On dilation functions and some applications

By C. E. FINOL (Caracas)

Abstract. The aim of this paper is to study some properties of the so called dilation functions
([7]), and applications of these to questions on Orlicz Spaces and linear bounded operators on them.
Some results are part of a Ph. D, dissertation presented by the author at Chelsea College, Lon-
don yet unpublished.

1. Introduction

Let @(u), u€[0, =), be a real, increasing function, right continuous on (0, ).
The function @(u), u=0, defined by

D (u) = f(p(t)dt

is called a Young function.
The function ¥(v), u=0, defined by

Y(v) = sug {uv— D (W)},

where sup can be replaced by max if ¥(v) is finite for finite 2, is called the com-
plementary function to @(u). One also has that

P (u) = max {uv—Y (v)}.

A Young function satisfies the §,(4,) condition if there is some wu,=0 and
M=0 such that
DQu) = MP(u),

for all u in [0, up] (in [ug, )). If this inequality holds for all #=0, then it is said
that & satisfies the (J,, 4,) condition ([9]).
A Young function satisfies the 6’(4") condition if there are w,=0, M=>0
such that
@ (uv) = MP(u) P(v)

for all u,» in [0, o] (in [u, ==)). If @ satisfies both conditions, then it is said that
@ is submultiplicative.

Whenever these inequalities hold in reverse we say that & satisfies the o’(V")
condition and that @ is supermultiplicative respectively.
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The Young functions @,(u), P,(x) are said to be equivalent on the set A4 if
for some positive constants k,, k, we have

z @, (kyu) = Dy (u) = D, (ko)
for all # in A.
A Young function ®(u) with representation

o = [ o(d,
0

is called an N-function ([6]) if ¢(7) is positive for positive 7, and satisfies the con-
ditions ¢(0)=0, }im @(1)=co.

One can easily see that the following hold for @ (u):

oy 20

u==0 u H—=oco U

oo,

Let @(u) be a Young function that satisfies the (8, 4,) condition. Let u be a
totally o-finite measure on R". The Orlicz space Ly (R", i) consists of all y-measurable
functions f, such that

JSoUf)dp<ee.
s

By I, we mean, as usual, the space of all scalar sequences {a,};~, such that

g“ (la,]) <oo.

Conditions for these spaces to be reflexive are known since long ago. Here we
give yet another such condition which seems to be new.

Consider the spaces Lg(R", u), where u is a positive Radén measure. For any
heR", the operation of translation is defined by

t(h)f(x) = f(x—h),

for any u-measurable function f. In this paper we generalize a result in [2] which
gives necessary and sufficient conditions for z(h) to be defined as an operator on
Lo(R", u). We also obtain a necessary condition for there to exist a translation

invariant operator T,
T: Ly, (R, H) —~ Lw.(Rn9 7)-

When restricted to L, spaces this condition gives those in [2] and [5].
Moreover, a necessary and sufficient condition for there to exist a linear bounded
translation invariant operator T,
. 2 T: Iol o Io'
1s obtained.
Let X, Y be normed spaces. A linear bounded operator T:X—Y is said to
be strictly singular if for any subspace 4 of X, the restriction of 7 to A4 is not an
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isomorphism. For a submultiplicative function @, a sufficient condition for every
linear bounded operator T': ly —~Ip, to be strictly singular, is given in this paper.
The following theorem can be easily deduced from [7] (Th. 1.2. p. 52).

Theorem 1. Let @ be a submultiplicative Young function. Then, there exist real
numbers o, B such that 1=a=f<o and

(M) =1 for t€[l,=), (W)= for 1€[0,]1].
Moreover, given e=>0 there exist real numbers a, and b, such that

&(f) = tP** for t€[b,, =) and P()=1r"* for 1€[0,a,].
[2.]
Let @(u) be a non negative, increasing, left continuous real function defined
on the interval [0, ==). Let u, be a non negative number fixed throughout. Define
the function n(@®, u,; x) by

n(®, uy; x) = sup {s = 0; D(su) = xP(u), u = u,}.
The function n(®, u,; x) is manifestly increasing and the inequality
®(n(D, uy; x)u) = xP(u), u = u,,

holds whenever n(®, u,; x) is finite.

