On torsion-free modules over valuation domains

By RADOSLAV DIMITRIC (Belgrade) and LASZLO FUCHS (New Orleans, Louisiana)

This note is devoted to several results on torsion-free modules of infinite rank
over arbitrary (commutative) valuation domains. The results are related to the
projective dimensions (p.d.) of these modules and serve as a prelude to a study of
pure submodules of free modules.

A well-known lemma by AUSLANDER [1] states that if R is any ring and M is
any (left) R-module, and if

O=My<My<..<M,<...<M,=M

is a well-ordered ascending chain of submodules which is continuous (in the sense
that My;= |J M, for limit ordinals ), then p.d. M,,,/M,=n for all a<A implies

p.d. M=n. In another version (which is equivalent for n=1 and limit 1), p.d. M,=
=n—1 for all a=A implies p.d. M=n. Concentrating on torsion-free modules
M over valuation domains R, we show (Theorem 1) that if the M, are pure in M
and if cof A=w,, then p.d. M,=n implies p.d. M=n. (Here w, stands for the
first ordinal of cardinality ®,.) The case cof A=w,,; requires additional hypothesis
(Theorem 5).

We also study briefly pure submodules of free modules over valuation domains
R, and give a necessary and sufficient criterion for R to have all these pure submodules
again free (Theorem 9).

1. Preliminaries

R will denote throughout a valuation domain; Q will stand for its field of
quotients. We consider only torsion-free R-modules M. The rank of M is the dimen-
sion of the Q-vector space Q® M. A submodule N of M is pure if M|N is torsion-
free. For any subset X of M, (X) will denote the submodule of M generated by X.

For the proof of the following lemma we refer to [4]; x stands for a cardinal.

Lemma A. If a torsion-free R-module M is x-generated (i.e. can be generated by
% elements), then the same holds for all pure submodules of M.

We shall need the following results from [4]. ®_, denotes “finite”.

Lemma B. A finite rank torsion-free R-module M which can be generated by R,
but not by 8, -, elements has projective dimension n+1.
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Lemma C. A torsion-free R-module M of rank R, satisfies p.d. M=n if and
only if its pure submodules of rank <\, have projective dimensions =n.

By a tight submodule of M is meant a submodule N such that p.d. N and
p.d. M/[N=p.d. M. A tight system for M (with p.d. M=n) is a family T of sub-
modules M; (i€]) of M such that

(1) 0, MeT,;

(11) T is closed under unions of chains;

(iii) if M;=M;, both in T, then p.d. M;/M,;=n;

(iv) if M,T and X is a subset of M of cardinality =§,_,, then there is an
M T satisfying (M;, X)=M; such that M;/M, is §,_,-generated.

In [2] it is proved:

Lemma D. Every torsion-free R-module M has a tight system consisting of pure
submodules. If p.d. M=n, then a pure submodule of rank =8,_, in M is 8,_,-
generated.

A torsion-free R-module M is called separable if every finite set of its elements
i1s contained in a summand of M which is the direct sum of rank one submodules.
The following holds (see [5]):

Lemma E. Pure submodules of separable modules are separable. Separable mod-
ules of countable rank are direct sums of rank one modules.

2. Chains of pure submodules

We start with the proof of the following theorem.

Theorem 1. Let M be a torsion-free R-module and n a non-negative integer.
Assume
(N O=My=My=...=M,=..=M, =M

is a continuous chain of submodules such that
(a) each M, is pure in M;
(b) p.d. M,=n for each a<w,.

Then p.d. M=n.

PrROOF. Because of Lemma D, there is a tight system 7, in each M,(x<=w,)
such that the members are pure submodules of M,. Using these T,, we first verify:

Lemma 2. Under the hypotheses of Theorem 1, given any N,-generated sub-
module H of M, there is a submodule H of M satisfying

(x) H is contained in H;

(B) the rank of H is =§,;

(7) HNM4 T, for each a<w,;

() H+ M, is pure in M for each a.

