On dilation functions and some applications

By C. E. FINOL (Caracas)

Abstract. The aim of this paper is to study some properties of the so called dilation functions ([7]), and applications of these to questions on Orlicz Spaces and linear bounded operators on them. Some results are part of a Ph. D, dissertation presented by the author at Chelsea College, London yet unpublished.

1. Introduction

Let $\varphi(u)$, $u \in [0, \infty)$, be a real, increasing function, right continuous on $(0, \infty)$. The function $\Phi(u)$, $u \ge 0$, defined by

$$\Phi(u) = \int_{0}^{u} \varphi(t) dt$$

is called a Young function.

The function $\Psi(v)$, $u \ge 0$, defined by

$$\Psi(v) = \sup_{u \ge 0} \{uv - \Phi(u)\},\,$$

where sup can be replaced by max if $\Psi(v)$ is finite for finite v, is called the complementary function to $\Phi(u)$. One also has that

$$\Phi(u) = \max_{v \ge 0} \{uv - \Psi(v)\}.$$

A Young function satisfies the $\delta_2(\Delta_2)$ condition if there is some $u_0 \ge 0$ and M>0 such that

$$\Phi(2u) \leq M\Phi(u),$$

for all u in $[0, u_0]$ (in $[u_0, \infty)$). If this inequality holds for all $u \ge 0$, then it is said

that Φ satisfies the (δ_2, Δ_2) condition ([9]). A Young function satisfies the $\delta'(\Delta')$ condition if there are $u_0 \ge 0$, M > 0such that

$$\Phi(uv) \leq M\Phi(u)\Phi(v)$$

for all u, v in $[0, u_0]$ (in $[u_0, \infty)$). If Φ satisfies both conditions, then it is said that Φ is submultiplicative.

Whenever these inequalities hold in reverse we say that Φ satisfies the $\varrho'(\nabla')$ condition and that Φ is supermultiplicative respectively.

The Young functions $\Phi_1(u)$, $\Phi_2(u)$ are said to be equivalent on the set A if for some positive constants k_1 , k_2 we have

$$\Phi_1(k_1u) \leq \Phi_2(u) \leq \Phi_1(k_2u)$$

for all u in A.

A Young function $\Phi(u)$ with representation

$$\Phi(u) = \int_{0}^{u} \varphi(t) dt,$$

is called an N-function ([6]) if $\varphi(t)$ is positive for positive t, and satisfies the conditions $\varphi(0)=0$, $\lim \varphi(t)=\infty$.

One can easily see that the following hold for $\Phi(u)$:

$$\lim_{u\to 0}\frac{\Phi(u)}{u}=0 \quad \text{and} \quad \lim_{u\to \infty}\frac{\Phi(u)}{u}=\infty.$$

Let $\Phi(u)$ be a Young function that satisfies the (δ_2, Δ_2) condition. Let μ be a totally σ -finite measure on \mathbb{R}^n . The Orlicz space $L_{\Phi}(\mathbb{R}^n, \mu)$ consists of all μ -measurable functions f, such that

$$\int_{\mathbb{R}^n} \Phi(|f|) \, d\mu < \infty.$$

By l_{Φ} we mean, as usual, the space of all scalar sequences $\{a_n\}_{n=1}^{\infty}$ such that

$$\sum_{n=1}^{\infty} \Phi(|a_n|) < \infty.$$

Conditions for these spaces to be reflexive are known since long ago. Here we give yet another such condition which seems to be new.

Consider the spaces $L_{\Phi}(\mathbf{R}^n, \mu)$, where μ is a positive Radón measure. For any $h \in \mathbf{R}^n$, the operation of translation is defined by

$$\tau(h)f(x)=f(x-h),$$

for any μ -measurable function f. In this paper we generalize a result in [2] which gives necessary and sufficient conditions for $\tau(h)$ to be defined as an operator on $L_{\Phi}(\mathbf{R}^n, \mu)$. We also obtain a necessary condition for there to exist a translation invariant operator T,

$$T: L_{\Phi_1}(\mathbb{R}^n, \mu) \to L_{\Phi_2}(\mathbb{R}^n, \gamma).$$

When restricted to L_p spaces this condition gives those in [2] and [5].

Moreover, a necessary and sufficient condition for there to exist a linear bounded translation invariant operator T,

$$T: l_{\phi_1} \rightarrow l_{\phi_2}$$

is obtained.

Let X, Y be normed spaces. A linear bounded operator $T: X \rightarrow Y$ is said to be strictly singular if for any subspace A of X, the restriction of T to A is not an

isomorphism. For a submultiplicative function Φ_1 a sufficient condition for every linear bounded operator $T: l_{\Phi_1} \rightarrow l_{\Phi_2}$ to be strictly singular, is given in this paper. The following theorem can be easily deduced from [7] (Th. 1.2. p. 52).

Theorem 1. Let Φ be a submultiplicative Young function. Then, there exist real numbers α , β such that $1 \le \alpha \le \beta < \infty$ and

$$\Phi(t) \ge t^{\beta}$$
 for $t \in [1, \infty)$, $\Phi(t) \ge t^{\alpha}$ for $t \in [0, 1]$.

Moreover, given &>0 there exist real numbers a, and b, such that

$$\Phi(t) \le t^{\beta+\varepsilon}$$
 for $t \in [b_{\varepsilon}, \infty)$ and $\Phi(t) \le t^{\alpha-\varepsilon}$ for $t \in [0, a_{\varepsilon}]$.

[2.]

Let $\Phi(u)$ be a non negative, increasing, left continuous real function defined on the interval $[0, \infty)$. Let u_0 be a non negative number fixed throughout. Define the function $n(\Phi, u_0; x)$ by

$$n(\Phi, u_0; x) = \sup \{s \ge 0; \ \Phi(su) \le x\Phi(u), \ u \ge u_0\}.$$

The function $n(\Phi, u_0; x)$ is manifestly increasing and the inequality

$$\Phi(n(\Phi, u_0; x)u) \leq x\Phi(u), \quad u \geq u_0,$$

holds whenever $n(\Phi, u_0; x)$ is finite.