The basic idea behind the function n(®, u,; x), with u,=0, seems to go back
to D. W. Boyp [1]. The less restrictive definition we use here is taken from [3]. These
appear named dilation functions in [7]; and are also considered in in [4].

The following properties of n(®, u,; x) are easy consequences of the definition.

Let @(u), be as above, then

a) if n(®, uy; x) is finite on [0, a), then it is right continuous on [0, a).

b) The inequality n(®, uy; x)=x, for any x€(0, 1), holds true if and only if

D (xu) = xP(u)
for any wu=u, and x€(0, ).
¢) Forany x=0, and y=1, we have that

n(P, uy; x) n(P, uy; y) = n(P, uy; xy).

Lemma 1. Let ®(u),u=0, be an increasing left continuous real function such
that ®(0)=0 and ®(u)=0 for u=0. If for any y€(0,1) we have

?(yu) = yd(u),
Jor all u=uy; then n(®, u,; x) is continuous for any x=1.

Proor. Let {x,}i=, be a strictly increasing sequence of real positive numbers
whose limit is one, then

P (xyu) = D(n(P, up; x)u) = x, P (1)
for k€N and any wu=u,. By passing to the limit as k-, we get
D(u) = O (n(P, up; 17)u) = (u),
that is, n(®, u,; 17)=1; so that n(®, u,; x) is continuous at 1.



310 C. E. Finol

Let x,=1, and {x};~, be as above, then n(®, u,, X;)=
- }1_{11 n(D, uy; x3)n(P, uy; x,) = ,!l'ﬂ n(P, uy; xox) = n(P, uy, x5 ),

that is n(®, uy; x5 )=n(P, uy; x7).
If n(@, uy; x) is supermultiplicative then we also get that, in the conditions of the
previous Lemma, it is continuous for all x=0.

Lemma 2. Let @(u), u=0, be an increasing, left continuous real function such
that ®(0)=0. A necessary and sufficient condition that n(®, uy; x) tend to infinity
as x tends to infinity and be finite for finite values of the argument x, is that ®(u)
satisfy the A, condition for u=u,, and that

lim @(u) =-<=.

LE ]

Proor. If @(2u)=M®(u), u=u, then

S2*u) =M"®(u), u=u,, keN,
and consequently
n(P, uy; M*) = 2%;

so that n(®, uy; x)+= as x—oo,
Suppose by absurd that, for some x<oo, we have that n(®,uy; x)=+ =,
then for a fixed u=u, and any y>0, we have

D (yu) <= x®(u).

However, this contradicts the fact that ®(u)-—=>ec as u-—-co.

Hence, n(®, u,; x) must be finite for finite x.

Conversely, if n(®, u,; x)—~< as x—< and is finite for finite x, then, given
A>1, there is some x; such that n(®, u,; x;)>A4. Thus,

D (Au) = O(n(D, uy; x)u) = x, D(u),

for all u=u,. In particular x, must be larger than one.
Finally, if @(u) is bounded, say ®(u)<K forall u=u,, with K> 1, then, taking

some X> L we would have that
D (uy)
D(yu) =20(u), u=u,

for all y=>1. However, this contradicts the fact that n(®, u,; £) is finite.
If in the previous Lemma we assume further that @(u) is a Young function then
n(®@; uy; x) is positive for positive x. Also, n(®, u,; x) is a concave function of x.

Definition. The function N(®, u,; x), inverse to the function n(®, uy; x), will
be called the right dilation function of @.

For any Young function @, which satisfies the 4, condition for u=u,, we have
that N(®, u,; x) is a convex function such that

N(®, ug; xy) = N(P, uy; x) N(®, up; y)
for any x=0, and y=1. Also, N(®, u,; x) satisfies the (J,, 4,) condition.
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For uy=0 N(®, uy; x)=N(®, x) is submultiplicative, that is

N(®, xy) = N(P; x) N(P; y),
for any x, y=0. Also,
P (xu) = N(P, uy;, x) D (u),
for all u=u,.
The following proposition gives an answer to an elementary question posed by
KRrAsNOSELSKII and RuTmiTski [6] p. 30.

