γ1

)j

=
lp+r2f1 − (lr2α− lr2−r1β1)sσ(E1 + Ec)

γ1
(I + φ1)

= lκ1 (K1I +Kc,1) ,

where κ1 = min{r2 + p, r2 − r1 − σ}.
Similarly we have

K5/2 =
(

lr2+pf2 − (αlr2 − sr1−r2 β2)K3/2

γ2

)
(I + φ2)

= lκ2 (K2I +Kc,2) ,
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where κ2 = min{r2 + p, r2 − r1 + κ1}.
Assume that (17) with κn−1 from (18) for some n−1∈{2, . . . , N − 2}

holds. Then

Kn+1/2 =

=
fn − (αI − sr1βn) · lκn−1(Kn−1I +Kc,n−1)

(−2αI + sr2γn)− (αI + sr2β2) ·
(
lr2 α

γn−1
+ lr2−r1

βn−1
γn−1

)
(I + φn−1)

=
lκn(K′n−1I +K′c,n−1)

γn
,

where κn is given by (18). Thus we obtained the representation (17) for
Kn+1/2. ¤

Corollary 1. If in relation (18) it holds that r2+p ≥ (k−1)(r2−r1)−σ
and r2 + p ≤ k(r2 − r1)− σ, for some k, 1 ≤ k ≤ N − 1, then

(20) κi =
{

i(r2 − r1)− σ, i = 1, 2, . . . , k − 1,

r2 + p, i = k, k + 1, . . . , N − 1.

Proof. If r2 + p ≤ r2 − r1 − σ, then κ1 = κ2 = . . . = κN−1 = r2 + p.
However, if r2 + p > r2 − r1 − σ, then κ1 = r2 − r1 − σ, and κ2 =
min{r2 +p, 2(r2− r1)−σ). It is obvious that κi ≤ κi+1, i = 1, . . . , N −2.
So if r2 + p ≤ 2(r2 − r1) − σ, then κ2 = . . . = κN−1 = r2 + p. If
r2 + p > 2(r2 − r1) − σ, then κ2 = 2(r2 − r1) − σ. Continuing this
procedure we obtain relation (20). ¤

The next theorem will characterize the solutions of equation (5), i.e.,
operators un, n = 1, . . . , N − 1, given by relation (10).

Theorem 2. Assume in equation (5) that the coefficients an, bn, cn,
1 ≤ n ≤ N , are of the form (7), (8), (9), respectively, and let r2 > r1 > 0.
If E and F are given by relation (3), then the solutions of equation (5)
can be written as

(21) uN = sσ(F1 + Fc), uN−k = lωN−k(UN−kI + Uc,N−k).

for numerical constants UN−k and operators representing continuous func-
tions Uc,N−k, k = 1, . . . , N − 1, and the powers ωn having the forms

(22) ωN−k =
{

k(r2 − r1)− σ, k(r2 − r1)− σ ≤ r2 + p;
r2 + p, k(r2 − r1)− σ > r2 + p.



The factorization method in the field of Mikusiński operators 295

Proof. The form (21) of the solutions in the field F follows from
relation (10) and Theorem 1, namely from relations (14) and (17). In fact,
we have

uN−1 = LN−1/2uN + KN−1/2

−
(

lr2
α

γN−1
+ lr2−r1

βN−1

γN−1

)
(I + φN−1)sσ(F1 + Fc)

+ lκN−1 · (KN−1I +Kc,N−1)

= lωN−1(UN−1I + Uc,N−1),

where ωN−1 = min{r2 − r1 − σ, κN−1}.
• If κN−1 = (N − 1)(r2 − r1)− σ), then ωN−1 = r2 − r1 − σ.
• If κN−1 = r2 + p = r, then

− either ωN−1 = r2 − r1 − σ, for r2 − r1 − σ < r2 + p,
− or ωN−1 = r2 + p if r2 − r1 − σ > r2 + p.

Continuing this procedure we obtain

uN−2 = L(N−2)+1/2uN−1 + K(N−2)+1/2

= −
(

lr2
α

γn
+ lr2−r1

βN−2

γN−2

)
(I + φN−2)lωN−1(UN−1I + Uc,N−1)

+ lκN−2 · (KN−2I +Kc,N−2(φN−2))

= lωN−2(UN−2I + Uc,N−2),

where ωN−2 = min{r2 − r1 + ωN−1, κN−2}. In this case we have the
following.
• If κN−2 = (N−2)(r2−r1)−σ, meaning (N−2)(r2−r1)−σ < r2 +σ,

then ωN−1 = r2 − r1 − σ and ωN−2 = 2(r2 − r1)− σ, if N − 2 ≥ 2.
• If κN−2 = r2 + p, meaning then (N − 2)(r2 − r1)− σ ≥ r2 + p, then

