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1. Introduction

In our previous paper [3] we gave effective upper bounds for the solutions of
certain inhomogeneous discriminant form and index form equations over the nng
of integers of an algebraic number field. Our results generalized some previous
theorems of GYGORY [6], [7] and GY6RY and Papp [21], [22] on discriminant form
and index form equations. We also extended to the inhomogeneous case some
results of GYORY [6], [8] on algebraic integers of given degree and of given discrimi-
nant or given index. Our proof was based on a theorem of GyO6ry [8] concerning the
homogeneous case (i.e. algebraic integers of given degree and of given discriminant).
Recently GyOry [19] generalized his results to the case when the ground ring is an
arbitrary integral domain, finitely generated over Z. As a consequence of these
theorems GYORY [19] proved that there are only finitely many pairwise inequivalent
S-integral algebraic numbers with given degree and given discriminant. The proof of
these deep effective theorems involve among others Baker’s famous method (see e.g.
[1] and a so called graph-method of GYGRY (cf. [11], [17]). These general theorems
of GyGry enable us to extend the results of [3] to the above mentioned more general
cases. In this paper we deal only with inhomogeneous discriminant form equations
and integral elements with given discriminant, since the corresponding results con-
cerning inhomogeneous index form equations and integral elements with given index
can be easily obtained from these theorems (cf. [3]).

Our Theorem 1 gives effective bounds for the solutions of certain inhomo-
geneous discriminant form equations over finitely generated integral domains. An
immediate consequence of this theorem is that such equations have only finitely
many solutions and these can be effectively determined. This theorem extends to
the inhomogeneous case a result of GyOry [18]. In Theorem 2 we show that if
and A are integral elements (in a fixed field) over a finitely generated integral domain
such that the discriminant of «+ 1 is given and A is in a certain sense “‘small” com-
pared to «, then « is equivalent to an element of an effectively determinable finite
set. This theorem generalizes the corresponding “homogeneous” result of Gy6ry [19].
The statement of Theorem 3 and Theorem 4 corresponds to that special case of
Theorem 1 and Theorem 2, respectively, when the ground ring is the ring of S-integers
of an algebraic number field. The method of our proofs will be similar to
that of [3].
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2. Notation concerning finitely generated integral domains

We follow the notation of Gy6ry [19] (see also GyOry [18]). We also give a
relative formulation of our results (cf. [19] or [18]).

Let us denote by K, the ring Z of rational integers (absolute case) or a field
of characteristic 0 (relative case). Denote by K, the quotient field of K, (i.e. K;=Q
in the absolute case and Kj=K, in the relative case). Let R be a finitely generated
integral domain over K,, that is

(1) R e Kﬂ[xb *--:xpyb ---)yl]
where {x,...,x,} is a maximal algebraically independent subset of the set of
generators of Rand y,, ...,y, are algebraic over Kj(xy, ..., x,). We shall suppose

that Ris mtegrally closed. Let a be an element of the polynomlal ring Ky[xy, ..., x;]
such that ay; is integral over Ky[x,, ..., x,], i=1, ..., 1. Denote by K the quotient
field of R. Then we have

(2) K o Ké(xl! sy xq! }’u)

where {x, ..., xq} is a transcendence basis of K over Kﬂ and y, is integral over
the polynomlal ring Ko[x, ..., x,). Such a set {x;,...,x,, )} of generators is
called a generating set over K, (cf. [19] or [18]).

Let L and G be finite extension fields of K, such that LS G. Denote by n
the degree of L over K. Let z, be a primitive element of L over K that is

3) L = K(z,).

Further, we may suppose without loss of generality that G is normal over
Ko (x5 ... Xg). Let

(4) G - -Kl;(xb erep xqs y.)

where y is integral over Ki[x;,...,x,]. Let g=[G: Kj(xy, ..., x))), let F(X)=
=X'+F, X?'+...+F, be the minimal polynomial of y over Kj(xy, ...,x,) and
denote by Dy the dlscummant of F(X). Since Kg[x,, ...,x,] is integrally closed,
hence Dg, F,, ..., F, belong to Kj[x,, ..., x,].