Proposition 1. In each class of functions which satisfy the A’ condition there is a
submultiplicative function.

Proor. Let @(u) be a Young function which satisfies the 4’ condition for
u=u,. We assume, as we may, that & () satisfies the (6, 4,) condition.
The function & (u), defined by

D (u) = P(upu), u=0,
is equivalent to @ and satisfies the 4’ condition for u=1. Then, the function N(®; u)
is equal to () in [1, =); and

N(®; xy) = N(®, x) N($, y)
for all x,y=0.
One can also see that
N(N(®; x); u) = N(®; u)

Definition. Let @ be a Young function that satisfies the (6, 4;) condition.
The function K(®; x) defined by

will be called the left dilation function of @.

It is easy to see that K(&®; x)= for all x=0; so that

1
N(®;1/x)

K(®; x) 1/x
x  N@; /0

is strictly increasing and

dt

FK(D; 1)
F=3

is convex. That is, K(®; x) is equivalent to a Young function that satisfies the
(95, 4,) condition. Also, K(®; x) is supermultiplicative, that is K(&; xy)=K(®, x)X
X K(®;y) forall x,y=0. Moreover, K(K(®, u), x)=K(®, x).

One can also see that

D (xu) = K(D; x)®(u)

for all x, u=0.

For a Young function @ not satisfying the (J,, 4,) condition, the study of the
function K(@; x) is more complicate as the example of K(e*—1; x) shows. This is a
concave function discontinuous at zero.



312 C. E. Finol

There is no mention of this function in [1]. However, it is safe to think that this
author already studied this function.

Lemma 3. Let ®(u), u=0, be a Young function. If @ satisfies the & and o’
conditions, then it is equivalent to x? for some P=1.

Proor. We have that N(®; x), K(®; x) and ®(x) are all equivalent. It now
follows from Theorem 1. That, for some k=1,a=1 and all x=0.

x* = N(®, x) = kx*.

Proposition 2. Let ®(u), u=0, be an N-function which satisfies the (3,, 4,)
condition. A necessary and sufficient condition that the complementary function ¥ of ®
satisfy the (0,, 4,) condition is that for some x>1, K(®; x)=>x.

Proor. If, for some x=>1, K(@, x)>x, then K(®,x)>ax, for some a=>1,;
so that
®(xu) > axP(u), u=0,
Thus,
¥ (2v) = sup {oxuv—P(xu)} = ax¥(v), v =0.
0=u

If, on the other hand, y satisfies the (d,, 4,) condition then, there exist a=>1,
x=>1 such that
N(¥; o) < ax;
consequently

& (xu) = 31:5) {avxu—"Y (av)} = ax fﬂ: {uv—lpgv)} >

> oX sup
D<vp

Therefore K(®, x)=oax.

Corollary. The complementary ¥ to the function ® satisfies the (85, 4,) condition
if and only if, for some x<1, N(®;x)<x.

{uo—ﬂ%ﬁ !P'(o)} > axts:? {uv—Y¥ (v)} = ax®(u).

In terms of Orlicz spaces this result can be restated as follows:

Theorem 2. Let Iy be separable space. We have that ly is reflexive if and only if
N(®; x)<x for some x<1.

In some instances the following theorem may also be of interest. We asume,
as we may, that &,(1)=®,(1)=1.

Theorem 3. Let Iy, be a separable space. Assume that K(®,;Xx) is convex.
Then a necessary and sufficient condition that lg, be reflexive is that there exist a
Young function @, which satisfies the (8., A,) condition and such that

¢I(u) = ¢2(“)s “E[O’ l]

Proor. If the property holds, then for some x€(0, 1) @,(x)<®,(x); so that
K(®,; x)<N(P,; x)=x, for this x. Since K(®,;x) is convex and K(&,;1)=1,
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we must have that K(&,;x)<x, for all x in (0,1). This in turn implies that
K(®,; x)>=x for x=>1.