The basic idea behind the function $n(\Phi, u_0; x)$, with $u_0=0$, seems to go back to D. W. Boyn [1]. The less restrictive definition we use here is taken from [3]. These appear named dilation functions in [7]; and are also considered in in [4].

The following properties of $n(\Phi, u_0; x)$ are easy consequences of the definition.

Let $\Phi(u)$, be as above, then

a) if $n(\Phi, u_0; x)$ is finite on [0, a), then it is right continuous on [0, a).

b) The inequality $n(\Phi, u_0; x) \ge x$, for any $x \in (0, 1)$, holds true if and only if

$$\Phi(xu) \leq x\Phi(u)$$

for any $u \ge u_0$ and $x \in (0, 1)$.

c) For any $x \ge 0$, and $y \ge 1$, we have that

$$n(\Phi, u_0; x) n(\Phi, u_0; y) \leq n(\Phi, u_0; xy).$$

Lemma 1. Let $\Phi(u)$, u>0, be an increasing left continuous real function such that $\Phi(0)=0$ and $\Phi(u)>0$ for u>0. If for any $y\in(0,1)$ we have

$$\Phi(yu) \leq y\Phi(u),$$

for all $u>u_0$; then $n(\Phi, u_0; x)$ is continuous for any $x \ge 1$.

PROOF. Let $\{x_k\}_{k=1}^{\infty}$ be a strictly increasing sequence of real positive numbers whose limit is one, then

$$\Phi(x_k u) \le \Phi(n(\Phi, u_0; x_k)u) \le x_k \Phi(u)$$

for $k \in \mathbb{N}$ and any $u \ge u_0$. By passing to the limit as $k \to \infty$, we get

$$\Phi(u) \leq \Phi(n(\Phi, u_0; 1^-)u) \leq \Phi(u),$$

that is, $n(\Phi, u_0; 1^-)=1$; so that $n(\Phi, u_0; x)$ is continuous at 1.

Let $x_0 \ge 1$, and $\{x_k\}_{k=1}^{\infty}$ be as above, then $n(\Phi, u_0, x_0^+) =$

$$= \lim_{n \to \infty} n(\Phi, u_0; x_0^+) n(\Phi, u_0; x_k) \leq \lim_{n \to \infty} n(\Phi, u_0; x_0 x_k) = n(\Phi, u_0, x_0^-),$$

that is $n(\Phi, u_0; x_0^+) = n(\Phi, u_0; x_0^-)$.

If $n(\Phi, u_0; x)$ is supermultiplicative then we also get that, in the conditions of the previous Lemma, it is continuous for all $x \ge 0$.

Lemma 2. Let $\Phi(u)$, $u \ge 0$, be an increasing, left continuous real function such that $\Phi(0)=0$. A necessary and sufficient condition that $n(\Phi, u_0; x)$ tend to infinity as x tends to infinity and be finite for finite values of the argument x, is that $\Phi(u)$ satisfy the Δ_2 condition for $u \ge u_0$, and that

$$\lim_{n\to\infty}\Phi(u)=\infty.$$

PROOF. If $\Phi(2u) \leq M\Phi(u)$, $u \geq u_0$ then

$$\Phi(2^k u) \leq M^k \Phi(u), \quad u \geq u_0, \quad k \in \mathbb{N},$$

and consequently

$$n(\Phi, u_0; M^k) \geq 2^k;$$

so that $n(\Phi, u_0; x) \to \infty$ as $x \to \infty$.

Suppose by absurd that, for some $x < \infty$, we have that $n(\Phi, u_0; x) = +\infty$, then for a fixed $u \ge u_0$ and any y > 0, we have

$$\Phi(yu) < x\Phi(u)$$
.

However, this contradicts the fact that $\Phi(u) \to \infty$ as $u \to \infty$.

Hence, $n(\Phi, u_0; x)$ must be finite for finite x.

Conversely, if $n(\Phi, u_0; x) \to \infty$ as $x \to \infty$ and is finite for finite x, then, given $\lambda > 1$, there is some x_{λ} such that $n(\Phi, u_0; x_{\lambda}) > \lambda$. Thus,

$$\Phi(\lambda u) \leq \Phi(n(\Phi, u_0; x_\lambda) u) \leq x_\lambda \Phi(u),$$

for all $u \ge u_0$. In particular x_{λ} must be larger than one.

Finally, if $\Phi(u)$ is bounded, say $\Phi(u) < K$ for all $u \ge u_0$, with K > 1, then, taking some $\hat{x} > \frac{K}{\Phi(u_0)}$ we would have that

$$\Phi(yu) \le \hat{x}\Phi(u), \quad u \ge u_0$$

for all y>1. However, this contradicts the fact that $n(\Phi, u_0; \hat{x})$ is finite.

If in the previous Lemma we assume further that $\Phi(u)$ is a Young function then $n(\Phi; u_0; x)$ is positive for positive x. Also, $n(\Phi, u_0; x)$ is a concave function of x.

Definition. The function $N(\Phi, u_0; x)$, inverse to the function $n(\Phi, u_0; x)$, will be called the right dilation function of Φ .

For any Young function Φ , which satisfies the Δ_2 condition for $u \ge u_0$, we have that $N(\Phi, u_0; x)$ is a convex function such that

$$N(\Phi, u_0; xy) \leq N(\Phi, u_0; x) N(\Phi, u_0; y)$$

for any $x \ge 0$, and $y \ge 1$. Also, $N(\Phi, u_0; x)$ satisfies the (δ_2, Δ_2) condition.

For $u_0=0$ $N(\Phi, u_0; x)=N(\Phi, x)$ is submultiplicative, that is

$$N(\Phi, xy) \leq N(\Phi; x) N(\Phi; y),$$

for any $x, y \ge 0$. Also,

$$\Phi(xu) \leq N(\Phi, u_0; x)\Phi(u),$$

for all $u \ge u_0$.