PrOOF OF LEMMA 2. We describe two processes whose combination will yield a
submodule with the required properties.
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First, for each a<w, choose an N¥,-generated submodule 7,,67, such that
H(M,=T,,. Clearly, the submodule H,=(H, T\, (x<w,)) is 8,-generated. Repeat
this process with H, in place of H to obtain a submodule H;=(H,, T,, (x<=w,))
with §,-generated T,,£7, such that H,\M,=T,,, etc. The chain H=H,=
=..=H,=... of these },-generated submodules has a union H, which evidently
satisfies

HNMeET, for all o < w,.

Next, consider the submodule (H+M,)/M, of M/M,. View M/M, as the
union of its submodules M,/M, (x<f<=w,). Since p.d. My.,/My;=n+1 because
of (b), from Auslander’s Lemma we infer that p.d. MIM,_n+l as well. From
Lemma D it follows that all pure submodules of rank =§, in M/M, are §,-
generated. Consequently, there exists an 8,-generated pure submodule (H:+M,)IM,
of M/M, that contains (H+M_,)/M,; here H.(=H) can be chosen so as to be
Nn-generated. The submodule H*=(H, H; (x=w,)) is again of rank =§,, so
the same process can be repeated with H? playing the role of H to obtain a larger
N, -generated submodule H® such that (H®*+M,)/M, contains the purification of
(H*+M)/M, in M/M,, etc. The union H* of the chain H=H?=...=H™=...
will be of rank ={, and for each a=w, it will satisfy:

H*4+M, is pure in M.

To conclude the proof of Lemma 2, we alternate the two processes and define
H as the union of the ascending chain H=H,=(H,)*=((H,)*),=.... Obviously,
H will satisfy (2)—(8). [

Resuming the proof of Theorem 1, we proceed to establish the existence of a
continuous chain

) O=Hy=H,=..=H,=.=H,=M

of submodules in M with the following properties:

(i) H,.,/H, 1s §,-generated for v<A4;

(i) HNMT, for a=w, and v<A4i;

(1)) H,+M, is pure in M for a=w,, v=A4A.
Here A denotes a suitable ordinal.

Define H, by transfinite induction. Setting H,=0, assume that the H, (u<v)
have been selected so as to have properties (i)—(iii).

If vis a limit ordinal, then H,= U H,. (i1) and (ii1) will obviously hold for H,.

If v is a successor ordinal, say v—-,u+l and if H,<M, then in (1) we pass
mod H, and consider the chain

3) 0=H/H,=..= (H,+M)/H,=... (2=<uw,).

By (H,+M,/H,=M,/(H,\M,) and H,(\M,T,, we see that in (3) all modules
have projective dlmensmns =n. Thus (3) is a chain like (1), so that Lemma 2
can be applied to a non-zero cyclic submodule of M/H, to obtaln a submodule

H/H, of M/H, saﬂsfymg (f)—(d). It only remains to put H,=H and to check
that (1)—(m) hold (which is routine), completing the proof of (2)



94 R. Dimitri¢ and L. Fuchs

In order to verify Theorem 1, by Auslander’s Lemma it will be enough to show
that in (2) p.d. H,,/H,=n for each v=A. Note that H,,,/H, is the union of
the following continuous well-ordered ascending chain:

4) 0=[HnNM)+H)H, =...=[(H,+,\M)+HJ)/H, = ..

with a<=w,. Because of (iii), here (H,.,\M,)+H,=H, ,N\(H,+M,) is pure
in M; thus the chain (4) consists of pure submodules of H,.,/H,. Therefore, (i)
implies that the modules in (4) are N,-generated (cf. Lemma A). Furthermore, in
view of (ii),

[(Hv+lan)+Hv]/Hv = (Hv+lmMu)/(anM¢)

has projective dimension =n. From Lemma C it is easy to derive that
pd. H,.;/H,=n. 0O

The special case n=0 is most interesting:

Corollary 3. The union of a countable ascending chain 0=F,=F,=...=F,=
of free R-modules F,, is again free whenever each F,, is pure in F,,.,. O

Another corollary is the following result generalizing Theorem 1.
Corollary 4. Let M be a torsion-free R-module and n, k non-negative integers. If
O=My<M<..<M,<..<M, =M

is a well-ordered continuous chain of submodules of M such that
(a) each M, is pure in M,
(b) for each o<w,, p.d. M,=n+k,

then p.d. M=n+k.