Thus, ¥,, the complementary to &,, satisfies the (J;, 4,) condition and L, is
reflexive.

If, on the other hand, /, is reflexive, then ¥, satisfies the (J,, 4,) condition and
this implies that N(@,, x)<x for all x in (0, 1). We see thus that &, (x)<x, x€[0, 1].

The case when the N-function @ is submultiplicative is particulary simple.

Proposition 3. If &(x), x=0, is a submultiplicative N-function; then lg is
reflexive.

ProOF. Since @ is submultiplicative, then the complementary function ¥ is
supermultiplicative, so that P=1/%(1/x) satisfies the (,, 4,) condition, that is
P(2x)=MP(x), all x=0.

1 1
I e ¥ = = — = r =(.

Therefore ¥ (2x) T2 = UM P) MY (x), forall x=0

From now on let us write K; and N; for the dilation functions of the Young
function @;.

Theorem 4. Let ®,, @, be non equivalent Young functions that satisfy the (84, 45)
condition and such that lg, is continuously embedded in lg,. If @, is submultiplicative,
then every linear bounded operator T,

is strictly singular.

Proor. According to Theorem 2 the space /o, happens to be reflexive. Let T
be a linear bounded operator
T: I’; = 1&

and suppose that there exist subspaces XClg,, ¥ Clg, such that
T: X-Y

is an isomorphism, then there exist normalized block basic sequences {B,}iw1, {4i}iz1

=Py ., J=a5 4y
By= 3 tie,{Ah=1, A= 3 rj¢
i=P 41 J=a,+1

in X and Y respectively, where {e;};z, is the unit basis, such that
T(By) = Ay, keN.
Since @;, @, are non equivalent, then there is a sequence a={a,};>, such

that 3 K,(la,]) converges and > @,(la,]) diverges.
k=1 n=1

i=Pyyy

Let x=3a; 2 te;, then we have
k=1 i=P_+1

oo {=Py, i=Py,

S S ealith) = I K(a) S
k=1 =P+

K=1i=PL+1

e g’: Ka(lag));

1
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- P

that is > "®,(la,l|t]) diverges. On the other hand T'(x) is in Y. Indeed,
K=1imPo+1
oo (=g 4q oo J=ly 4, oo
2 9i(la "JD < 20(al) > ‘pl(]rﬂ) = 2 0,(lay]) <<.
k=1i=q,+1 k=1 J=q,+1 k=1
Contradiction.

Related results can be found in [8] and [10].

Theorem 5. Let u be a positive Radon measure defined on R". Let @ (u) be a Young
function that satisfies the (8, 4,) condition. Then the following conditions are equivalent.
a) if f€Ly(R", ) then t(h) f(x)€Le(R", p) for all h in R,
b) t(h) is a continuous map of Le(R", p) to itself for any h,
C) there is a positive Lebesgue measurable function 1.(x) bounded with A(x)™!
over any compact set of values of x such that A(x)dx=du and

K-1(Je(0)]) = sup 7= = N-3(jx (W)

Proor. If (a) holds, then u(E)=0 implies that u(E+h)=0 for all h. For,
let u(E)=0 and let f(x)=<= for x€E, f(x)=0 otherwise, so that f &(| £ (x)|)du=0;

andsince t(h) f(x)=f(x—h) isinfinity on E+ h, then we must have that u(E+h)=0.
Let us now write 7(h)u=pu,, that is

[ du, = [fx+h)dp.
o

We see that y, is absolutely continuous with respect to u and that pu is absolutely
continuous with respect to p,; whence du,=o(x, h)du with ¢@(x, k) and ¢(x, h)™?
locally summable.

Therefore
[rGe+mdu = [£)o(x, b)dp.
Let us define
@4(x, h) = min {p(x, h), 2"},
and
Foa(f) =f(x(N ~Yoa(x, 1)), fELG(R™, p).
Then

S (B (N)du= [ @21 /)] dp= M" [ &(1f(3)]) dp,

so that F, , is a linear bounded transformation of Lg(R", p) to itself for any fixed n
and h. Moreover || F, ,[l=2"

It now follows that sup |@,(x, h)|e<< and ¢(x, ) is bounded for each h;
whence 7(h) is bounded for each h.