The following proposition gives an answer to an elementary question posed by Krasnoselskii and Rutitskii [6] p. 30.

Proposition 1. In each class of functions which satisfy the Δ' condition there is a submultiplicative function.

PROOF. Let $\Phi(u)$ be a Young function which satisfies the Δ' condition for $u \ge u_0$. We assume, as we may, that $\Phi(u)$ satisfies the (δ_2, Δ_2) condition.

The function $\hat{\Phi}(u)$, defined by

$$\widehat{\Phi}(u) = \Phi(u_0 u), \quad u \ge 0,$$

is equivalent to Φ and satisfies the Δ' condition for $u \ge 1$. Then, the function $N(\hat{\Phi}; u)$ is equal to $\hat{\Phi}(u)$ in $[1, \infty)$; and

$$N(\hat{\Phi}; xy) \leq N(\hat{\Phi}, x) N(\hat{\Phi}, y)$$

for all $x, y \ge 0$.

One can also see that

$$N(N(\Phi; x); u) = N(\Phi; u)$$

Definition. Let Φ be a Young function that satisfies the (δ_2, Δ_2) condition. The function $K(\Phi; x)$ defined by

$$K(\Phi; x) = \inf_{0 < u < \infty} \frac{\Phi(xu)}{\Phi(u)}$$

will be called the left dilation function of Φ .

It is easy to see that $K(\Phi; x) = \frac{1}{N(\Phi; 1/x)}$ for all x > 0; so that

$$\frac{K(\Phi; x)}{x} = \frac{1/x}{N(\Phi; 1/x)}$$

is strictly increasing and

$$\int_{0}^{\infty} \frac{K(\Phi; t)}{t} dt$$

is convex. That is, $K(\Phi; x)$ is equivalent to a Young function that satisfies the (δ_2, Δ_2) condition. Also, $K(\Phi; x)$ is supermultiplicative, that is $K(\Phi; xy) \ge K(\Phi, x) \times K(\Phi; y)$ for all $x, y \ge 0$. Moreover, $K(K(\Phi, u), x) = K(\Phi, x)$.

One can also see that

$$\Phi(xu) \ge K(\Phi; x)\Phi(u)$$

for all $x, u \ge 0$.

For a Young function Φ not satisfying the (δ_2, Δ_2) condition, the study of the function $K(\Phi; x)$ is more complicate as the example of $K(e^u-1; x)$ shows. This is a concave function discontinuous at zero.

There is no mention of this function in [1]. However, it is safe to think that this author already studied this function.

Lemma 3. Let $\Phi(u)$, $u \ge 0$, be a Young function. If Φ satisfies the δ' and ϱ' conditions, then it is equivalent to x^p for some $P \ge 1$.

PROOF. We have that $N(\Phi; x)$, $K(\Phi; x)$ and $\Phi(x)$ are all equivalent. It now follows from Theorem 1. That, for some $k \ge 1$, $\alpha \ge 1$ and all $x \ge 0$.

$$x^{\alpha} \leq N(\Phi, x) \leq kx^{\alpha}$$
.

Proposition 2. Let $\Phi(u)$, $u \ge 0$, be an N-function which satisfies the (δ_2, Δ_2) condition. A necessary and sufficient condition that the complementary function Ψ of Φ satisfy the (δ_2, Δ_2) condition is that for some x > 1, $K(\Phi; x) > x$.

PROOF. If, for some x>1, $K(\Phi,x)>x$, then $K(\Phi,x)>\alpha x$, for some $\alpha>1$; so that

$$\Phi(xu) > \alpha x \Phi(u), \quad u > 0,$$

Thus,

$$\Psi(2v) = \sup_{0 < u} \{\alpha x u v - \Phi(xu)\} = \alpha x \Psi(v), \quad v \ge 0.$$

If, on the other hand, ψ satisfies the (δ_2, Δ_2) condition then, there exist $\alpha > 1$, x > 1 such that

$$N(\Psi; \alpha) < \alpha x;$$

consequently

$$\Phi(xu) = \sup_{0 < v} \left\{ \alpha v x u - \Psi(\alpha v) \right\} = \alpha x \sup_{0 < v} \left\{ u v - \frac{\Psi(\alpha v)}{\alpha x} \right\} >$$

$$> \alpha x \sup_{0 < v} \left\{ u v - \frac{N(\Psi; \alpha)}{\alpha x} \Psi(v) \right\} > \alpha x \sup_{0 < v} \left\{ u v - \Psi(v) \right\} = \alpha x \Phi(u).$$

Therefore $K(\Phi, x) > \alpha x$.

Corollary. The complementary Ψ to the function Φ satisfies the (δ_2, Δ_2) condition if and only if, for some x < 1, $N(\Phi; x) < x$.

In terms of Orlicz spaces this result can be restated as follows:

Theorem 2. Let l_{Φ} be separable space. We have that l_{Φ} is reflexive if and only if $N(\Phi; x) < x$ for some x < 1.

In some instances the following theorem may also be of interest. We assume, as we may, that $\Phi_1(1) = \Phi_2(1) = 1$.

Theorem 3. Let l_{Φ_1} , be a separable space. Assume that $K(\Phi_1; x)$ is convex. Then a necessary and sufficient condition that l_{Φ_1} be reflexive is that there exist a Young function Φ_2 which satisfies the (δ_2, Δ_2) condition and such that

$$\Phi_1(u) \leq \Phi_2(u), u \in [0, 1].$$

PROOF. If the property holds, then for some $x \in (0, 1)$ $\Phi_1(x) < \Phi_2(x)$; so that $K(\Phi_1; x) < N(\Phi_2; x) \le x$, for this x. Since $K(\Phi_1; x)$ is convex and $K(\Phi_1; 1) = 1$,

we must have that $K(\Phi_1; x) < x$, for all x in (0, 1). This in turn implies that $K(\Phi_1; x) > x$ for x > 1.