Proor. We induct on k, the case k=0 being covered by Theorem 1. Suppose
k=1. For each «, consider the canonical projective resolution of M,:

) O+H,»F= @ Re,2% M, 0
ac M,

where F, is free and &,(x,)=a. Here H, is pure in F, and p.d. H,=n+k—1.
The obvious embeddings M,—~M, (x<f) give rise to a direct system of exact
sequences (5) whose direct limit is the resolution (5) for a=w,. As H, = |) H,,

the induction hypothesis can be applied to H,, to conclude that p.d. H,, =n+k—1.
Hence p.d. M=n+k, indeed. [0

If we wish to consider longer chains in (1), and to retain the same conclusion on
p.d. M, then we need a cardinality restriction on the M,’s as well as an additional
hypothesis on the M, ,/M,’s.

Theorem 5. Assume that n is a non-negative integer and
(6) O=My=M,=..=M,=..=M

DOn+1

=M

is a continuous well-ordered chain of submodules of the torsion-free R-module M,
satisfying the following conditions:
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(i) each M, is pure in M;
(ii) each M, is R,.,-generated,;
(i) p.d. M,=n for each a<w,4,;
(iv) the pure submodules of rank =8,_, in M, /M, are R\,_,-generated for
each a<w,.,.
Then p.d. M=n.

Proor. We construct another chain @) replacing the given (6). For each
A=Wy 415 fix a tight system T, in M,, consisting of pure submodules. We want a
continuous chain

(7) O=Ay=4,=..=4,=..=4,, =M

of submodules, subject to the conditions:

1) each A, is 8,-generated (x<w,.,);

2) AT, whenever a<w,,; is a non-limit ordinal;

3) A,NMyeTy for all f<a<w,,y;

4) A,+M; is pure in M, for f<a<w, ;.

Observe that x=w, 1mphes cof e=w,, thus Lemma 2 can be applied in
the same way as in the proof of (2) to establish a chain (7) with the desired pro-
perties. In order to ascertain that A4, , =M, well-order a generating set of
M: {a,la«:w,,ﬂ] with the proviso that a,GA for all f<=ea. This will hold when-
ever A, ,, is constructed so as to include a, (x<=w,:,).

Once (7) has been established, it is sufficient to verify that

pd. A,/JA, =n for a < @,,,.
In the exact sequence

0 - (A.:i-lnMn)xAu = A¢+IIA¢ g2 A¢+l/(A¢+lﬂM¢) -0

the last non-zero module is == (A4,.,+M,)/M,. This is §,-generated and 4) implies
that it has property (iv). A simple reference to Lemma C shows that its projective
dimension is at most n. Hence it remains only to show that

(8) p'd’ (Au+1thl)jAz =0n

We distinguish two cases according as « is a successor or a limit ordinal.

In the first alternative, 2) ensures A,€7,. Furthermore, by 3), A,,,(\M,T,
likewise, whence (8) follows at once.