We have thus proved (a)=>(b). The converse is inmediate.
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Let us now assume that (b) holds. Then for any f€Ly with || fll=| fl.,>0,

we have that
|z (h) £ |
’ ][t(h)fl]]d & f d5[II (h)fﬂ]‘p(x’ i
K- (loCx, W) 1]
= [o(—Tmmn )

so that |[t(h) fll=K*(le(x, M)l fII.
Given &=0 there is a set E such that

So(eMre)dp = [ S o Wdp = [N @Cx, B)|w—2) |xel) dps,
R" R" R®
thus
It zel = [N (|G, B)lw—e)| 12l
We have thus proved that

N (o (e hlw) = [t(B)] = K ([ (%, b)),

hence ||z (h)| is bounded or unbounded over any compact set of values of h together
with ¢ (x, h)|l...

It now follows from the previous Lemma and the fact that log ||z(h)|| is sub-
additive that ||@(x, h)| .. is bounded over any compact set of values of h.

Since p is a Radon measure, it follows from the Radon—Nikodym theorem that

du = A(x)dx
with A bounded over any compact. Thus
du, = A(x+h)dx,
Alx+h) ik

A=) ”
K(1+) = sup “5 5D = N (i)

co that @(x, h)=

This proves that (b) implies (c). It is easy to see that (c) implies (b).

Necessary conditions for the existence of non-trivial, linear, translation invariant
operators acting on L, spaces with general Radon measures subject to some condi-
tions of regularity have been studied by J. L. B. CooPER [2].

We now pass on to examine the existence of operators acting on Orlicz spaces

Lo, (R", ,u)nand Lo, (R, v) where &, and @, satisfy the (J,, 4,) condition, p=el*l
and v=

In some important particular instances the condition that @, and &, satisfy the
(3., 4,) condition is necessary. For example, D. Boyp [1] has proved that, a necessary
condition that the Hilbert transform be a map of the space of Lebesgue measurable
functions Ly (R") to itself, is that ¢ satisfy the (J,, 4.) condition. This condition turns
out to be sufficient.
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Let] [0, ;] be the closed cubein R" centred at 0 and having side m. Let h(k, r, m)

mkr—k—1]|

r—1
natural number greater than or equal to one and r=1. We also write H(k, r, m)=
— "h(h$ r, m)" .

Lemma 4. a) For any x€l [0, -;—1] we have that
H(k, r, m)
Ty

be the element in R” whose components are all equal to , where kis a

x+h(k, r,m)| = |x] +
b) For any y€l (0, -'?2—1]+h(k, r, m), we have that

lx+h(k+1,r,m)]| = |y,
holds for any xEI[O, %]

Proor. a) The minimum of ||x+h(k,r, m)| with x€I [0, %] is attained at

Xy = —E, S 2 and its value is
2 2

kr—(k—1
| +h(k, 7, m)| =V {‘%’L’”L%Tl}'
On the other hand, the maximum of ||x|!+ﬂ'ic-’ri-'-’-1—)- is attained at x=x,,

and at x= —x,, and its value is
el +H(k,rr, m) _ I/;{m % mlkr—(k—-l)l}_

3 r(r=1)
Thus
[k, )] =l - T DD o,
b) The maximum of || y| is attained at y=—x,+h(k,r, m) and
| =%y +h(k, r, m)] = Vi{g-i-m'-’“:——%ﬂ}.
The minimum of ||x+h(k+ 1, r, m)|| is attained at x=x,, and,
|%+h(k+1, 7, m)| = ﬁ{-%a-m’—(’-‘%]_)';;k'}.
Therefore,
I!x..+h(k+ la r, m)" T [l —xm+h(k! r, m)" o ﬁ{_m+%} =0.

The same results follow if we replace h by —h throughout.