Thus, Ψ_1 , the complementary to Φ_1 , satisfies the (δ_2, Δ_2) condition and L_{Φ_1} is reflexive

If, on the other hand, l_{Φ_1} is reflexive, then Ψ_1 satisfies the (δ_2, Δ_2) condition and this implies that $N(\Phi_1, x) < x$ for all x in (0, 1). We see thus that $\Phi_1(x) < x$, $x \in [0, 1]$. The case when the N-function Φ is submultiplicative is particularly simple.

Proposition 3. If $\Phi(x)$, $x \ge 0$, is a submultiplicative N-function; then l_{Φ} is reflexive.

PROOF. Since Φ is submultiplicative, then the complementary function Ψ is supermultiplicative, so that $\overline{\Psi}=1/\Psi(1/x)$ satisfies the (δ_2, Δ_2) condition, that is $\overline{\Psi}(2x) \leq M\overline{\Psi}(x)$, all $x \geq 0$.

Therefore
$$\Psi(2x) = \frac{1}{\overline{\Psi}(1/2x)} \le \frac{1}{1/M(\overline{\Psi}(1/x))} = M\Psi(x)$$
, for all $x \ge 0$.

From now on let us write K_i and N_i for the dilation functions of the Young function Φ_i .

Theorem 4. Let Φ_1 , Φ_2 be non equivalent Young functions that satisfy the (δ_2, Δ_2) condition and such that l_{K_2} is continuously embedded in l_{Φ_1} . If Φ_1 is submultiplicative, then every linear bounded operator T,

$$T: l_{\Phi_2} \rightarrow l_{\Phi_1}$$

is strictly singular.

PROOF. According to Theorem 2 the space l_{Φ_1} happens to be reflexive. Let T be a linear bounded operator

$$T: l_{\phi_1} \rightarrow l_{\phi_2}$$

and suppose that there exist subspaces $X \subset l_{\Phi_1}$, $Y \subset l_{\Phi_2}$ such that

$$T: X \to Y$$

is an isomorphism, then there exist normalized block basic sequences $\{B_k\}_{k=1}^{\infty}$, $\{A_k\}_{k=1}^{\infty}$

$$B_k = \sum_{i=P_k+1}^{i=P_k+1} t_i e_i, \{A_k\}_{k=1}, \quad A_k = \sum_{j=q_k+1}^{j=q_k+1} r_j e_j$$

in X and Y respectively, where $\{e_i\}_{i=1}^{\infty}$ is the unit basis, such that

$$T(B_k) = A_k, k \in \mathbb{N}.$$

Since Φ_1 , Φ_2 are non equivalent, then there is a sequence $a = \{a_n\}_{n=1}^{\infty}$ such that $\sum_{k=1}^{\infty} K_2(|a_k|)$ converges and $\sum_{n=1}^{\infty} \Phi_1(|a_n|)$ diverges.

Let
$$x = \sum_{k=1}^{\infty} a_k \sum_{i=P_k+1}^{i=P_k+1} t_i e_i$$
, then we have

$$\sum_{k=1}^{\infty} \sum_{i=P_k+1}^{i=P_k+1} \Phi_2(|a_k| |t_i|) \ge \sum_{k=1}^{\infty} K_2(|a_k|) \sum_{i=P_k+1}^{i=P_k+1} \Phi_2(|t_i|) = \sum_{k=1}^{\infty} K_2(|a_k|);$$

that is $\sum_{k=1}^{\infty} \sum_{i=P_k+1}^{i=P_k+1} \Phi_2(|a_k||t_i|)$ diverges. On the other hand T(x) is in Y. Indeed,

$$\sum_{k=1}^{\infty} \sum_{i=q_k+1}^{i=q_k+1} \Phi_1(|a_k r_j|) < \sum_{k=1}^{\infty} \Phi_1(|a_k|) \sum_{j=q_k+1}^{j=q_k+1} \Phi_1(|r_j|) = \sum_{k=1}^{\infty} \Phi_1(|a_k|) < \infty.$$

Contradiction.

Related results can be found in [8] and [10].

Theorem 5. Let μ be a positive Radon measure defined on \mathbb{R}^n . Let $\Phi(u)$ be a Young function that satisfies the (δ_2, Δ_2) condition. Then the following conditions are equivalent.

a) if $f \in L_{\Phi}(\mathbb{R}^n, \mu)$ then $\tau(h) f(x) \in L_{\Phi}(\mathbb{R}^n, \mu)$ for all h in \mathbb{R}^n ,

b) $\tau(h)$ is a continuous map of $L_{\Phi}(\mathbb{R}^n, \mu)$ to itself for any h,

c) there is a positive Lebesgue measurable function $\lambda(x)$ bounded with $\lambda(x)^{-1}$ over any compact set of values of x such that $\lambda(x) dx = d\mu$ and

$$K^{-1}(\Vert \tau(h) \Vert) \leq \sup \frac{\lambda(x+h)}{\lambda(x)} \leq N^{-1}(\Vert \tau(h) \Vert).$$

PROOF. If (a) holds, then $\mu(E)=0$ implies that $\mu(E+h)=0$ for all h. For, let $\mu(E)=0$ and let $f(x)=\infty$ for $x\in E$, f(x)=0 otherwise, so that $\int \Phi(|f(x)|)d\mu=0$; and since $\tau(h)f(x)=f(x-h)$ is infinity on E+h, then we must have that $\mu(E+h)=0$. Let us now write $\tau(h)\mu=\mu_h$, that is

$$\int_{\mathbb{R}^n} f(x) d\mu_h = \int f(x+h) d\mu.$$

We see that μ_h is absolutely continuous with respect to μ and that μ is absolutely continuous with respect to μ_h ; whence $d\mu_h = \varphi(x, h) d\mu$ with $\varphi(x, h)$ and $\varphi(x, h)^{-1}$ locally summable.

