On classification of finite groups with four generators three
of which having orders p, p, ¢ (p<¢g) I

By K. R. YACOUB (Cairo)

Finite groups with two independent generators attracted the attention of authors
for several years. The author dffwing started on such groups (1)) discussed later
on the existence and the structure of finite groups with three generators one being
of arbitrary order and the other two having given orders (2), (3) and others.

Recently, the author (4) started the problem of finite groups with four generators
a, b, c and d when b, ¢ and d have the same odd prime order p.

It is the object of the present paper to deal with a similar problem when the
given orders are p, p and g with p<gq. Throughout this paper, the order m of a
is arbitrary but m¢ {p, q}. The case p>gq together with the particular case when
mée{p, q} will be kept to a further discussion.

The present paper consists actually of two main parts, the first deals with the
case p does not divide ¢g—1 while the second deals with the case p divides g—1.

1. Notation and Preliminaries

Throughout this paper the symbol e denotes the identity of the group unless
otherwise stated. Various parameters namely A, x4 and v are used frequently where

A pe{2,...,p—1}), ie. A uz1 (modp),
vé{2,...,q—1} ie. v #1 (modg).
We introduce k, k" and k* as the respective orders of
Amod p, pmodp, vmodgq.

Thus Z*=1 (modp), p¥=1 (modp), v**=1 (mod g). It should be noted that
k-,
Two other parameters, denoted by w, @’, are used mainly in the second part

of the paper where
o,0'€{l,2, ..., g—1}.

It may be noted that possibly @, ®'=1 (mod g), but vz1 (mod g).
Finally, for positive integers x, y and z, we use the symbol [x, y] for the L.C.M.
of x and y while the symbol [x, y, z] is used for the L.C.M. of x, y and z.
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The two following theorems, due to the author (3), are stated here without
proof mainly for subsequent use.

Theorem 1. Let p and q be two distinct odd primes such that
(i) p<gq, (i) p does not divide q—1.

Then, for m¢{p, q}, there exist four types of groups with three generators a, b, d
of respective orders m, p and q. These groups which we denote by M;: i=1,2,3,4 are

M, = {a,b,d; a" = b?=d" = e, ab = ba’, ad = da’, bd = db}

with
rP=1=1 (modm),
M,={a,b,d; a" =bP=d*=e, ab = ba’, ad = d'a, bd = db}
with
r’ =1 (mod m), k*|[m, r—1],
M;={a,b,d; a™ = b? = d* = e, ab = b%a, ad = da', bd = db}
with
=1 (mod m), k|[m,t-1],
M, = {a,b,d, a™ = b®? = d? = e, ab=b’a, ad = d*a, bd = db}
with

[k, k*]|m.

Cor. 1. Groups of the types My, My and My do not exist for m=p. For M,, if m=p,
then k*|p implies k*=p since v#1 (mod ¢q) and its order mod ¢, namely k*=>1.
Thus v*=1 (mod ¢) which implies v=1 (mod ¢) since p does not divide g—1.
This obvious contradiction shows that M, does not exist. Similar arguments apply
for M, and M,.

Cor. 2. The group M, exists when m=p and is Abelian. For, in this case, we
have rP=1 (mod p) which implies, on using Fermat’s Theorem, r=1 (mod p).
Also #7=1 (mod p) implies =1 (mod p); this in fact follows directly if we observe
that ¢g=p and that the odd prime ¢ cannot be a multiple of the even number p—1
which contradicts the fact that ##~'=1 (mod p).

For the sake of later quotation, we replace a by ¢, we thus have

Cor. 3. Let p and q be two distinct odd primes with p<gq and p is not a divisor
of q—1. Then only one group {b,c,d} exists with three generators having orders
p, p and q, and this group is Abelian.

Theorem 1*; Let p and q be two distinct odd primes such that
i p=aq, (i) p divides g —1.

