On the sums of permanents generated by certain
Vandermonde matrices

By B. GYIRES (Debrecen)

Summary. Itis well-known that the calculation of permanents is generally a more complicated
problem than that of determinants. In this paper we deal with the following problem: Let ¥ be
the unitary Vandermonde matrix generated by the nth (n=2) roots of unity, and let U be the Van-
dermonde matrix generated by the elements 1, ..., p—1, where p is an odd prime number. Our
aim is to calculate certain sums of permanents of matrices, which are included in the Cauchy—RBinet
expansion of ¥¥*, and of (Det U)?~*U adj U*, respectively.

1. Introduction and the results

Let n=2 be an integer. Let the nXn matrix A=(a;) with complex entries
be given. Denote by A* the conjugate transpose of 4. Let M be the nXn matrix
with all its entries ones. E is the unit matrix.

The permanent of 4, denoted by Per A4, is defined as follows:

Perd= 2 ay...ay,
" W L
where (i}, ..., 7,) runs over the full symmetric group.

Let f;, 1=j=n, be non-negative integers satisfying the equality B, +...+8,=n.
Then Cg,. 4 (A) denotes the nXn matrix, which contains certain columns of 4,
namely the jth column of A appears f; times in Cg, 5 (A).

Let 1, ®,, ..., w,_; be the nth roots of unity different from one another. Let
p be an odd prime number. Let the matrices

1 1 AT U
1 1 o My ... 0,
e e
1 o~ of™...af"} )
1 1 ! | 1
U= | . p—1
i 2"." 3;_2".'.-(1’_.1)’-3,

of Vandermonde type be given, and let
(1.1) U-! = (Det U)*~*adj U*.
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It is known that
1.2) VV* = E,UU-* = E(mod p).
Let B,=k, and let

Al(") Z B' ﬁ ] IPCI’ Cu: 5 N (V)I s
B, =2 m?erq,,,,_ 8,1(0)-PerCup, .5, ,(U~Y),

where the summation is extended over all non-negative integers f;, 2=j=n, and
2=j=p -1, satisfying the equalities fy+... +f,=n—k, and Bo+...+B,-1=p—1—k,

respectwely _
The aim of the present paper is to prove the following two Theorems:

Theorem 1.1. For O0=k=n the identity

- (=1)**a! "—"( k] '
(1'3) Ak(n)_ n(n k)! <o (n J)( n)J
holds.
Theorem 1.2. For 0=k=p—1 the congruence
(1.49)

= (=P 3 (- V- YU~ 1~ k=P (p~ 1))} (modp)
holds. 5

Using theorems of the papers [1] and [3] both Theorems can be generalized.
For the proofs we need a Lemma.
Let

(1.5) C= (ajk)s D = (b,u)
be (n+1)X(n+1) upper triangular matrices with entries

a,,=0, Oéd‘éj-—-l,

1.6 1 ;

( ) ﬂjj.‘._,-—"';f, OESEH—_J,

bj. = 0, O=a=j-1,

1. -1y .

(7) b_uq-,:(s!)q 0§5§n—‘.},
respectively.

Lemma 1.1. D is the inverse of C, i.e.
CD = E.

Proor. Let CD=(cy). Since C and D are upper triangular matrices,
(108) Cﬂzo, Oék{]'én
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If j=k, then

—Jj k—j (_ ])l—J -5
Cik = sé; a.ff+lbj+ak = Z S!(k—j—S)'

§=0

by (1.6) and (1.7). Thus

(1.9) ;=1 0=j=n
If j<k, we have

LCIH )
(1.10) Cm-—wsg( 1) PRl fd

by the well-known combinatorial identity.

Formulas (1.8), (1.9) and (1.10) give us the statement of the Lemma.

The proofs of Theorems 1.1 and 1.2 can be found in sections 2 and 3, respec-
tively.

2. The proof of Theorem 1.1.

For the purpose of Theorem 1.1 let A™(x, y) be the nXn matrix with entries
¥, except the main diagonal, in which the entries are x. It is obvious that

2.1) A™(x,y) = yM+(x—y) E.