We shall denote by capltahzed Deg (P) the total degree in x,,...,x, of an
element P (as a polynomial in x,,....x,) in Kj[x,, ..., x,]. In the absolutc case
L(P) denotes the length of P€Z[x,, .. r,,] i.e. the sum of absolute values of the
coefficients of P (as a polynomial).

Assume that maxDeg (F)=F and, in the absolute case max L(F)=F

(# =2). In the absolute case r(=0) will denote the number of distinct rational
prime factors of aD, and P the greatest of these prime factors (if r=0, let P=1
and log P=1). Further, denote by # the maximum length of the non-constant
irreducible factors of aDg in Z[x,, ..., x] (f aDs€Z, let 2=2).

Any element x€G can be uniquely represented (up to unit factors of K) in
the form

Py+Py+...+P_y*?!
5 o =
©) 3
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where Py, ..., P, ,, Q are relatively prime polynomials in Kg[x;, ..., x,]. Let us
define the chree of a (with respect to the generating set {x,, ..., x,, y} of G over

K3) by
Deg («) = max {Deg (Py), ..., Deg (#,-,), Deg (Q)}.
For any o, ..., 2,6G we have (see [19])

(6) Deg (a;+ ... +a,) = Deg(a,)+ ... + Deg (a,,)
and
(7 Deg (2;...a,) = Deg(a) + ... + Deg(a,)+(m—1)(g—1)F.

Let us denote by y=y®, ..., y@ the roots of F(X) in G and let a=a®, ..., @
be the conjugates of any aEG corresponding to the conjugates y“’ s Y@ Of y.
By Lemma 6 of GYORY [19] we obtain

® max Deg () = g Deg () + & F

where g; (and in the following g,, g;, ...) denotes effectively computable positive
constants depending only on g. Further (7), (8) and the definition of Deg (x) implies
that for any a, f€G, f#0 we have

©) Deg (5] = Deg (@) +5* Deg (§) + &iF.

In the absolute case, the size of any non-zero!) a€G (with respect to the gen-
erating set {x;, ..., x,, ¥} of G) is defined by

s(2) = max{s(Py), ..., s(B,-1), s(Q)}
where P, ..., P,_,, Q€Z[x,, ..., x,] are the polynomials appearing in the repre-
sentation (5) of o and
s(P) = max {log H(P), 1+ma.x deg,, P}

denotes the size of a polynomial P€Zl[x,, ..., x]. (H(P) denotes the height of P,
that is the maximum absolute value of its cocﬁic]ents) Since there are only finitely
many elements in G with bounded size, in this general situation this concept may
be used instead of the usual size of algebraic numbers. For any non-zero o, ..., #,€G
we have (see [19])

(10) S+ ... + ) = ¢y(s()+ ... +5(tm)+ 2
and
(11) S(...%) = cy(s(xy) + ... +5(a)+ €

where ¢;=(¢+1)* and c¢,=2g*m(g+1)*>max{log #,1+4+F}. By Lemma6 of
GyO6ry [19], we get for any 0=acG

(12) max () = (g+ 1)°[g5(®) + gacs]

1) For =0 we may put Deg(2)=0 and s(x)=0.
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with ¢;=(g!g*F)***+log #. Further, (11), (12), (2.10) of [19] and the definition
of s(x) imply that for any non-zero «, f€G we have

(13) s[%] = (@+1)°s@) + @+ 1g*s(B)+ (+ 1) gacs.

In our main result (Theorem 1) we shall give effective upper bounds for the
Degrees, and in the absolute case, for the sizes of the solutions of inhomogeneous
discriminant form equations. In the absolute case our estimates imply the finiteness
of the number of solutions. The parameters involved depend on the generating set
{x1, ..., X,, ¥} of Gand on yy, ..., y,. Some important remarks on the effectiveness
of the results of this type can be found in GyG6Rry [19] (see also [18] or [20]). We recall
only that our results will be effective only if R, K, L and G are given in the form
(1), (2), (3) and (4) respectively, in the absolute case g and the coefficients
Fy, ..., F€Z[x,, ...,x,] of F(X) are given, and y,, ..., ¥, ¥, and z, are given
in the form (5); in the relative case upper bounds are given for g and for the Degrees
of Fy, ..., Fyy Y15 .3 Y1y Yo 8Nd 2.