Then there exist four types of groups with three generators a, b, d of orders m,
p, q with m arbitrary such that mé¢ {p, q}. These groups are

M ={a,b,d; a® =b? =d?=e, ab = ba", ad = da*, bd = d®b,
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PP qp<q1
with
P=1=/® (modm), w?=1 (modqg) ()_{q A
=1l= mm,m_mq,j"co—ly,m;él
M; ={a,b,d; a"=b"=d'=e, ab= ba", ad = d"a, bd = d®b
with
vZ1 (modg), =1 (modm), @’=1 (modgq), k*|[m,r—1],
MS ={a,b,d; a"=b?=d" = e, ab = b*a, ad = da', bd = db}
with
A#Z1 (modp), =1 (modm), k|[m,t-1],
M = {a,b,d; a" = b? =d? = e, ab = b*a, ad = d’a, bd = db)}
with

A#Z1 (modp), v#1 (modg), [k,k*]|m.

Remark 1. The defining relations of MY, originally given by the author, sep-
erate the two cases w=1 and w#1, but for further and easier application they
are combined together by the introduction of the function f.

Remark 2. From Theorem 1* (when p divides g—1) and Theorem 1 (when p
does not divide ¢—1), we observe that

(i) M,=M], G) M,=Mf (i) M,=M; with o=1,
iv) M,=M; with o=1.

Cor. 1*. Groups of the types M3 and M} do not exist for m=p. This result fol-
lows immediately as in Cor. 1 if we use Remark 1 (i), (ii).

Cor. 2*. Groups of the types MY and M7 exist when m=p. For by taking
m=p in My, we have r’=1 (mod p) which implies directly r=1 (mod p). More-
over /=1 (mod p) implies always 1=1 (mod p) whether ®=1 or @ # 1 (mod g).
This result is immediate for @1 (mod ¢) from the definition of /. Also by defini-
tion of f, we have f(1)=¢ and hence t?=1 (mod p). But if we remark again that
the odd prime ¢ cannot be a multiple of the even p—1, it follows directly that
t=1 (mod ¢). In this case M{={a, b, d; a"=b"=d=e, ab=ba, ad=da, bd=db}.

Moreover, by taking m=p in M3, we have again r=1 (modp) and k*|p
implies k*=p since k*=1. Thus v*=1 (mod q) and M; will be

M3 = {a,b,d; a®* = b®? = d? = e, ab = ba, ad = d’a, bd = d”b},

with v#1 (mod ¢), w?=1=v? (mod g).
Moreover, if we observe that the two elements a, b (being of the same order)

play the same role in the structure of the group, then w#1 (mod g). Replacing a
by ¢ and v by ®” we have thus shown

Cor. 3*, Let p and q be two distinct odd primes such that p<q and p divides
q—1. Then there exist two groups with three generators b, ¢, d of orders p, p, q re-



32 K. R. Yacoub

spectively. One of these groups is Abelian and the other is non-Abelian namely

{b,c,d; b* = c® = d* = ¢, bc = cb, bd = d*®b, cd = d*¥¢c}
with
0,0 Z1 (modg), @ =1=w”? (modyg).

Part 1. The case p does not divide q—1

Let G be a finite group with four generators a, b, ¢ and d whose orders are
respectively m (arbitrary), p, p and ¢ where p and ¢ are two distinct odd primes such
that p<gq and p does not divide g—1. Then

m=b=cr=di=e

Now since p does not divide ¢—1, then by Cor. 3 the subgroup {b, ¢, d} is always
Abelian. But the two subgroups {a,b,d} and {a,c,d} may be any one of the
four types M, M,, My and M, which are described in Theorem 1. Thus ten cases
may arise and the corresponding groups, if they exist, may be listed in the following
table.