On dilation functions and some applications 317

Theorem 6. Let Ly (R", 1) and Le,(R", v) be Orlicz spaces defined by the Young
functions ®,(u), @,(u) that satisfy the (5,, 4,) condition, where p=e®l*Il and v=e®l*ll.
Then, in order that there should exist a nonzero, translation invariant, bounded operator

¥ i ZQI(RR, j.() o l@,(R'! V),

it is necessary that, for any natural number s=1 and any real number r,r=1,
K (1+ 3 estitrm)
lim inf o

== oo

=1

Ns(l 3 X Zﬂ eb)‘rﬂ{k,r,nl)) &

k=1

)

where the expression H(k, r, m) is defined as in Lemma 4.

Proor. Let 7 [0, %} and h(k,r, m) be as in the previous Lemma. For any
function f(x) wewrite £, (x) for g,y f(x), where ,,(x) stands for the characteristic

function of 710, -; E

On account of part (b) of the previous Lemma we have that, for any f€ Lg, (R", p)

[ (If,,,(x)+k2" t(h(k, r, m) fu(x)]) dp =
R™ =1
(D = f¢1(|ﬂ.(x)|) dﬂ+k2: qul(Ij:“(x)l)e‘,||;:+.lc(k.|-,m)[| dp =
R" =

= (1+ 3 em®nm) [0, £ d
E R”
Similarly,

[ 0T hudut 2 (bl r, m) (TS dv =
R" m]
= [ (@) d"ﬁZ: [ @a(Ie(h(k, r, m)(Thoul) dv,
R" =1g»

and, by virtue of part (a) of the previous Lemma, this expression is greater than
or equal to

o) (1 +k g’; B Gk, r,m)) f @y (I(TF,)l) dv.

From (1) and (2) above, it follows that

No(1+ 3 eOnH&rm) (T L) g, = ((Thdat 2 (bl r, M) (TS, =

= ||Tf,..+é; t(h(k, 7, m) T |g, = 17| ||f,.+g'l (ks 7, m) ful g,
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so that
Ki(14 3 estitkrm)
(3) 1T fDulee, = ITI = | falo-
Ng(l + Z e(wr] H\l.r,n))
k=1

We prove next that Il(i"'f',,,),,,,llL‘”l - Tfl]L’. as m— <o, In fact
(T fn=TS g, = (T T ulrg, TN =T 1, =
= HTfm"Tf"I@"{'H(rﬂw"Tf"l@’ = |7 1|fm—fiEL¢.l+ii(Tf)n"‘Tfﬂr_0l

and this expression tends to 0 as m-» =,
Therefore, by passing to the limit as m-< on both sides of the expression (3)
above, we see that, if for some natural number s and a real number r>1,

Kl(l + 2 eﬂH(l.h ﬂ))
lim inf o sl
g Na(1+ 3 e®inHkr,m)

k=1

then T'=0.
Thus, in order that 7" be different from zero it is necessary that

Ky(1+ 3 estthrm)
lim inf o= =1
St B "5 (b/r) H(k,r, m)

e e

for any natural number s and any real r>1.
In particular, if a=b=0, then the condition above becomes

Ki(l+s) _
Ny(1+s)

If &,(w)=u?,p>1 and ®,(u)=u? g>1 the condition is (1+5)"/?P>(1+5)"9,
that is g=p. (HORMANDER [5] p. 96.)
If a=0,b+0, &,(w)=u’,p>1 and P,(u)=ut, ¢g>1, then the condition that

T be different from zero is f——%go for any r=>1, as becomes apparent from
writing out explicitly the condition found in the theorem above. In this case we see
that %g% (Coorer [2], p. 44).

A more clear picture emerges when we consider the same problem by replacing
the spaces Ly with Orlicz spaces /.
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Let us recall that, given a Young function &, the indices ag an B, are defined
as follows (see [8])

P(1x
a,:sup{p:-o; sup 'qT(%E)F"m}

O0=x,1=1

o . D (tx) }
Bo = mf{P =>0; g:lffslm 5
We now prove:

Lemma 5. Let us write F(t) for any of the functions N, K, ®. Let o, B be as in
Theorem 1. Then, the interval [ag, BF] is contained in [, f].