Therefore

$$\int f(x+h) d\mu = \int f(x) \varphi(x,h) d\mu.$$

Let us define

$$\varphi_n(x,h) = \min \{\varphi(x,h), 2^n\},\,$$

and

$$F_{h,n}(f) = f(x(N^{-1}(\varphi_n(x,h)))), f \in L_{\Phi}(\mathbb{R}^n, \mu).$$

Then

$$\int \Phi(|F_{h,n}(f)|) d\mu \leq \int \Phi(2^n |f(x)|) d\mu \leq M^n \int \Phi(|f(x)|) d\mu,$$

so that $F_{h,n}$ is a linear bounded transformation of $L_{\Phi}(\mathbb{R}^n, \mu)$ to itself for any fixed n and h. Moreover $||F_{h,n}|| \leq 2^n$.

It now follows that $\sup \|\varphi_n(x,h)\|_{\infty} < \infty$ and $\varphi(x,h)$ is bounded for each h; whence $\tau(h)$ is bounded for each h.

We have thus proved (a)⇒(b). The converse is inmediate.

Let us now assume that (b) holds. Then for any $f \in L_{\Phi}$ with $||f|| = ||f||_{L_{\Phi}} > 0$, we have that

$$1 = \int_{\mathbb{R}^n} \Phi\left(\frac{|\tau(h)f|}{\|\tau(h)f\|}\right) d\mu = \int_{\mathbb{R}^n} \Phi\left(\frac{|f|}{\|\tau(h)f\|}\right) \varphi(x,h) d\mu \le$$
$$\le \int_{\mathbb{R}^n} \Phi\left(\frac{K^{-1}(\|\varphi(x,h)\|_{\infty})|f|}{\|\tau(h)f\|}\right) d\mu,$$

so that $\|\tau(h)f\| \le K^{-1}(\|\varphi(x,h)\|_{\infty})\|f\|$. Given $\varepsilon > 0$ there is a set E such that

$$\int_{\mathbb{R}^n} \Phi(|\tau(h)\chi_E|) d\mu = \int_{\mathbb{R}^n} \Phi(|\chi_E|) \varphi(x,h) d\mu \ge \int_{\mathbb{R}^n} \Phi(N^{-1}(\|\varphi(x,h)\|_{\infty} - \varepsilon) |\chi_E|) d\mu,$$

thus

$$\|\tau(h)\chi_E\| \geq |N^{-1}(\|\varphi(x,h)\|_{\infty} - \varepsilon)|\,\|\chi_E\|.$$

We have thus proved that

$$N^{-1}\big(\|\varphi(x,h)\|_{\infty}\big) \leq \|\tau(h)\| \leq K^{-1}\big(\|\varphi(x,h)\|_{\infty}\big),$$

hence $\|\tau(h)\|$ is bounded or unbounded over any compact set of values of h together with $\|\varphi(x,h)\|_{\infty}$.

It now follows from the previous Lemma and the fact that $\log \|\tau(h)\|$ is subadditive that $\|\varphi(x,h)\|_{\infty}$ is bounded over any compact set of values of h.

Since μ is a Radon measure, it follows from the Radon—Nikodym theorem that

$$d\mu = \lambda(x) dx$$

with λ bounded over any compact. Thus

$$d\mu_h = \lambda(x+h) \, dx,$$
 so that $\varphi(x,h) = \frac{\lambda(x+h)}{\lambda(x)}$, and
$$K(\|\tau(h)\|) \leq \sup_x \frac{\lambda(x+h)}{\lambda(x)} \leq N(\|\tau(h)\|).$$

This proves that (b) implies (c). It is easy to see that (c) implies (b).

Necessary conditions for the existence of non-trivial, linear, translation invariant operators acting on L_p spaces with general Radon measures subject to some conditions of regularity have been studied by J. L. B. COOPER [2].

We now pass on to examine the existence of operators acting on Orlicz spaces $L_{\Phi_1}(\mathbf{R}^n, \mu)$ and $L_{\Phi_2}(\mathbf{R}^2, \nu)$ where Φ_1 and Φ_2 satisfy the (δ_2, Δ_2) condition, $\mu = e^{a||x||}$ and $\nu = e^{b||x||}$.

In some important particular instances the condition that Φ_1 and Φ_2 satisfy the (δ_2, Δ_2) condition is necessary. For example, D. Boyd [1] has proved that, a necessary condition that the Hilbert transform be a map of the space of Lebesgue measurable functions $L_{\Phi}(\mathbb{R}^n)$ to itself, is that Φ satisfy the (δ_2, Δ_2) condition. This condition turns out to be sufficient.

Let $I\left(0, \frac{m}{2}\right)$ be the closed cube in \mathbb{R}^n centred at 0 and having side m. Let h(k, r, m) be the element in \mathbb{R}^n whose components are all equal to $\frac{m|kr-k-1|}{r-1}$, where k is a natural number greater than or equal to one and r>1. We also write $H(k, r, m) = \|h(h, r, m)\|$.

Lemma 4. a) For any $x \in I\left(0, \frac{m}{2}\right)$ we have that

$$||x+h(k, r, m)|| \ge ||x|| + \frac{H(k, r, m)}{r}.$$

b) For any $y \in I\left(0, \frac{m}{2}\right) + h(k, r, m)$, we have that

$$||x+h(k+1,r,m)|| \ge ||y||,$$

holds for any $x \in I\left(0, \frac{m}{2}\right)$.