Table 1. The case p does not divide g—1

Type of Type of Type of

{a, b, d} {a, ¢, d} G={a, b, c, d}
M, M, 7(1,1)
M, M, 7(1,2)
M, M, T(1,3)
M, M, 7(1, 4)
M, M, T(Q2,2)
M, M, 7(2, 3)
M, M, T(2,4)
M, M, TG, 3)
M, M, 73,4
M, M, T(4,4)

Remark 1. 1t should be remarked that other types may arise but they are not
actually distinct from the above types. For example, the type 7(2,1) arises when
the subgroup {a,b,d} is of the type M, while the subgroup {a,c,d} is of the
type M,. Such a type is exactly the same as the type 7(1, 2) if we just interchange
the two generators b and ¢ which have the same order p.

Remark 2. Groups of the types 7(1,2) and T(1,4) do not exist. For such
two types, the subgroup {a, b, d} is of the type M, for which ad=dd’, while the
subgroup {a, ¢, d} is either of the type M, or M, for both of which ad=d"a with
vz#1 (mod g). This obvious contradiction shows that no such types of groups exist.

Remark 3. Groups of the types T(2, 3) and T(3, 4) do not exist. Similar argu-
ments apply as in the previous remark. Thus it remains to discuss the existence of
the six types

T(G,i):i=1,2,3,4 and T(l,3),T(2,4).
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Theorem 2. If there is a group G of the type T(1,1), then it has the defining
relations

1) G={a,b,c,d;a"=b"=cP=d'=e, ab= ba’, ac = ca*, ad = da',

be = cb, bd = db, cd = dc}
where

v)) rP=s? = =1 (mod m).

Conversely, if r, s and t satisfy (2), then the group G generated by a, b, ¢ and d with
the derining relations (1) is of the required type.

PrROOF. Assume the existence of a group G of the type 7(1, 1). Then, for such
a group, the two subgroups {a,b,d} and {a,c,d} are both of the same type
M, for which we have by Theorem 1

{a,b,d; a™ = b? =d?=e, ab = ba", ad = da*, bd = db},
{a,c,d; a® =c? =d*=e, ac = ca’, ad = da*, cd = dc},
with
rP=1=1 (modm), s°=1=1 (modm).

Moreover, the subgroup {b, ¢, d} is by Cor. 1, Abelian and bc=cb. Thus we have
shown that (1) and (2) are necessary.

For the converse, let K be the system of all formal quadruples [x,y,z, w]
where x is taken mod m,y and z taken mod p and w mod ¢g. In this system define
multiplication by means of the formulae

[x, y, z, Wllx, ¥, Z, W] =[x, ", 2", w’]
where
x"=r s 1" x+x (mod m),

' =y+y, z’=z+2 (modp),
w” = w+w (mod q).
This multiplication is associative, for
(x, y, z, wllx', ', 2, WD [X%, »7, 2%, w'] =

=[s¥ " x+x,y+y,z+2, w+w][x", y", 2", w']=
=[5 (5T x4+ X)X, y+ Y+, 242 27, ww W] =
=[P s I x4 S X X,y V), 24 (2 +27), wH (W Hw)] =
=[x,y z, Wl st xX+x", y'+y", Z+2", W +W'] =
=[x, », z, w]l{(x’, ¥’, Z, W][x", ", 2", w"]).

Also ¢’=[0,0,0,0] is the unit element for this multiplication and the element
[—rP-?sP—%t2=%x, p—y, p—2z, q—w] is the inverse of [x, y, z, w]. Thus the system
K is a group of order p*gm. Moreover, if

a’=[1,0,0,0], b"=[0,1,0,0], ¢"=[0,0,1,0], 4¢"=[0,0,0,]1]
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then, corresponding to the defining relations of G, it is easily shown
A" =p?P=P=d=¢, a'V =ba", adc=ca"” ad =da",
be =cb, bVd' =4V, dd'=dc¢.

