BV-solutions of a linear functional equation

By CZESŁAW DYJAK (Czestochowa)

Abstract. BV-solutions of the linear functional equation $\varphi(x) = g(x) \varphi[f(x)] + h(x)$ are considered and, under some general hypotheses, it is proved that this equation has a unique solution $\varphi \in BV\langle a, b \rangle$ which is given by a series convergent in the sense of the norm in the space $BV\langle a, b \rangle$.

In this paper we consider the solutions of bounded variation (BV-solutions) of the linear functional equation

(1)
$$\varphi(x) = g(x)\varphi[f(x)] + h(x),$$

where f, g and h are given and φ is an unknown function.

By BV $\langle a, b \rangle$ we denote Banach 's functions space $\varphi:\langle a, b \rangle \to R$ with the norm defined by the formula

(2)
$$\|\varphi\| = |\varphi(a)| + \operatorname{Var}_{\langle a,b\rangle} \varphi,$$

where, as usual,

$$\operatorname{Var}_{\langle a,b\rangle}\varphi:=\sup\sum_{i=1}^{s}|\varphi(x_{i})-\varphi(x_{i-1})|,$$

and the supremum is taken over all partitions of the interval $\langle a, b \rangle$.

In the case when $g(x) \equiv \text{const. } BV$ -solutions of the equation (1) have been considered in the paper [1]. Even in this special case our main result says more. It appears that the series (3) converges in the sense of the BV-norm to the solution of the equation (1), whereas in the paper [1] only pointwise convergence is obtained.

We shall prove the following theorem, which generalizes Theorem 1 from the paper [1] above mentioned:

Theorem. If the following conditions are fulfilled:

- (i) $f: \langle a, b \rangle \rightarrow \langle a, b \rangle$ is continuous, strictly increasing and f(a) = a,
- (ii) $g, h \in BV\langle a, b \rangle$,

(iii)
$$\sup_{x \in \langle a, b \rangle} |g(x)| + \operatorname{Var}_{\langle a, b \rangle} g < 1,$$

then the equation (1) has in the interval $\langle a,b\rangle$ a unique solution $\varphi \in BV\langle a,b\rangle$. This

solution is given by the series

(3)
$$\varphi(x) = \sum_{k=1}^{\infty} \prod_{i=0}^{k-1} g[f^i(x)] h[f^k(x)] + h(x), \quad x \in \langle a, b \rangle$$

which converges in the sense of the BV-norm.

PROOF. In the space BV(a,b) we consider the transform

(4)
$$T[\varphi](x) = g(x)\varphi[f(x)] + h(x), \quad x \in \langle a, b \rangle.$$

On account of hypotheses (i) and (ii) the transform (4) maps, of course, the space BV(a,b) into itself. We shall prove that the transform (4) is a contraction map.

Let P(a,b) be the set of all partitions of the form $a=x_0< x_1< ... < x_{s-1}<$ $\langle x_s = b \text{ of the interval } \langle a, b \rangle$.

Take an arbitrary $\varphi_1, \varphi_2 \in BV\langle a, b \rangle$ and estimate the expression $||T[\varphi_1] - T[\varphi_2]||$. Putting $\varphi := \varphi_1 - \varphi_2$ and taking into account (4), (2) and (i), we get

$$||T[\varphi_{1}] - T[\varphi_{2}]|| = ||g\varphi_{1}[f] + h - g\varphi_{2}[f] - h|| =$$

$$= ||g(\varphi_{1}[f] - \varphi_{2}[f])|| = ||g\varphi[f]|| =$$

$$= ||g(a)\varphi(a)| + \sup_{P\langle a,b\rangle} \sum_{i=1}^{s} |g(x_{i})\varphi[f(x_{i})] - g(x_{i-1})\varphi[f(x_{i-1})]| =$$

$$= ||g(a)| ||\varphi(a)| + \sup_{P\langle a,b\rangle} \sum_{i=1}^{s} |g(x_{i})(\varphi[f(x_{i})] - \varphi[f(x_{i-1})]) +$$