3. Inhomogeneous discriminant form equations over finitely
generated integral domains

Using the notation of paragraph 2, suppose that [L:K]=n=2. Let us denote by
R, the ring of those elements of L which are integral over R. Let «,=1, oy, ..., 0
be elements in R, linearly independent over K such that L=K(x,, ..., a;). Assume
that m?xDeg (¢)=A and in the absolute case mflxs(agéd. Further let D,

be a non-zero element in G with Degree =D and in the absolute case with size
=9. Under the above conditions consider the discriminant form equation

(14) Dyjx(2y %1+ ... +4xy) = Dy

with variables x;, ..., ;¢ R. GYORY [17] proved in an ineffective form that equa-
tion (14) has only finitely many solutions. Further, Gy6ry [18] gave bounds for
the Degrees and in the absolute case for the sizes?) of all solutions of (14). This theo-
rem includes all previous effective results on discriminant form equations.

As an inhomogeneous generalization of equation (14) let us consider equation

(15) Dy (X + ... + o x,+4) = Dy

where the variables are Xx,, ..., ;3¢ R and A€R,. Here x,, ..., x; are called domi-
nating variables and 4 is a non-dominating variable, which is supposed to be in a

%) In [18] Gyory used the length L (=) instead of s(2) for x€G. If « is represented in the form
(5) then L(z)=max {L(Py), ..., L(P,4_,), L(Q)} where L(P) denotes the length of PEZ[x,, ..., X ].
As is remarked in footnote 1 of [19], L(x)=exp {(g+1)s(x)} and

exp {s(2)} = max {L(x), exp (1+Deg (®)}.
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certain sense “small” compared to the dominating variables. For the formulation
of our Theorem 1 let

C, = 21400(g*g!)*(F+D+Deg(a)+1)
and

C: = n[gs(r+ 1)*'+11(((2gg + 1)C,) @ +DC)* F el Jog PTre!+10 Ps'(F + n'log 2).

Qur main result is as follows:

Theorem 1. Suppose that x,, ..., 3¢ R and A€ R; are solutions of equation (15).
If Deg (V) <eg, max Deg (x;) then

(16) m‘axDeg (x;) < 2k!'qC,+8kk!g* A+ g, F.
Further, in the absolute case, if s(1)<g, max s(x;) then
(17) max s(x;) = 2k!(q+1)°Cy+8kk!g* (g + 1) A+ (q+ 1) g5

where & =(4gk")™* and &=(4gk!(q+1)"*)~L.

Our theorem implies that in the absolute case equation (15) has only finitely
many solutions and these can be effectively determined. We remark that in gen-
eral it is possible to decide, whether or not, an «€G is in R, only if the elements
of R can be represented in a well utilizable form (cf. [19], [18] or [20]).

In the special case A=0 our Theorem 1 includes Theorem 5 of GyG6Rry [18]
(with different estimate). Further, our theorem implies the ineffective Corollary 3.3
of GyGOry [17].

4. Integral elements of given discriminant over finitely
generated integral domains

In this paragraph we use the notation of paragraphs 2 and 3.

The elements o, a*¢ R, are called R-equivalent if «—a*c¢R. In this case
Dyx(@)=Dy(«*). In [17] Gy&ry proved that in the absolute case there are only
ﬁmte]y many pairwise inequivalent elements in R, with given discriminant. Further,
GyORryY [19] showed that such a system of pairwise inequivalent elements in R,_
can be effectively determined. Now we extend these results to the inhomogeneous
case. We prove in an effective form that there are only finitely many pairwise
R-inequivalent a€ R such that the discriminant of «+A is given with some A-Rg
which is in a certain sense “small” compared to a.

Let D, be as in Theorem 1 and let [L:K]=n=2.

Theorem 2. Suppose®) %ER. Let a, A€R, with

(18) Dux(a-{-/‘.) = .Do.

%) This condition automatically holds in the relative case.