In fact, apart from the first four and last three obvious relations, we have
a’b’=[1,0,0,0][0,1,0,0] =[r,1,0,0] = [0, 1, 0, 0] [, 0, 0, 0] = b’a”,
a’'¢’=11,0,0,0][0,0,1,0] =[5,0,1,0] = [0, 0, 1, 0][s, 0, 0, 0] = ¢’a’*,
a’d’ =[1,0,0,0][0,0,0,1] = [ 0,0, 1] = [0,0,0, 1][t, 0, 0, 0] = d’a".

Therefore the group K is a homomorphic image of G. But as the order of X is p*gm
and the order of G is at most p®gm, they have the same order and are isomorphic.
This shows that a group of the required type exists.

Theorem 3. If there is group G of the type T(2,2), then it has the defining
relations

B G={ab,c,d;a"=bP=cP=d"=e, ab= ba’, ac = ca®, ad = d"a,
bc=cb, bd=db, cd=dc}

with vZ1 (mod q) and

4 rP=1=s? (modm), k*|[m,r—1], k*|[m,s—1].

Conversely, if r, s and k™ (the order of v mod gq) satisfy (4), then the group G
generated by a, b, ¢ and d with the defining relations (3) is of the desired type.

PrOOF. Assume the existence of a group G of the type T(2, 2). Then for such a
group, the two subgroups {a,b,d} and {a,c,d} are both of the same type M,
for which we have by Theorem 1

{a,b,d; a™ =b* =d* = e, ab = ba’, ad = d’a, bd = db)},
=1 (modm), k*|[m,r—1],
{a,e,d; a®=c"=d'=¢, ac = ca’, ad = d"a, cd = dc},
s?=1 (modm), k*|[m,s—1].
Moreover bc=cb since the subgroup {b, ¢, d} is Abelian by Cor. 1. Thus we have
shown that (3) and (4) are necessary.

For the converse, we use the same system X of all formal quadruples les [x, y, z, w]
of the previous theorem but with the multiplication formulae

[x! y’ z’ w] [x"’ y” z’, w’] o [x”S y”’ z”! WA]
where
=15 x+x" (mod m),

x'f
Y =y+y, z"=z+7 (mod)p),
w”‘

= w+v'w’ (mod g).
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This multiplication is associative, for
(x, », z, Wllx', ¥', 2, WDIX", ", 2, w'] =
=[rs"x+x, y+y, z+2, w+vVw]x’, ¥y, 2", w'] =
=[P @ s x+ X)X, y+Y 4y 242+ 27, wEvIwW +vE w7,
X=r's"x+x,v = v***¥ (mod g) in virtue of
vV =v,v =v (mod ¢) since k*|r—1, k*|s—1) =
=[P sFHE x4+ s X X7, y+ O +Y), 24+ (2 +27), wHVI (W vV W)) =
=[x, », z, wl@x, ¥, 2’ W1[x", y", 2", w"D.

Again ¢'=[0,0,0,0] is the unit element for this multiplication and the element
(—rP=?sP—*x,p—y,p—z, —v—*w] is the inverse of the the element [x,y,z, w] iIn
virtue of (4).

Therefore the system K is again a group of order p®gqm. Moreover if

a=[,000], b'=[0,1,0,0], ¢=[0,0,1,0}, d"=][0,0,0,1]
then, corresponding to the defining relations of G, it is easily shown
A== P=d®m, a'b = Va", a'c =c'a” a'd =d"d,
b =c'd, bVd'=db, dd=d¢.

Apart from the first four and last three direct relations, we have
a’b’=[1,0,0,0][0,1,0,0] =[r, 1,0,0] = [0, 1, 0, 0][r, 0, 0, O] = b’a”,
a’¢’=[1,0,0,0][0,0,1,0] =[s,0,1,0] = [0, 0, 1, 0][s, 0, 0, 0] = c’a”,
a'd =[1,0,0,0][0,0,0,1] =[1,0,0,v] = [0, 0, 0, v][1, 0,0, 0] = d"a’".

Thus the group K is a homomorphic image of G. But as the order of X is p*gm
and the order of G is at most p®gm, they have the same order and are isomorphic.
This proves the existence of a group of the required type.