− either 2(r2 − r1) − σ < r2 + p, (then also r2 − r1 − σ < r2 + p,
implying ωN−1 = r2−r1−σ,) and therefore ωN−2 = 2(r2−r1)−σ,

− or 2(r2 − r1)− σ > r2 + p. If r2 − r1 − σ < r2 + p, then ωN−1 =
r2− r1−σ, but ωN−2 = r2 + p. Otherwise if r2− r1−σ > r2 + p,
then ωN−1 = r2 + p, then also ωN−2 = r2 + p.

Again UN−2 is a numerical constant, while Uc,N−2 is an operator
representing continuous function. Continuing the procedure we obtain
the form of the solution given by relation (22).
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Corollary 2. If the conditions of Theorem 2 are fulfilled and the so-
lutions have the form (21),
• then for σ < 0 the solutions of the problem (5), (6) represent contin-

uous functions;

• then for σ ≥ 0 solutions of this problem may represent continuous
functions and may not.

Proof.

• If σ < 0, then E and F represent continuous functions, thus κn > 0
and ωn > 0, n = 1, . . . , N − 1. From relation (21) it follows that the
operators un represent continuous functions.

• Assume σ > 0.
− If r2 − r1 − σ > 0, then κn > 0, and ωn > 0, n = 1, . . . , N − 1,

and in this case all the operators un, n = 1, . . . , N − 1 represent
continuous functions.

− However, if r2− r1− σ < 0, then κ1 < 0 and ωN−1 < 0, meaning
that uN−1 does not represent a continuous function.
∗ If 2(r2 − r1)− σ < 0, then κ2 = ωN−2 < 0, and the solution

uN−2 does not represent a continuous function.
∗ If 2(r2 − r1) − σ > 0, then κ2 > 0 and ωN−2 > 0, and thus

the solution uN−2 does represent a continuous function.
− If (N−1)(r2−r1)−σ < 0, then no solution represents a continuous

function.
− If for some k, 3 ≤ k < N − 1, k(r2 − r1) − σ > 0, then the op-

erators uN−k, uN−k−1, . . . , 3 ≤ k ≤ N − 1, represent continuous
functions.

Similarly we can prove the following statements, which correspond to
the case r1 = r2.

Theorem 3. Assume in equation (5) that the coefficients an, bn and
cn, 1 ≤ n ≤ N , are of the form (7), (8) and (9), respectively, then put

δ1 = γ1 6= 0, δn = γn + βn
βn−1
δn−1

, n = 2, . . . , N − 1, and assume that all δn

are nonzero.

If r1 = r2 = m > 0, then the operators Ln+1/2 can be written as

(23) Ln+1/2 = −
(

lm
α

δn
+

βn

δn

)
(I + φ̃n),
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where the operators φ̃n, n = 1, . . . , N −1, are from Fc and have the forms

φ̃1 =
∞∑

j=1

(
2

α

γ1
lm

)j

,(24)

φ̃n =
∞∑

j=1

(
α

δn
lm

(
2 +

βn−1

δn−1

)
+

(
α

δn
lm − βn

δn

)
· lm α

δn−1

+
(

lm
α

δn
− βn

δn

) (
lm

α

δn−1
+

βn−1

δn−1

)
· φ̃n−1

)j

(25)

=:
∞∑

j=1

(
Ψn +

(
lm

α

δn
− βn

δn

)(
lm

α

δn−1
+

βn−1

δn−1

)
· φ̃n−1

)j

.

If the operators E, given by (3), and lpfn, n = 1, 2, . . . , N , represent
continuous functions, then the operators Kn+1/2, for n = 1, 2, . . . , N − 1,
are of the forms

(26) Kn+1/2 = lτ (KnI +Kc,n)) ,

where τ = min{m + p,−σ} and Kn are numerical constants and Kc,n are
operators from Fc.

Theorem 4. Assume in equation (5) the coefficients an, bn and cn,
1 ≤ n ≤ N , are of the form (7), (8) and (9), respectively, and let r2 = r1>0.
If E and F are given by relation (3), then the solutions of equation (5)
can be written as

(27)
uN = sσ(F1 + Fc), uN−k = lω(UN−kI + Uc,N−k),

k = 1, . . . , N − 1,

for some numerical constants UN−k and operators representing continuous
functions Uc,N−k, k = 1, . . . , N − 1, and ω = min{m + p,−σ}. Moreover,
the following holds.
• If σ < 0, then the solutions of the problem (5), (6) represent contin-

uous functions;
• If σ ≥ 0, then the solutions of this problem do not represent continu-

ous functions.