$$+ \varphi[f(x_{i-1})](g(x_{i}) - g(x_{i-1}))| \leq$$

$$\leq ||g(a)| ||\varphi(a)| + \sup_{x \in \langle a,b\rangle} ||g(x)|| \sup_{P\langle a,b\rangle} \sum_{i=1}^{s} ||\varphi[f(x_{i})] - \varphi[f(x_{i-1})]| +$$

$$+ \sup_{x \in \langle a,b\rangle} ||\varphi[f(x)]|| \sup_{P\langle a,b\rangle} \sum_{i=1}^{s} ||g(x_{i}) - g(x_{i-1})|| =$$

$$= ||g(a)| ||\varphi(a)| + \sup_{x \in \langle a,b\rangle} ||g(x)| || ||\nabla_{a,b\rangle} \varphi[f] + \sup_{x \in \langle a,b\rangle} ||\varphi[f(x)]| ||\nabla_{a,b\rangle} \varphi[f] =$$

$$= ||g(a)| ||\varphi(a)| + \sup_{x \in \langle a,b\rangle} ||g(x)| ||\nabla_{a,b\rangle} \varphi[f] + \sup_{x \in \langle a,b\rangle} ||\varphi[f(x)]| ||\nabla_{a,b\rangle} \varphi[f] =$$

$$= ||g(a)| ||\varphi(a)| + \sup_{x \in \langle a,b\rangle} ||g(x)| ||\nabla_{a,b\rangle} \varphi[f] + \sup_{x \in \langle a,b\rangle} ||\varphi[f(x)]| ||\nabla_{a,b\rangle} \varphi[f] =$$

$$= ||\varphi[f]| = ||\nabla_{a,b\rangle} \varphi[f]| = ||\nabla_{a,b\rangle} \varphi$$

Since, of course,

and

$$\sup_{x \in \langle a,b \rangle} |\varphi[f(x)]| \leq \sup_{x \in \langle a,b \rangle} |\varphi(x)| \leq |\varphi(a)| + \operatorname{Var}_{\langle a,b \rangle} \varphi = ||\varphi||,$$

we have further

$$\begin{split} \|T[\varphi_1] - T[\varphi_2]\| &\leq \sup_{x \in \langle a, b \rangle} |g(x)| \, |\varphi(a)| + \sup_{x \in \langle a, b \rangle} |g(x)| \, \underset{\langle a, b \rangle}{\text{Var}} \, \varphi + \\ &+ \|\varphi\| \, \underset{\langle a, b \rangle}{\text{Var}} \, g = \sup_{x \in \langle a, b \rangle} |g(x)| \, \|\varphi\| + \|\varphi\| \, \underset{\langle a, b \rangle}{\text{Var}} \, g = \\ &= \left(\sup_{x \in \langle a, b \rangle} |g(x)| + \underset{\langle a, b \rangle}{\text{Var}} \, g\right) \|\varphi\| = \left(\sup_{x \in \langle a, b \rangle} |g(x)| + \underset{\langle a, b \rangle}{\text{Var}} \, g\right) \|\varphi_1 - \varphi_2\| \end{split}$$

and so, by hypothesis (iii), the transform (4) is a contraction map.

Then, in virtue of Banach's fixpoint theorem, there exists a unique fixpoint of the transform (4) in the space $BV\langle a,b\rangle$ given as the limit of the sequence of successive approximations $\{\varphi_n\}_{n=0,1,\dots}$ convergent in the sense of the norm (2). In other words, there exists a unique function $\varphi \in BV\langle a,b\rangle$, which fulfils equation (1) in the interval $\langle a,b\rangle$. In particular, taking $\varphi_0\equiv 0$ in $\langle a,b\rangle$ we obtain formula (3).

References

 J. Matkowski, M. C. Zdun, Solutions of bounded variation of a linear functional equation, Aeguationes Mathematicae, 10 (1974), 223—235.

INSTITUTE OF MATHEMATICS TECHNICAL UNIVERSITY CZĘSTOCHOWA, POLAND

(Received June 23, 1984)