Theorem 4. If there is a group G of the type T(3,3), then it has the defining
relations

5) G={a,b,c,d; a®=b"=c"=d"=e, ab= b a, ac = c"a, ad = dd',
bc=c b,bd = db, cd = dc},

with 2, p#1 (mod p) and

©) #=1(modp), kl[m,t—1], k'|[m,t—1].

Conversely if t and k, k" (the respective orders of A, p mod p) satisfy (6), then
the group G generated by a, b, ¢ and d with the defining relations (5) is of the
desired type.

Proor. Assume the existence of a group G of the type T'(3, 3). Then, for such
a group, the two subgroups {a,b,d} and {a,c,d} are both of the type M; for

ki
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which we have by Theorem 1

{a, b,d; a™ = b? = d? = e, ab = b*a, ad = da’, bd = db)},
with
=1 (mod m), k|[m,t-1];
{a,c,d; a®" =c? =d*=e, ac = c*a, ad = da', cd = dc},
with
*=1 (mod m), Kk’|[m,t—1].

Again since the subgroup {b, ¢, d} is Abelian, then bc=cbh. Thus we have shown
that (5) and (6) are necessary.

For the converse, we use again the same system K of the previous theorems but
with the multiplication formulae

[x, y, z, wllx', ¥, Z, W] =[x, y", 2", w']
where
x” =" x+x" (mod m),

"= y+ ¥y, z"=z+p*z’ (mod p),
w” = w+w’ (mod g).

Following a similar procedure, it is easily shown that the system K is again a group
under this multiplication, which is isomorphic to the group of the required type.

Theorem 5. If there is a group G of the type T(4,4), then it has the defining
relations

D G={ab,ec,d;a"=b'=c"=d'=e, ab=b*a, ac=c"a, ad =da,
be = ¢b, bd = db, cd = dc},

where A, p#1 (modp), v#1 (mod g) and

(8) [k, k', k*]|m.

Conversely, if k, k" and k* (the respective orders of 2 mod p,u modp and
v mod q), then the group G generated by a, b, ¢ and d with the defining relations (7)
is of the desired type.

PrROOF. Assume the existence of a group of the type T(4, 4). Then for such a
group the two subgroups {a,b,d} and {a,c,d} are both of the same type M,
described in Theorem 1 and the necessity of conditions (7) and (8) is direct.

For the converse, we use again the same system K of all formal quadruples
[x, ¥, z, w] but with the multiplication formulae

x, y, z, wllx, ', 2, W] = [x”, ", 2", w"]
where
x” = x+x" (mod m),
y'=y+A*y, z'=z4p*2 (mod p),

w =w+v'w (mod q).
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By using a similar procedure, it is easily shown that the system K is a group of order
p*qm which is isomorphic to the group G of the type required.

Theorem 6. If there is a group G of the type T(1,3), then it has the defining
relations

9 G={a,b,c,d; a"=bP=c?=d"=e, ab= ba’, ac = c*a, ad = da’,
bc = cb, bd=db, cd = dc}.
with pu#1 (mod p), and
(10) rP=1=1t (mod m), k'|[m,t—1].
Conversely, if r, t and k" (the order of n mod p), then the group G generated
by a, b, ¢, d with the defining relations (9) is of the desired type.

Proor. Assume the existence of a group G of the type T(1, 3). Then, for such
a group the subgroup {a, b, d} is of the type M, while the subgroup {a,c,d} is
of the type M;. Thus by Theorem 1, we have

{a,b,d; a™ = b? = d? = e, ab = ba", ad = da", bd = db}
with r” =1 = t?(mod m)
{a,c,d; a® = c?=d'=e, ac = c*a, ad = da', c¢d = dc}
with
=1 (mod m), Kk’|[m,t—1].
Again be=ch as the subgroup {b,c, d} is Abelian.
For the converse, we use the multiplication formulae

[x, y, z, wllx’, ', 2, W] = [x", y”, 2", w"]
with
x"=r ™ x+4+x" (mod m),
Y'=y+y, z’'=z+u*Z (mod p),
w’=w+w (mod gq).