Theorem 5. Assume in equation (5) that the coefficients an, bn and
cn, 1 ≤ n ≤ N , are of the form (7), (8) and (9), respectively, and r1 >
r2 > 0. Let the numerical constants satisfy g1 = γ1 6= 0, g2k+1 = γ2k+1 +
β2k+1

β2k

g2k
6= 0, g2k = β2k

β2k−1
g2k−1

6= 0.
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1. Then for n = 2k + 1, k = 0, 1, 2, . . . , [(N − 1)/2], the operators
Ln+1/2 are neither from Fc nor from FI ; however, they can be written as

L2k+3/2 = −
(

lr2
α

g2k+1
+ lr2−r1

β2k+1

g2k+1

)
(I + ψ2k+1),

where g1 = γ1, g2k+1 = γ2k+1 + β2k+1
β2k

g2k
are numerical constants, while

ψ2k+1 are from Fc and have the forms

ψ2k+1 =:
∞∑

j=1

(
φ̃1

2k+1 +
(

l2r1−r2
α

g2k+1
− lr1−r2

β2k+1

g2k+1

)

×
(

l2r1−r2
α

g2k
+ lr1−r2

β2k

g2k

)
· ψ2k

)j

,

where the form of φ̃1
2k+1 is ordered similarly as φ̃2k+1 in relation (25). The

operator K3/2 is the same as one given in Theorem 3. Further on, we have

K2k+3/2 = −
(

lp+r2fn
I

g2k+1
−

(
α

g2k+1
lr2 − lr2−r1

β2k+1

g2k+1

)
K2k+1−1/2

)

× (I + ψ2k+1).

2. If n = 2k, k = 1, 2, . . . , [(N − 1)/2], then the operators L2k+1/2

are from Fc and can be written as

L2k+1/2 = −
(

l2r1−r2
α

g2k
+ lr1−r2

β2k

g2k

)
(I + ψ2k)

and the operators K2k+1/2 are of the forms

K2k+1/2 = −
(

lp+2r1−r2fn
I

g2k
−

(
α

g2k
l2r1−r2 − lr1−r2

β2k

g2k

)
K2k−1/2

)

× (I + ψ2k).

Again g2k = β2k−1β2k

g2k−1
6= 0 are numerical constants and ψn are from Fc and

can be written as

ψ2k =:
∞∑

j=1

(
φ̃2

2k +
(

lr2
α

g2k
− lr2−r1

β2k

g2k

)

×
(

lr2
α

g2k−1
+ lr2−r1

β2k−1

g2k−1

)
· ψ2k−1

)j

.
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The solutions in the case when r1 > r2 can be formed similarly as it
was done in Theorems 2 and 4.

4. The error of approximation

Let us suppose that the solution of equation (1) is from Fc and has
a continuous fourth derivative in the field F . Let us denote by u(xj) the
exact solution of equation (1) and by uj the approximate solution of the
same equation (which also belongs to Fc). In fact, uj is the solution of
the difference equation (5).

In order to give the error of approximation, we have to estimate the
difference between the equations (1) and (5). So for j = 1, 2, . . . , N − 1,
we have

(
u′′(xj)− uj+1 − 2uj + uj−1

h2

)
+ B(xj)sq−p

(
u′(xj)− uj+1 − uj−1

2h

)

+C(xj)sr−p (u(xj)− uj) = 0.

From the previous relation we have

|u(xj)− uj | =
∣∣∣∣

I

C(xj)
·
(

lr−p

(
u′′(xj)− uj+1 − 2uj + uj−1

h2

)

+B(xj)lr−q

(
u′(xj)− uj+1 − uj−1

2h

))∣∣∣∣ .

In this paper we give the error of approximation for r > q ≥ p ≥ 0. Then
we have r2 = r − p > r1 = q − p ≥ 0 and therefore the expression

∣∣∣∣
I

C(xj)

(
lr−p

(
u′′(xj)− uj+1 − 2uj + uj−1

h2

)

+B(xj)lr−q

(
u′(xj)− uj+1 − uj−1

2h

))∣∣∣∣
represents a continuous function. It can be estimated by

∣∣∣∣
I

C(xj)

(
lr−p

(
u′′(xj)− uj+1 − 2uj + uj−1

h2

)

+B(xj)lr−q

(
u′(xj)− uj+1 − uj−1

2h

))∣∣∣∣

≤T
h2

6

(
R1

M4(T )T r−p−1

2(r − p− 1)!
+ R2

M3(T )T r−p−1

(r − p− 1)!