ProOOF. Let &>0, then for some a,=0.

FGi) _ FONG) _ 2
FO)—= = F@yi—+ - =

that is a—e=oap and so a=og.
Also,
F(Ar) F(NK(%) _ AP+ [ __1_]
Fo#+ = Foa+ = w0 (05 )
It follows that f=f;.

4€[0, ac,],

Let #(u), u=0, be an N-function such that sup % is attained on the
Q=<y-=oco
interval [0, 1]. Then
su...mz su {su ﬂ_}— N_(!)z sup —— =coo
O-mlr;’l ¢()') "+. . l}-:xgl 0-=x21 ¢(’1) “+‘ & 04!‘21 f.+' " ll-ﬁ’li)l !“+. g

that is, a=ag. It now follows from the above Lemma that a=oy.

A similar calculation shows us that, if _inf _ i(?:)) is attained on [0, 1], then
5 =ﬂo-

These conditions hold for N(@; x) and K(@®, x) respectively. We thus have that
a=ay and p=pPx also

LN(1) _
t---no.l § & PR
and
I 1
o CENQY - K(1/y) .. LK() _
i —p= == lim === k== fr.

Lemma 6. Let N(t) be submultiplicative and K(t) supermultiplicative functions
defined on [0, 1] such that
N(0) = K(0) =0,

N(1) = K@) = 1.
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If N(t) and K(t) are not equivalent in any set [0, 6] with 6=1, then we must have
that either N(f) <= K(1), x€(0,1) or K(1) = N(1), x€[0,1].

PROOF. Assume that neither case hold; then we have that, for some decreasing
sequence {t,};=,, with ;=1 and ”lig =0

N(t,) = K(t,), néEN.

The function F(t)=——+ tI};F((r)) >0, is submultiplicative and
F'(1) IN(f) {1 350
op = llmmf 20) = 1+ll inf ——— 0 —-!Lrglsupm-—— 1+oy—pPg.
From N(t,)=K(t,) we deduce that
T L R - [ T
o ¥ e e ¢ gl

that is ap=1. Assume ap>1, then we deduce from Theorem 1 that given &¢=0
there is 6=>0 such that

r’r =
By placing r=1,, we get

= tg((r;) srrt<1, 1€(0,d).

LEgrt=4L.
Contradiction. We must have that «z=1. This in turn implies that

tN(f)
K(1)

=L =1

andso N(1)=K(1), t<1.
Proceeding exactly as in Theorem 6, we see that a necessary condition that there
exist a linear bounded, translation invariant operator T: lp, —~/s, is that

1(-’-')
lim inf o= N () =1

l] [ ]
A K, (x) (x . AP :
and since , then this condition is equivalent to the con-
2 1
dition
lim i f Ky(x) =1
lim in N, )
In the following Theorem, by /, we mean the Banach space of all sequences

n=-4+oa

{a.)iz*= suchthat 3 @(la,))<-<e.
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Theorem 7. A necessary and sufficient condition that there exist a linear bounded,
translation invariant operator
T: Iol - 10'
is that N;(x)<K,(x), for all x in (0, I).

Proor. If N, and K, are equivalent in [0, 1] then there is nothing to prove.
Otherwise, according to the previous Lemma we have that

either K,(x) = N;(x) or K,(x)> Ny(x) on [0,1].

Assume the first case. If

lim inf —— Ky (x)

=],
=0 Ny(x)

then, given ¢>0 there is >0 such that

K,x) A
m >1-¢, x€(0,9);
that is (1—g)N,;(x)<K,(x)=N,(x), x€(0, ), and since Ky (x) is bounded, and

N, (x)
bounded away from zero on [d, 1], we see that K,(x) and N,(x) are equivalent on
[0, 1]. Contradiction ; we must have then that in this case

Ky (x)

;1:1-93 mfN,(x) =
In the second case it is apparent that

fim inf A8 & 1.

=0 Ny (x)

Also, since N,(x)<K,(x), x€(0,1) implies that @,(x)<®,(x), x€(0,1);
we can see that the identity /: lp,,—~ Lo, is continuous.
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