Again by using a similar procedure, it can be easily shown that, under this multiplica-
tion, the system K is a group of order p*gm which is isomorphic to the group G of
the required type.

Theorem 7. If there is a group G of the type T(2,4), then it has the defining
relations

(11) G={a,b,c,d; a"=bP=c?=d'=e, ab= bd’, ac= c*a, ad =d"a,
bc = ¢b, bd = db, cd = dc},

where y # 1 (mod p), v # 1 (mod ¢) and

(12) =1 (modm), [K,k*lm, K'|r—1, k*|[m,r—1].

Conversely, if r and k', k* (the respective orders of p modp and v modq)
satisfy (12), then the group G generated by a, b, ¢, d with the defining relations (11) is
of the desired type.
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Proor. The necessity of the conditions*) is direct if we observe that for the
type 7(2,4), the subgroups {a,b,d} and {a,c,d} are respectively of the types
M, and M, described in Theorem 1.

For the converse, we use the multiplication formulae

[x, Vs Z, W] [x’a y', Z’, W’] = [x”, }’”, Z”, W']
with
x"=rx+x" (mod m),
y'=y+y (modp), z'=z+u"z" (modp), w”=w+v'w (modgq)

in the system K of all formal quadruples [x, y, z, w].

Part Il. The case p divides q—1

Let G be a finite group with four generators a, b, ¢, d whose orders are respec-
tively m (arbitrary), p, p, ¢ where p and g are distinct odd primes such that p divides
g—1. Then

a=bP=c"=d'=c

By Cor. 3%, the subgroup {b, c,d} is either Abelian or non-Abelian. Thus, cor-
responding to the Abelian or non-Abelian type, ten types of the group G may arise
according as the subgroups {a,b,d} and {a,c,d} may be any of the types
My: i=1,2,3,4 described in Theorem 1*. These types, if they exist, may be
arranged in the following table.

Table 1*. The case p divides g—1

Type of Type of Type of Type of
{ﬂ, b, d} {a, c, d} {bl c, d} G= {a, b, c, d}
T M Abelian[non-Abelian] T=(1, DH[P*(1, 1)]
My y Abelian[non-Abelian] T*({, 2)[P*(, 2)]
M M3 Abelian[non-Abelian] T*(1, 3)[P*(1, 3)]
Iy M; Abelian[non-Abelian] T*(1, 9)[P*(1, 4)]
Mz M3 Abelian[non-Abelian] T*(2, 2)[P*(2, 2)]
Mg 3 Abelian[non-Abelian] T*(2, 3)[P*(2, 3)]
M M; Abelian[non-Abelian] T*(2, 4)[P*(2, 4)]
* M Abelian[non-Abelian] T*(3, 3)[P*(3, 3)]
Mz M Abelian[non-Abelian] T*(3, 9)[P*(3, 4)]
. M; Abelian[non-Abelian] T*(4, 4)[P*(4, 4)]

Remark 1. Other types may arise but they are, in fact, not distinct from the
above types.

Remark 2. Groups of the types T*(1,2) and T7%(1,4) do not exist.
Groups of the types P*(1,2) and P*(1,4) do not exist.

Remark 3. Groups of the types 7%(2,3) and P*(2,3) do not exist.

*) The third of these relations follows in fact from the associative property in G. In fact,

we have a(bc)=a(ch)=c*ab=c*ba", (ab)c=ba"c=bc" a"=c" ba". Thus u*=u (mod m) or equiv-
alently p"~*=1 (mod m) since (u, m)=1. Hence k'|r—1.
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Remark 4. Groups of the types 7%(3,4) and P*(3,4) do not exist.
For groups of the types P*(1,2), T*(...,...) mentioned in the above remarks,
arguments similar to those used when p does not divide ¢g—1 apply. But for the
types P*(...,...), if they exist, a direct contradiction arises if we observe that
cd=dc=d”c with @’#1 (mod g).