114 I. Gaal

If Deg (A)<ég; Deg, Deg (D x(2) then a is R-equivalent to an element o«*€R,
satisfying

(19) Deg(a") < 2nqC,+ g F.
Further, in the absolute case, if s(A)<&y, s(Dgqyx(®)) then for the above o«* we have
(20) (") < 3n(g+1)'Ca+(q+1)*gscs

where & = (4gn’)™" and & = (4gn*(q+1))7".

In the special case A=0 our Theorem 2 includes Theorem 10 of GYGRy [19]
(with another estimate). Further, Theorem 2 implies Corollary 5.1 of Gy6ry [17].

5. S-integral solutions of inhomogeneous discriminant form
equations over number fields

Let Kc L be algebraic number fields with [L:K]=n=2. Let «y=1, 0, ..., %
be algebraic integers in L, linearly independent over K, such that L=K(x,, ..., o).
Denote by é a non-zero integer in K. Let us consider the discriminant form equation

(21) : D”x(alx1+ st +a;‘x;) = ¢

with variables?) X, ..., x;,€Zg. Effective bounds for all solutions of equation (21)
were given by GYGORryY [6], [7], [13] and Gy6rY and PApp [21], [22]. These theorems
were extended to the so called p-adic case by Gy6ry and Papp [21] and GYORY
[10], [12], [14]. Further, GyORry [15] obtained effective bounds also for the S-integral
solutions of equation (21). We remark that the general theorems of GyOry [18],
[20] concerning equation (14) include the above mentioned results as a special case.

In our previous paper [3] we considered inhomogeneous discriminant form
equations of type

(22) Dyx(ayx,+ ... + X, +4) = 0

where Xx,, ..., x;€ Zgx are dominating variables and A€Z, is a non-dominating
variable, such that®) |i[<e;-max|x| with a given small positive constant &;.

Under this assumption we gave effective bounds for the sizes of all solutions of
equation (22). Our result generalized some earlier theorems of Gyéry [6), [7], [13]
and GyOry and Papp [21], [22] concerning equation (21).

Our purpose is to deduce effective bounds for the heights of all solutions of
equation (22) in the more general case when the variables X, ..., x;, A are S-integral
numbers. To formulate our result we need some further notation.

Let G be the smallest normal extension of Q, containing L. Denote by g the
degree of G over Q and let y be a primitive integral element of G over Q with height®)

4) Zx denotes the ring of integers of an algebraic number field X.

%) |a] denotes the size of an algebraic number , that is the maximum of the absolute values
of its conjugates.

%) The height H () of an algebraic number « is the maximum absolute value of the coefficients
of the minimal defining polynomial of « over Z.
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not exceceding . Let ¢ be the number of distinct prime factors of the discriminant
of y over Q, and let Q be the maximum of these primes.

Denote by Dg, Rgx and hy the discriminant, regulator and class number of K,
respectively. Let S be a finite set of (additive) valuations?) of K. Denote by r(=0)
the number of the rational primes corresponding to the valuations induced on Q
by the elements of S, and let P denote the maximum of these primes. (In the case
r=0 put P=1 and log P=1.) Denote by Og the ring of S-integers®) of K. In the
case S=0, O coincides with Zg.

Let us denote by 0 ; the ring of those elements of L which are integral over
0s. We suppose that in equation (22) o, ..., €05, with max H(x)=A4 (A=2),

such that o,=1,a,, ..., o are linearly independent over K and L=K(ay, ..., o)
and that d€(0s with height d, (d,=2). Finally, let?)
Cs = exp {g1on"* max(Rx, hy)[gu (r + g+ 1)%'+1 Hos'log (P+ Q)] + Dot +12.

+(P+ Q) (log(do| Dkl))}-
Under the above conditions we have the following theorem:

Theorem 3. If xy,...,x.€0s and A€@s; are solutions of equation (22) and
H(2) <(max H(x))e then

(23) max H(x;) < exp [64k!g*(log C; + 6k log A)] = C,,

where gs=(64k!g%)~1.