PROOF. a) The minimum of ||x+h(k,r,m)|| with $x \in I\left(0,\frac{m}{2}\right)$ is attained at $x_m = \left(-\frac{m}{2}, \dots, \frac{m}{2}\right)$ and its value is

$$||x_m+h(k, r, m)|| = \sqrt{n} \left\{ -\frac{m}{2} + m \frac{|kr-(k-1)|}{r-1} \right\}.$$

On the other hand, the maximum of $||x|| + \frac{H(k, r, m)}{r}$ is attained at $x = x_m$ and at $x = -x_m$ and its value is

$$\|\mathbf{x}_m\| + \frac{H(k, r, m)}{r} = \sqrt{n} \left\{ \frac{m}{2} + \frac{m|kr - (k-1)|}{r(r-1)} \right\}.$$

Thus

$$||x_m+h(k,r,m)||-||x_m||-\frac{H(k,r,m)}{r}=\sqrt{n}\frac{m(r-1)(k-1)}{2}\geq 0.$$

b) The maximum of ||y|| is attained at $y = -x_m + h(k, r, m)$ and

$$||-x_m+h(k, r, m)|| = \sqrt{n} \left\{ \frac{m}{2} + m \frac{|kr-(k-1)|}{r-1} \right\}.$$

The minimum of ||x+h(k+1, r, m)|| is attained at $x=x_m$ and,

$$||x_m + h(k+1, r, m)|| = \sqrt{n} \left\{ -\frac{m}{2} + m \frac{|(k-1)r - k|}{r-1} \right\}.$$

Therefore,

$$||x_m + h(k+1, r, m)|| - ||-x_m + h(k, r, m)|| = \sqrt{n} \left\{ -m + \frac{m(r-1)}{r-1} \right\} = 0.$$

The same results follow if we replace h by -h throughout.

Theorem 6. Let $L_{\Phi_1}(\mathbf{R}^n, \mu)$ and $L_{\Phi_2}(\mathbf{R}^n, \nu)$ be Orlicz spaces defined by the Young functions $\Phi_1(u)$, $\Phi_2(u)$ that satisfy the (δ_2, Δ_2) condition, where $\mu = e^{a||\mathbf{x}||}$ and $\nu = e^{b||\mathbf{x}||}$. Then, in order that there should exist a nonzero, translation invariant, bounded operator

$$T: L_{\Phi_1}(\mathbb{R}^n, \mu) \to L_{\Phi_2}(\mathbb{R}^n, \nu),$$

it is necessary that, for any natural number $s \ge 1$ and any real number r, r > 1,

$$\lim_{m \to \infty} \inf \frac{K_1 \left(1 + \sum_{k=1}^{s} e^{aH(k, r, m)} \right)}{N_2 \left(1 + \sum_{k=1}^{s} e^{b/rH(k, r, m)} \right)} \ge 1,$$

where the expression H(k, r, m) is defined as in Lemma 4.

PROOF. Let $I\left(0, \frac{m}{2}\right)$ and h(k, r, m) be as in the previous Lemma. For any function f(x) we write $f_m(x)$ for $\chi_{m(x)/2} f(x)$, where $\chi_{m/2}(x)$ stands for the characteristic function of $I\left(0, \frac{m}{2}\right)$.

On account of part (b) of the previous Lemma we have that, for any $f \in L_{\Phi}$, (\mathbb{R}^n, μ)

$$\int_{\mathbb{R}^{n}} \Phi_{1}(|f_{m}(x) + \sum_{k=1}^{s} \tau(h(k, r, m))f_{m}(x)|) d\mu =$$

$$= \int_{\mathbb{R}^{n}} \Phi_{1}(|f_{m}(x)|) d\mu + \sum_{k=1}^{s} \Phi_{1}(|f_{m}(x)|) e^{a||x+h(k, r, m)||} d\mu \leq$$

$$\leq \left(1 + \sum_{k=1}^{s} e^{aH(k, r, m)}\right) \int_{\mathbb{R}^{n}} \Phi_{1}(|f_{m}|) d\mu.$$
Similarly,

 $\int_{\mathbb{R}^{n}} \Phi_{2}(|(Tf_{m})_{m} + \sum_{k=1}^{s} \tau(h(k, r, m))(Tf_{m})_{m}|) dv =$ $= \int_{\mathbb{R}^{n}} \Phi_{2}(|(Tf_{m})_{m}|) dv + \sum_{k=1}^{s} \int_{\mathbb{R}^{n}} \Phi_{2}(|\tau(h(k, r, m))(Tf_{m})_{m}|) dv,$

and, by virtue of part (a) of the previous Lemma, this expression is greater than or equal to

(2)
$$\left(1 + \sum_{k=1}^{s} e^{(b/r)H(k,r,m)}\right) \int_{\mathbb{R}^{n}} \Phi_{2}(|(Tf_{m})_{m}|) dv.$$

From (1) and (2) above, it follows that

$$\begin{split} N_{2} \left(1 + \sum_{k=1}^{s} e^{(b/r)H(k,r,m)} \right) \| (Tf_{m})_{m} \|_{L_{\Phi_{2}}} & \leq \left\| (Tf_{m})_{m} + \sum_{k=1}^{s} \tau \left(h(k,r,m) \right) (Tf_{m})_{m} \right\|_{L_{\Phi_{2}}} \leq \\ & \leq \left\| |Tf_{m} + \sum_{k=1}^{s} \tau \left(h(k,r,m) \right) Tf_{m} \right\|_{L_{\Phi_{2}}} & \leq \|T\| \left\| f_{m} + \sum_{k=1}^{s} \tau \left(h(k,r,m) \right) f_{m} \right\|_{L_{\Phi_{1}}}, \end{split}$$

so that

(3)
$$\|(Tf_m)_m\|_{L_{\Phi_2}} \leq \|T\| \frac{K_1(1+\sum_{k=1}^s e^{aH(k,r,m)})}{N_2(1+\sum_{k=1}^s e^{(b/r)H(k,r,m)})} \|f_m\|_{\Phi}.$$

We prove next that $\|(Tf_m)_m\|_{L_{\Phi_0}} \to \|Tf\|_{L_{\Phi_0}}$ as $m \to \infty$. In fact

$$\begin{split} &\|(Tf_m)_m - Tf\|_{L_{\Phi_2}} \leq \|(Tf_m)_m - (Tf)_m\|_{L_{\Phi_2}} + \|(Tf)_m - Tf\|_{L_{\Phi_2}} \geq \\ &\leq \|Tf_m - Tf\|_{L_{\Phi_2}} + \|(Tf)_m - Tf\|_{L_{\Phi_2}} \leq \|T\| \, \|f_m - f\|_{L_{\Phi_1}} + \|(Tf)_m - Tf\|_{L_{\Phi_2}} \end{split}$$

and this expression tends to 0 as $m \to \infty$.