Theorem 8. Let p and q be two distinct odd primes such that p divides q—1.
Then groups of the types

T*G,i):i=1,2,3,4 and T*(l,3), T*@2,4)

exist and have the same structure as the corresponding groups when p does not divide
qg—1. In other words

T'G,)=T(@,i):i=1,2,3,4 and T*(1,3)=T(1,3), T*2,4)=T(24).

This becomes obvious if we observe that for the types T*(...,...) the sub-
group {b,c,d} is Abelian which is just the case with the corresponding groups
7(..., ...) when p does not divide g—1. This implies directly that bd=db and
accordingly, in the defining relations of M7 and M3, we must have w=1 (mod g).
In this case

M1 =M1, M; =Mg.

This combines together with the fact that, we have always (Remark 2(1), (n))M‘ =Mj,
M;=M, to make the theorem direct and 1mmedrate Now, it remains to

the existence of the groups P*(...,...) which arise when the subgroup {b, ¢, d}
is non-Abelian namely (Cor. 3%)

{b,c,d; b»=c?* =d"=e, bc =cb, bd = d®b, cd = d” ¢}

with o, " #1 (mod g) and
o’ =1=w”? (mod gq).

Remarks 2*, 3*, 4* show that groups of the types P*(1,2), P*(1,4), P*(2,3) and
P*(3,4) do not exist. In addition, we prove

Theorem 9. Groups of the types P*(1,3) and P*(2,4) do not exist. For both
types, if they exist, the subgroup {a,c,d} is either of the type M3 or M for both
of which we have cd=dc which contradicts the fact that cd=d“ ¢ with o’ #1 (mod q)
Jfrom the defining relations of the subgroup {b,c,d}.

Thus it remains to discuss the existence of the four types P*(i, i) for i=1,2,3,4.

Theorem 10. Groups of the types P*(3,3) and P*(4,4) do not exist. For both
types of groups, if they exist, the subgroup {b,c,d} is non-Abelian for which bc=
=¢®b with %1 (mod q). But for both types the subgroup {a,b, c}, being either
of the type My or M{, has among its defining relations bc=cb. This obvious con-
tradiction shows that groups of the types P*(3,3) and P*(4,4) do not exist.
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Theorem 11. If there is a group G of the type P*(1,1), then it has the defining
relations

(13) G={a,b,c,d; a"=b"=c?P=d*=e, ab = ba', ac = ca®, ad = da,
bc =cb, bd = d"b, cd =d" ¢,

where o, w’#1 (mod q) and

(19) r’P=1=s" (modm), @’ =1=w” (modgq).

Conversely, if r, s, ® and &’ satisfy (14), then the group G generated by a, b, ¢, d,
with the defining relations (13) is of the desired type.

a

ProoF. Assume the existence of a group G of the type P*(1,1). Then, for

such a group, the two subgroups {a,b,d} and {a, c,d} are both of the same type
MY which is described in Theorem 1*. Thus we have

{a,b,d; a™"=b? =d? = e, ab = ba", ad = da*, bd = d°b}

with
e 100 q { (aod {q if o=1
r=1=t (mo m)s o= (m Q)’ f(ﬂ))-— 1 if o1
{a,c,d; a®=c? =d*=e, ac =ca’, ad = da', cd = d” ¢}
with
P—*l*— !(w) Od ’p-—] d » {q if a_)’:].
sP=1=t¢ (mod m), @”?=1 (mod gq), f(&)= I

Also for this type, the subgroup {b, ¢, d} is non-Abelian whose defining relations
are by Cor. 3*

{b,c,d; b’ =c?=d'=e, bc =cb, bd =d®b, cd = d”¢c

with @, ®"#1 (mod ¢), ®’=1=0"? (mod ¢g). Now, since ®, ®'#1 (mod g), then
by the definition of f, we have

fl@) =1, fl@)=1,

and consequently 7=1 (mod m).
Thus, in case the group G exists, its defining relations will be

G={a,b,c,d; a"=b0=c"=d"=e, ab=bd'", ac = ca’, ad = da,
bec=cb, bd = d*b, ed =d"¢,
where w, @ # 1 (mod ¢g) and
rP=1=s? (mod m), 0’ =1=w"” (mod g).
Thus we have shown that (13) and (14) are necessary.