In the special case A=0 our Theorem 3 gives effective bounds for the S-integral
solutions of equation (21), that is, Theorem 3 includes Corollary 4.1 of Gy6Rry [15]
(with different estimate).

In the special case §=9 Theorem 3 implies the folloving corollary:

Corollary 3.1. If xy,....,x,€Zg and A€Z; are solutions of equation (21) and
mﬁal—(m?x [xi])ez then

24 miaxﬂ <20,
where &;,=g8".

In the special case A=0 Corollary 3.1 implies e.g. Theorem 4 of Gy6ry and
Parpp [22] and Theorem 2 of GY6rY and PAPP [21] (with another bound).

In the above corollary the assumption concerning A is stronger than the con-
dition |A|<g; max |x;] hence it gives a weaker result than Theorem 1 of [3].

We remark that in the case of homogeneous equations as (21) there is a close
connection between the S-integral solutions and the solutions of the corresponding

) For valuations we use the terminology of Borevich and Shafarevich [2].

8) o€ K is said to be an S-integer if v(2)=0 for all valuations v¢S.

®) As in the previous paragraphs, g0, £, ... denote effectively computable positive con-
stants, depending only on g.
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p-adic equation. In the inhomogeneous case there is not such connection because
the restricting conditions concerning A do not remain valid for the non-dominating
variable of the corresponding p-adic equation. This is the reason why we cannot
deduce, as a consequence of Theorem 3, effective bounds for the solutions of
p-adic inhomogeneous discriminant form equations.

6. S-integral algebraic numbers with given discriminant

In this paragraph we use the notation of paragraph 5. Two numbers, a and
a* in 0Os,;, are called Os-equivalent, if a—a*€@s. In this case Dy x(2)=Dpx(«").

In the case S=0, in a series of papers GysSry [4], [5], [6], [T], [8] obtamcd
effective finiteness theorems concerning polynomials with algebraic integer coeffi-
cients and given discriminant. As a consequence of these results he proved that
there are only finitely many pairwise inequivalent algebraic integers with given
degree and given discriminant, and such a system can be effectively determined.
GYORY [9], [16] extended these results also to the p-adic case, and to the case of an
arbitrary finite valuation set S (see [19]). The general theorems of [19], mentioned in
paragraph 4, include all the above quoted results.

In the case S=0, in [3] we gave an inhomogeneous version of a theorem of
GYORY [8] concerning algebraic integers of given degree and given discriminant.
Now we formulate a similar result for an arbitrary finite valuation set S

Theorem 4. Let o, AOg ;. If

(25) Dyx(a+4) =0
and H(A)<[H(Dgeyx(@)]* then a is Os-equivalent to an a*€ 0, with height
(26) H(a") < exp(5glog Cs),

where e3=(16g2n* 1.

In the special case A=0 our theorem gives Theorem 15 of GyO6Rry [19] (with
another estimate). Further, in the special case S=@ Theorem 4 implies a result
similar to Theorem 3 of [3], but only with a stronger condition concerning A.

7. Proofs

The proofs of Theorem 1 and Theorem 2 are based on the following results
of GYORry [19] (see Theorem 1 and Theorem 10 of GYOry [19]). We use the notation
of our Theorem 1. Let a=a®, ..., 2@ denote the conjugates of any non-zero a€G

over Kuj(xy, ..., X,) (i.e. the 1mages of o under the distinct Kj(x,, ..., x,)-auto-
morphisms of G)

Theorem A. Let acR; with Dy x(x)=D,. Then
1)) max Deg () — D) = ¢C,

and in the absolute case
(28) max s() —a) = C,.
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Further, if %ER then a is R-equivalent to an element «*€ R, satisfying

(29) Deg (o) = ngC,
and in the absolute case
(30) s(a@") = 2n(g+ 1)*C,

with the constants C,, C, occurring in Theorem 1.

In our proofs of Theorem 1 and Theorem 2 we combine this deep effective
result with the method used in [3] and we utilize the inequalities (6)—(9) and

(10)—(13).