Therefore, by passing to the limit as $m \to \infty$ on both sides of the expression (3) above, we see that, if for some natural number s and a real number r > 1,

$$\lim_{m \to \infty} \inf \frac{K_1 \left(1 + \sum_{k=1}^{s} e^{aH(k,r,m)} \right)}{N_2 \left(1 + \sum_{k=1}^{s} e^{(b/r)H(k,r,m)} \right)} < 1,$$

then T=0.

Thus, in order that T be different from zero it is necessary that

$$\lim_{m \to \infty} \inf \frac{K_1 \left(1 + \sum_{k=1}^{s} e^{aH(k,r,m)} \right)}{N_2 \left(1 + \sum_{k=1}^{s} e^{(b/r)H(k,r,m)} \right)} \ge 1$$

for any natural number s and any real r>1.

In particular, if a=b=0, then the condition above becomes

$$\frac{K_1(1+s)}{N_2(1+s)} \ge 1.$$

If $\Phi_1(u) = u^p$, p > 1 and $\Phi_2(u) = u^q$, q > 1 the condition is $(1+s)^{1/p} > (1+s)^{1/q}$, that is $q \ge p$. (HÖRMANDER [5] p. 96.)

If $a\neq 0$, $b\neq 0$, $\Phi_1(u)=u^p$, p>1 and $\Phi_2(u)=u^q$, q>1, then the condition that T be different from zero is $\frac{a}{p}-\frac{b}{rq}\geq 0$ for any r>1, as becomes apparent from writing out explicitly the condition found in the theorem above. In this case we see that $\frac{a}{p}\leq \frac{b}{q}$ (Cooper [2], p. 44).

A more clear picture emerges when we consider the same problem by replacing the spaces L_{Φ} with Orlicz spaces l_{Φ} .

Let us recall that, given a Young function Φ , the indices α_{Φ} an β_{Φ} are defined as follows (see [8])

$$\alpha_{\Phi} = \sup \left\{ p > 0; \sup_{0 < x, t \le 1} \frac{\Phi(tx)}{\Phi(t)x^p} < \infty \right\}$$

$$\beta_{\Phi} = \inf \left\{ p > 0; \inf_{0 < x, t \le 1} \frac{\Phi(tx)}{\Phi(t)x^p} > 0 \right\}.$$

We now prove:

Lemma 5. Let us write F(t) for any of the functions N, K, Φ . Let α , β be as in Theorem 1. Then, the interval $[\alpha_F, \beta_F]$ is contained in $[\alpha, \beta]$.

PROOF. Let $\varepsilon > 0$, then for some $a_{\varepsilon} > 0$.

$$\frac{F(\lambda t)}{F(t)\lambda^{\alpha-\varepsilon}} \leq \frac{F(t)N(\lambda)}{F(t)\lambda^{\alpha-\varepsilon}} \leq \frac{\lambda^{\alpha-\varepsilon}}{\lambda^{\alpha-\varepsilon}}, \quad \lambda \in [0, \alpha_{\varepsilon}],$$

that is $\alpha - \varepsilon \leq \alpha_F$ and so $\alpha \leq \alpha_F$.

Also,

$$\frac{F(\lambda t)}{F(t)\,\lambda^{\beta+\varepsilon}} \ge \frac{F(t)K(\lambda)}{F(t)\,\lambda^{\beta+\varepsilon}} \ge \frac{\lambda^{\beta+\varepsilon}}{\lambda^{\beta+\varepsilon}}, \quad \lambda \in \left(0, \frac{1}{b_s}\right).$$

It follows that $\beta \geq \beta_F$.

Let $\Phi(u)$, $u \ge 0$, be an N-function such that $\sup_{0 < u < \infty} \frac{\Phi(u\lambda)}{\Phi(u)}$ is attained on the interval [0, 1]. Then

$$\sup_{0 < \lambda, t} \frac{\Phi(\lambda t)}{\Phi(\lambda) t^{\alpha + \varepsilon}} \ge \sup_{0 < x \le 1} \left\{ \sup_{0 < x \le 1} \frac{\Phi(t\lambda)}{\Phi(\lambda) t^{\alpha + \varepsilon}} \right\} = \sup_{0 < t \le 1} \frac{N(t)}{t^{\alpha + \varepsilon}} \ge \sup_{0 < t \le 1} \frac{t^{\alpha}}{t^{\alpha + \varepsilon}} = \infty,$$

that is, $\alpha \ge \alpha_{\Phi}$. It now follows from the above Lemma that $\alpha = \alpha_{\Phi}$.

A similar calculation shows us that, if $\inf_{0 < u < \infty} \frac{\Phi(u\lambda)}{\Phi(u)}$ is attained on [0, 1], then $\beta = \beta_{\Phi}$.

These conditions hold for $N(\Phi; x)$ and $K(\Phi, x)$ respectively. We thus have that $\alpha = \alpha_N$ and $\beta = \beta_K$ also

$$\lim_{t\to 0}\frac{LN(t)}{Lt}=\alpha_N,$$

and

$$\lim_{t\to\infty}\frac{LN(t)}{Lt}=\beta=\lim_{t\to\infty}\frac{L\frac{1}{K(1/t)}}{Lt}=\lim_{t\to0}\frac{LK(t)}{Lt}=\beta_K.$$

Lemma 6. Let N(t) be submultiplicative and K(t) supermultiplicative functions defined on [0, 1] such that

$$N(0) = K(0) = 0$$

$$N(1) = K(1) = 1.$$

If N(t) and K(t) are not equivalent in any set $[0, \delta]$ with $\delta \leq 1$, then we must have that either N(t) < K(t), $x \in (0, 1)$ or $K(t) \leq N(t)$, $x \in [0, 1]$.