For the converse, we use the same system K of all formal quadruples [x, y, z, w[
with the multiplication formulae

[xy Vs 2, W] [x,t y'y zfs W’] - [x”; }’”, 2”, W’]
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p,pq(p<q)l

where
x"=r"s" x+x" (mod m),

Y'=y+y, 2’=z+2 (modp),
w’ = w+@®w*w (mod g).

Throug the same procedure which we have used frequently, it is easlily shown
that, under this multiplication, the system K is a group of order p* q m which
is isomorphic to the group G of the required type.

Theorem 12. If there is a group G of the type P*(2,2), then it has the defining
relations

(15) G={a,b,c,d; a"=b"=c?=d*=e, ab = bd’, ac = ca’®, ad = d’a,
be=¢b, bd = d®b, ed =d" ¢},

where v, w,»’#1 (mod g) and

(16) r*=1=5" (modm), @’ =1=ow"? (modg), k*|[m,r-—1], k*|[m,s—1].

Conversely, if r, s, v, o, " and k* (the order of v mod q) satisfy (16), then
the group G generated by a, b, ¢, d with the defining relations (15) is of the desired type.

PROOF. Assume the existence of a group G of the type P*(2,2). Then, for
such a group, the two subgroups {a,b,d} and {a,c,d} are both of the same type
M3 which is described in Theorem 1*. Thus we have

{a,b,d; a™ = b? =d* = e, ab = ba", ad = da*, bd = d°b}, v Z 1 (mod q),
=1 (modm), w’=1 (modq), k* [m,r—1],
{a,c,d; a®=cP=d"=e, ac=ca®, ad=d'a, cd=d"c}, v# 1 (mod q),
s# =1 (modm), w?=1 (modgq), k*| [m,s—1].
Again, by Cor. 3*,
{b,c,d; P=cP=di=¢, bc=cb, bd = d®b, cd=d" c}

where w, ®"#1 (mod g), o’=1=w’? (mod ¢g). Thus we have shown that (15) and
(16) are necessary.

For the converse, we use the system K of all formal quadruples [x,y,z, w]
with the multiplication formulae

[x, y, z, wllx', ¥, 2, W] = [x", ", 2", w"]
where
= 15" x+x" (mod m),

xﬂ
y' =y+y, zZ/=z+7Z (modp),
w =w+vw*w (mod q).

It is easily shown that, under this multiplication, the system K is a group of order
p*gm which is isomorphic to the group G of the required type.
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Conclusion. Finite groups with four generators exist when three of them have
the odd prime orders p, p and q. When p is not a divisor of q—1, there exist six types
of groups which are described in Theorems 2—7. But when p divides q—1, there
exist eight types of groups which are described in Theorems 8, 11, 12.

References

[1] K. R. YAacous, On general products of two finite cyclical groups, Ph. D. Thesis, London Uni-
versity, 1953.

[2] K. R. YAOOUB.U}OB finite groups with three independent generators, two of which being of odd
prime orders, Publ. Math. ( Debrecen) 11 (1964), 32—38.

[3] K. R. Yacous, On finite groups with three independent generators, two of which having distinct
odd prime orders, Publ. Math. ( Debrecen) 13 (1966), 9—16.

[4] K. R. YAacous, On finite groups with four generators three of which being of odd prime order
(under publication).

Faculty of Science
Ain Shams University
Abbassia—Cairo