PROOF OF THEOREM 1. Let Xx;, ..., x;¢R and A€R, be a solution of equation
(15), such that Deg (4)<eg, X, and in the absolute case 5(1)<z,X; where Xp=
=m§1xDeg (x,) and X,:-'m?xs(xf). Put I(x)=0, %, +... + o4 X, 0=I(x)+ 4 and deno-
te by y, ..., y™ the conjugates of any y€L over K (i.e. the images of y under the
distinct K-isomorphisms of L in G). Further, let /;;(x)=19(x)—19(x), 4;;=49 —i®
and g;=0W—¢YP for any i#j, 1=i,j=n. Applying Theorem A to equation
(15), by 27) we get

,max Deg(e;;) = 9C,
and in the absolute case, by (28),

max s5(g;;) = Ce.

' i i 1=, j=n
These inequalities imply
(31) R Deg (0ij— 4ij) = qC,+2gDeg(4) + 8. F

and in the absolute case
(32) Jmax s(ei;— Ay) = (q+ 11 Ca+2g(q+ 1)°s(A) + g13(g + 1)°cs.

By our assumptions o,=1, o, ..., o, are linearly independent over K, hence the
equation system
Lix)=0y—4; (1=ij=n)

has a unique solution x,....,x;. Solving this equation system by Cramer’s rule,
we get
Uy

Ae=—, I=L .0k
1y

where »; (i=1,....,k) and v denote the corresponding determinants. Using (31)
we obtain
max Deg(v,) = k!'qC,+2gk! Deg (1) + 2kk!gA+ g\ F
and
Deg (v) = 2kk!gA+ gy F,
that is
(33) Xp= m'achg(x,) = k!qC,+2gk! Deg (1) + 4kk!g* A + g,¢ F.
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Since by our condition concerning A we have 2gk!Deg (1) c—;—XD, hence (16)
follows from (33). Similarly, in the absolute case, by (32) we obtain
max s(v;) = k!(g+1)°Cy+2gk!(g+1)°s(A) +2kk! (g + 1)° g+ (g + 1)° 811 ¢4

and
s(v) = 2kk!g(q+1)°s+(g+1)°gs¢s,
whence

(39) X, = max s(x;) =
= kl(g+1)°Cy+2gk!(g+ 1)2s(2) +4kk!' g (g + 1) A+ (g + 1)*g19C5.
By our assumption on A we have 2gk!(g+ 1)‘33().)«::-;- X,, and thus (34) implies (17).

Proor oF THEOREM 2. Let us denote the conjugates of any y€L over K as in
the proof Theorem 1. Put oy=a®—a®, 1,=20_3D and g,;=ua;+4; for
any i#j, 1=i,j=n. Applying Theorem A to (18), by (27) we have

(35) max Deg(¢;;) = ¢C,

1=i,j=n

and in the absolute case, by (28), we get

(36) léﬂ"ﬁ' s(0iy) = Co.

Let us choose the indices i, j so that
Deg () = 1§I.B,E}"x=_:u Deg (o)
and similarly, in the absolute case let

s(x;;) = max  s(og ).

1=V, j =n

Since a€R;, hence [K(2):K]=[L:K]=n and thus our assumption concerning A
implies

(37 Deg (1) = &[n® Deg (a;)) +n*(g— 1)F]
and in the absolute case
(38) 5(A) = ef(g+ 1) n*s(o;) +2g°n* (g + 1)* max {log #, 1 + F}].

Using (35) and (37) we obtain
Deg (2;;) = Deg(ei;— %)) = ¢C1+28 Deg(A) +gn F =
= ¢Cy+2gne; Deg () + gu F.
By the definition of &; we have Zgn’s_.,:—;— and thus we get a bound for Deg (x;;).
Writing this bound in place of Deg («;) in (37), we have
(39) Deg (1) = qC, + ga F.
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In the absolute case let us use (36) and (38) to get
s(oy) = s(@iy—Aij) = (@ +1)°Ce+28(g+1)°s(A) + (g + 1)°gescs =
= (g+1)*Cy+2gn*(g+ 1) 845 (i5) + (g + 1)°gaa s,

which, by the definition of &,, implies a bound for s(x;). Thus, again by (38),
we obtain

(40) §(2) <= Ca+ 8asC3.