PROOF. Assume that neither case hold; then we have that, for some decreasing sequence $\{t_n\}_{n=1}^{\infty}$, with $t_1=1$ and $\lim_{n\to\infty} t_n=0$,

$$N(t_n) = K(t_n), n \in \mathbb{N}.$$

The function $F(t) = \frac{tN(t)}{K(t)}$, t > 0, is submultiplicative and

$$\alpha_F = \lim_{t \to 0} \inf \frac{tF'(t)}{F(t)} \ge 1 + \lim_{t \to 0} \inf \frac{tN'(t)}{N(t)} - \lim_{t \to 0} \sup \frac{tK'(t)}{K(t)} = 1 + \alpha_N - \beta_K.$$

From $N(t_n) = K(t_n)$ we deduce that

$$\alpha_N = \lim_{t \to 0} \frac{LN(t)}{Lt} = \lim_{t \to 0} \frac{LK(t)}{Lt} = \beta_K;$$

that is $\alpha_F \ge 1$. Assume $\alpha_F > 1$, then we deduce from Theorem 1 that given $\epsilon > 0$ there is $\delta > 0$ such that

$$t^{\alpha_F} \leq \frac{tN(t)}{K(t)} \leq t^{\alpha_F-\epsilon} < t, \quad t \in (0, \delta).$$

By placing $t=t_n$, we get

$$t_n \leq t_n^{\alpha_F - \varepsilon} < t_n$$
.

Contradiction. We must have that $\alpha_F = 1$. This in turn implies that

$$\frac{tN(t)}{K(t)} \ge t, \quad t < 1,$$

and so $N(t) \ge K(t)$, t < 1.

dition

Proceeding exactly as in Theorem 6, we see that a necessary condition that there exist a linear bounded, translation invariant operator $T: l_{\Phi_1} \rightarrow l_{\Phi_2}$ is that

$$\lim_{x \to \infty} \inf \frac{K_1(x)}{N_2(x)} \ge 1$$

and since $\frac{K_1(x)}{N_2(x)} = \frac{N_1\left(\frac{1}{x}\right)^{-1}}{K_2\left(\frac{1}{x}\right)^{-1}} = \frac{K_2\left(\frac{1}{x}\right)}{N_1\left(\frac{1}{x}\right)}$, then this condition is equivalent to the con-

 $\lim_{x\to 0}\inf\frac{K_2(x)}{N_1(x)}\geq 1.$

In the following Theorem, by l_{Φ} we mean the Banach space of all sequences $\{a_n\}_{n=-\infty}^{n=+\infty}$ such that $\sum_{n=-\infty}^{n=+\infty} \Phi(|a_n|) < \infty$.

Theorem 7. A necessary and sufficient condition that there exist a linear bounded, translation invariant operator

$$T: l_{\Phi_1} \rightarrow l_{\Phi_2}$$

is that $N_1(x) < K_2(x)$, for all x in (0, 1).

PROOF. If N_1 and K_2 are equivalent in [0, 1] then there is nothing to prove. Otherwise, according to the previous Lemma we have that

either
$$K_2(x) \le N_1(x)$$
 or $K_2(x) > N_1(x)$ on [0, 1].

Assume the first case. If

$$\lim_{x \to 0} \inf \frac{K_2(x)}{N_1(x)} = 1,$$

then, given $\varepsilon > 0$ there is $\delta > 0$ such that

$$\frac{K_2(x)}{N_1(x)} > 1 - \varepsilon, \quad x \in (0, \delta);$$

that is $(1-\varepsilon)N_1(x) < K_2(x) \le N_1(x)$, $x \in (0, \delta)$, and since $\frac{K_2(x)}{N_1(x)}$ is bounded, and bounded away from zero on $[\delta, 1]$, we see that $K_2(x)$ and $N_1(x)$ are equivalent on [0, 1]. Contradiction; we must have then that in this case

$$\lim_{x\to 0} \inf \frac{K_2(x)}{N_1(x)} < 1.$$

In the second case it is apparent that

$$\lim_{x\to 0}\inf\frac{K_2(x)}{N_1(x)}\geq 1.$$

Also, since $N_1(x) < K_2(x)$, $x \in (0, 1)$ implies that $\Phi_1(x) < \Phi_2(x)$, $x \in (0, 1)$; we can see that the identity $I: l_{\Phi_2}, \rightarrow L_{\Phi_1}$ is continuous.

References

- [1] D. W. BOYD, The Hilbert transform on rearrangement-invariant spaces. Can. J. of Math. 19 (1967), 599-616.
- [2] J. L. B. COOPER, Translation invariant transformations of integration spaces, Acta Sci. Math. Szeged 34 (1973), 35-52.
- [3] C. E. FINOL, Linear Transformations intertwining with group representations, Ph. D. Thesis, Chelsea College of Science and Technology, Univ. of London. 1978.
- [4] J. Gustavsson and J. Peetre, Interpolation of Orlicz Spaces, Studia Math. 60 (1977), 33—59.
 [5] L. HÖRMANDER, Estimates for translation invariant operators in L_p spaces, Acta Math. 104 (1960), 93-140.
- [6] M. A. Krasnosel'skii and Y. B. Rutickii, Convex functions and Orlicz spaces. P. Noordhoff Ltd, 1961.

[7] S. G. Krein, Ju. I. Petunin and E. M. Semenov, Interpolation of Linear operators. Amer. Math. Soc. Transl. 54 Providence Rhode Island, 1982.

[8] J. LINDENSTRAUSS and L. TZAFRIRI, Classical Banach Spaces I. Springer-Verlag 1977.

[9] W. A. J. LUXEMBURG, Banach Function Spaces. Thesis. Technische Hogeschool te Delft, 1955. [10] K. LINDBERG, On subspaces of Orlicz sequence spaces, Studia Math. 45 (1973), 119—146.

DEPARTAMENTO DE MATEMÁTICA FACULTAD DE CIENCIAS UNIVERSIDAD CENTRAL DE VENEZUELA APARTADO POSTAL 40645 CARACAS 1040—A VENEZUELA

(Received March 1, 1985)