If « is a limit ordinal, then we view (4,.,M,)/A, as the union of its submod-
ules [(A4,,NM,)+A,]/A, for f<a. These are isomorphic to (A, ., NM)/(A4,NMp);
here both intersections belong to T}, so the projective dimension of their quotient
is =n. Furthermore, (A¢+1OM,,)+A =A,:,(My+A,) are pure submodules.
Since cof a=w,. Theorem 1 can be applied to conclude that (8) holds true. [J

Again the case n=0 deserves special attention:
Corollary 6. If
0=F0§F1§,-N§FB§.." (a{w])

is a continuous chain of ¥,-generated free R-modules F, such that F, is pure in F,
Jor each « and in F, ,|F, the finite rank pure submodules are finitely generated,
then the union \UF_ is again a free R-module. [
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3. Pure submodules of free modules

Submodules of free R-modules need not be free, not even when they are pure,
so the problem of studying pure submodules of free R-modules arises. So far they
have not been investigated systematically and here we can only establish a few
relevant properties.

An easy. but important observation is as follows.

Proposition 7. Pure submodules of free R-modules are separable, and their R,-gen-
erated pure submodules are free.

Proo¥. This is an immediate consequence of Lemma E. [
The second part of the assertion generalizes easily:

Proposition 8. Pure submodules of a free R-module of rank R, have projective
dimension =n.

PROOF. A pure submodule of a free R-module of rank ¥, can have projective
dimension d=n+1 only if it contains a finite rank pure submodule of projective
dimension d; this is an easy consequence of Lemma C; see [4]. However, this would
contradict Proposition 7. [J

In view of the definition of purity, the equivalence of conditions (i) and (ii) in
the following theorem is obvious [gl.d. means global dimension].

Theorem 9. For a valuation domain R, the following are equivalent:
(i) pure submodules of free R-modules are free;

(i1) p.d. M=1 for all torsion-free R-modules M;

(i) gld. R=2 and p.d. 0=1.

PRrROOF. It remains to verify the equivalence of (ii) and (iii). Observe that (ii)
implies p.d. I=1 for all the ideals I of R. Therefore gl.d. R=supp.d.l4+1=2,
and (iii) follows.

Assume now that (iii) holds. Then p.d. /=1 for all the ideals 7 of R. Given
any torsion-free R-module M, we can find a well-ordered ascending continuous
chain of submodules of M whose factors are rank one torsion-free modules. By
hypothesis, these factors have projective dimension =1, so by Auslander’s Lemma,
pd. M=1. [

With the aid of the preceding result one can show that if R admits non-free
pure submodules in free R-modules, then this already occurs at the cardinality ¥, .

Lemma 10. If R is such that all pure submodules of the free R-module of rank ¥,
are free, then all pure submodules of free R-modules are free.

Proor. Otherwise, either gl.d. R=3 or p.d. 0=2. Thus either an ideal /
of R or Q has projective dimension =2. By Lemma B, there is a rank one torsion-
free module M with R, generators which cannot be countably generated. If 0~ H —
—F—+M 0 is a free resolution of this M with F free of rank §&,, then p.d. M=2
implies p.d. H=1. This H is a non-free pure submodule of F. [

As far as the converse of Proposition 7 is concerned, we offer a counterexample.
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Example. There is a valuation domain R which has a separable torsion-free
R-module M of rank 8, whose R8,-generated pure submodules are free, but M
is not embeddable as a pure submodule in a free R-module. Let R be such that
gld. R=2 and p.d. Q=1. Choose a free resolution 0—+~H-F-Q-0 with H,
F countably generated free. Using a fixed isomorphism ¢: F—H, it is easy to
construct a chain

0=Fo<F1=H{P‘2=F{F3<...

of countably generated free R-modules such that F,,,/F,=Q for n=0. By Corol-
lary 3, |J F, is likewise free, so we can proceed transfinitely and get a well-ordered

n=o

continuous ascending chain of countably generated free R-modules F, for every
a<w, such that F, ,/F,>=Q for each a<w,. Let M be UF, for a<w,. Then
Eklof’s Theorem [3] shows p.d. M=1. By Theorem 9, M is not isomorphic to
any pure submodule of a free R-module. As every countable rank submodule of M
is contained in some F,, it follows that M is separable and its 8,-generated pure
submodules are free.
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