Applying the second part of Theorem A to (18) we get
a+A =o' +a

| where «’€¢R; and acR. By (29)

(41 Deg (') = ngC,

and, in the absolute case, by (30)

(42) s(@') = 2n(g+1)*C,.

Now let a*=a’—A, then « is R-equivalent to «*, by (39) and (41) we get (19) and
in the absolute case (40) and (42) implies (20).

Now we turn to the proofs of Theorem 3 and Theorem 4. In the following we
shall use the notation of paragraph 5. Theorem 3 and Theorem 4 could be deduced
from Theorem 1 and Theorem 2, respectively, but our conditions concerning 4 will
be weaker if we prove Theorem 3 and Theorem 4 by applying the following result
of Gy6ry [19] (see Theorem 15 in [19]):

Theorem B. If acls,; with Dyx(x)=05 then o is Os-equivalent to an "0,
of height
(43) H@") = C,

with the constant Cy of Theorem 3.

This theorem 1is in fact a consequence of Theorem A. Using the well-known
properties of the heights of algebraic numbers, one can easily prove that for any
non-zero a, ..., &%, in G we have

log H(o, + ... + %) = (m+ 1)g+2g(log H(x,) + ... +log H(x,,))
and
log H(2y...%) = (m+ 1)g+2g(log H(zy) + ... + log H(%.))

(cf. . 2. [23], p. 31).

In the proofs of Theorem 3 and Theorem 4 we shall utilize these inequalities.

PROOF OF THEOREM 3. Let xy, ..., x,€05 and A€0s , be a solution of equation
(22) with H(A)<Xjz where Xp=max H(x). Let again Y@, .., y™ denote the
conjugates of any y€L over K, and let /(x)=a,x,+... +%Xx;. Applying Theorem
B to equation (22) we obtain
(44) I(x)+2=¢+a
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where aé@s L aE@s and by (43) H(¢) <C;. Let [;;(x)=19(x)—19(x), Ay=AD -
and g;;=0W—oP for any i#j, 1=i,j=n. (44) gives

(45) IhyX)=ey—4y (1=i,j=n)
where
(46) max_log H(gij—4y) = 5g+4glog Cy+4glog H(4).

By our assumptions concerning oy, ..., %, equation system (45) has a unique solu-
tion X, ..., x; and by Cramer’s rule we have

where v; (i=1,...,k) and » denote the determinants corresponding to x;. By
(46) we get

max log H(v;) < k!'g*(16log Cy+ 16log H(A) + 54k log A)

and

log H(v) = 34g*kk!log A,
whence
(47) log X = max log H(x;) <

< k1g*(3210g Cs + 32log H(A) + 179 log A).

Our condition concerning 7 implies 32k!g* log (i) log X, that is (23) fol-
lows from (47).

PROOF OF COROLLARY 3.1. One can easily see that if |T|-=:71t— (m‘axH)‘v then 4
satisfies the condition of Theorem 3 concerning 4 and (23) implies (24).

PrOOF OF THEOREM 4. Denote the conjugates of any y€L over K as in the
proof of Theorem 3. Applying Theorem B to (25) we obtain

(48) a+i=g+a

where 0€0s,,, ac0Os and by (43) H(g)<Cs. Let o;;=a¥ —a, J,;=i® -0 and
0ij=u;;+4A; for any i#j, 1=i,j=n. Let us fix the indices i, j so that

H (au) = H(x; ).

1”§n

As in the proof of Theorem 2 we have [K(x):K]=[L:K]=n since x€0s,. The
condition of Theorem 4 concerning A implies

(49) log H(x) < esn*g(1 + 2log H(x;)).
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Further, using (48) and (49) we have
log H(a;;) = log H(g;;— 4i;) = Sg+4glog Cy+4glogH(2) <=
< 6g +4glog Cy+ 8n*g*gslog H(w;)),

whence, by the definition of &; we get a bound for log H(x;;). In view of (49) this
bound gives

(50) log H() < logCs+2.

Put a*=p¢—A4, then a* is @s-equivalent to « and in view of H(g)<Cj; and (50)
we get (26).
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