)
l2,
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where the numerical constants R1 and R2 are such that

R1 = max
0≤xj≤1

∣∣∣∣
1

C(xj)

∣∣∣∣ , R2 = max
0≤xj≤1

∣∣∣∣
B(xj)
C(xj)

∣∣∣∣ and

Mi(T ) = max
x∈[0,1], t∈[0,T ]

∣∣∣∣
∂iu(x, t)

∂xi

∣∣∣∣ , i = 3, 4.

So the error of approximation can be estimated as

|u(xj)− uj | ≤T
h2

6

(
R1

M4(T )T r−p−1

2(r − p− 1)!
+ R2

M3(T )T r−p−1

(r − p− 1)!

)
l2.

Note that the error of approximation is O(h2), as in the classical case.

5. An application

Let us consider the partial differential equation

(28)
∂2+pu(x, t)

∂x2∂tp
+ B(x)

∂1+qu(x, t)
∂x∂tq

+ C(x)
∂ru(x, t)

∂tr
= f(x, t),

on the set {(x, t)| 0 ≤ x ≤ 1, t ≥ 0}, with certain appropriate conditions.
Here, we shall assume that

(29)
∂µ+νu(x, t)

∂xµ∂tν

∣∣∣∣
t=0

= 0,

for µ = 0, ν = 0, 1, . . . , r − 1; µ = 1, ν = 0, 1, . . . , q − 1; µ = 2,
ν = 0, 1, . . . , p− 1, and

(30) u(0, t) = E(t), u(1, t) = F (t).

The numbers p, q and r are positive integers, B(x) and C(x) in (28) are
continuous functions depending on the variable x, E(t) and F (t) in (30) are
continuous functions depending on the variable t, while f(x, t) and u(x, t)
are the given and the unknown function of two variables. We assume
that for every x ∈ [0, 1] both B(x) and C(x) are different from zero.
The problem (28), (29) and (30) corresponds to differential equation (1)
with the conditions (2). This means that we can treat the exact solution
of equation (5) given by (21) as the approximate solution of the partial
differential equation (28).
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6. An example

Let us consider the partial differential equation

(31) ex ∂2u(x, t)
∂t2

=
∂

∂x

(
(1 + x2)

∂u(x, t)
∂x

)
− 1,

with the conditions

u(x, 0) = 0, ut(x, 0) = 0,(32)

u(0, t) = 1, u(1, t) =
t2

2
.(33)

In the field F , the equation (31) with the conditions (32) corresponds to
the equation

(34) u′′(x) +
2x

1 + x2
u′(x)− s2 ex

1 + x2
u(x) = l.

The conditions (33) correspond to the conditions

(35) u(0) = l, u(1) = l3.

In this case we have r = 2, p = 0, q = 0, r2 = 2, r1 = 0, and r2 > r1,
and

E = l, F = l3, B(x) =
2x

1 + x2
C(x) = − ex

1 + x2
.

The difference equation (5) has now the form

anun−1 + bnun + cn+1un+1 = l.

Defining the constants α, βn and γn as after relation (9), we obtain the
solution of the problem (34), (35), in the form

(36)
uN = F,

un = Ln+1/2un+1 + Kn+1/2, n = N − 1, N − 2, . . . , 1.
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Hence it follows that

L3/2 = −l2
(

α

γ1
+

β1

γ1

) ∞∑

j=0

(
2

α

γ1
lr2

)j

,

Ln+1/2 = −l2
(

α

γn
+

βn

γn

)

×
∞∑

j=0

l2j

(
2

α

γn
+

(
α

γn
+

βn

γn

)
·
(

l2
α

γn−1
+l2

βn−1

γn−1

)
(I + φn−1)

)j

;

K3/2 =
l3 − lr2(α− β1)E

γ1

∞∑

j=0

(
2l2

α

γ1

)j

,

Kn+1/2 =
l3 − l2(α− βn)Kn−1/2

γn

×
∞∑

j=0

l2j

(
2

α

γn
+

(
α

γn
+

βn

γn

)
·
(

l2
α

γn−1
+ l2

βn−1

γn−1

)
(I + φn−1)

)j

.

Note that the solutions are from Fc, which, of course, is in accordance
with Theorem 1.

The error of approximation can be estimated by

|u(xj)− uj | ≤T
h2

6

(
1 + e

e
· T ·M4(T )

2
+

2Te

1 + e
·M3(T )

)
l2.
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the field of Mikusiński operators, Publ. Math. Debrecen 45 (1994), 379–394.

DJURDJICA TAKAČI
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