Using the variables z=x—y and y instead of x and y the eigenvalues of the matrix
(2.1) are the following:

d=z+ny, Y=z l=k=n-1
It is known that the spectral representation

A
(2.2) AM(x,y) =V A =3 © | p+
© -
An-1
holds. Using representation (2.1)
23) Per A(x,3) = > [;] k! Yzt

Applying the Cauchy—Binet expansion formula ([2], Theorem 1.3) we obtain by
(2.2) that
Ao An—Po

Per A®(x,y)= D —ﬁ%—l—ﬁ—, |Per Cg, g, .5, (NI,

where the summation is extended over all non-negative integers f;, 1=j=n, sat-
isfying the equality f,+...4f,=n. It is obvious that

(2.4) Per AM(x, y) = Zu‘ Eli' (z+ny)kz"*A4;(n).

k=0
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By (2.3) and (2.4) the identity
3 ()it = 3 A0 3 E) sy
x_o v—o

holds in y and in z. After a rearrangement this identity has the form

v S()40- 3y

v=k

If z=1, we get the polynomlal identity

Sl 50581 - 56w

Identifying the coefficients we have

& dhin) 2
2.5 'g; =) =&, 0sk=n,
where
n! k!
(2.6) a=_pE 0=k=n

Let » and u be the column vectors with components A,(n) and ¢;, 0=k=n,
respectively. Then (2.5) may be written in the form of a linear equation system
Cv=u with matrix defined by the first formula of (1.5). From Lemma 1.1 we have
v=Du, where D is defined by the second formula of (1.5). Thus we obtain

n—k { _ 1N
@7) am ===

j=0

Substituting (2.6) into (2.7) we get that

ey 0=k =n

1—0

and after a short calculation the solution (1.3).
From the first formula of (1.2) we have

S =1,

and from here we obtain subsequent consequence using (1.3).

Corollary 2.1. The combinatorial identity

é;(— Iyt [}1],.,;: ["}k] (=) (—n) = n"
holds.
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In the case of k=n—1 we get from (1.3) that A4,_,(n)=0, i.e.
Co-19r.8. (V) =0 for Put..+fu=1.
This result can be obtained directly by

n—1
20j=0, 1sk=n-1.
Jj=0

3. The proof of Theorem 1.2.

In the sequel the following elementary congruences will be applied several times.
Let the prime number p be given. Then

(p—1)!=-1 (modp),
3.1 k"' = 1(modp) if and only if k # 0(mod p),
k! Z0(modp) ifandonlyif 1=k=p-1.

As in section 2 let p be an odd prime number. Since

(3.2) DetU= T K= T (p—kF*  0(modp),
we have i s
PerCy, . 5, ,(U™Y) = (Det U)P-NCP-DPer Cp, , _.(adjU) =
= PerCy, . 5, _,(adj U) (mod p)
by (3.2), and thus we get for 0=k=p—1 that

1 i
By=2 7 PerCg,..p,.,(U)Per Cyp, 5, _, (adj U) (mod p),
Bs!... Bp-1!

where the summation is extended over all non-negative integers f;, 2=j=p—1,
satisfying the equation fy+...+f,_,=p—1—k.
Let x and y be arbitrary integers, and let z=x—y. Using the polynomial

f(@)=x+y@+ ... + 0" 2) = z+ (1 + @+ ... + @),

it is obvious that

f() =f(wg) =z+(p—-1)y = 4,
JK) =f(y-1) =z=A_1(modp), 2=k=p-—1.
4

B(x,y) ez U ;‘i % (0) U-l,
o -
o



128 B. Gyires

we get from Theorem 1 of the paper [1] that
B(x,y) = A®=Y(x, y)(mod p),
where A®-Y(x, y) is defined by (2.2). Thus we have
(3.3) Per B(x,y) = Per A?=V(x,y)(mod p).
Applying the Cauchy—Binet expansion formula ([2], Theorem 1.3) the congruence

p—1

Per () = 3 7o (z+(p— DY)z~ B, (modp)

holds. Using (2.4) we obtain

(9 2 B Ap-D)E+E-1yFz = 0 (modp)

by (3.3).
Let z=1, and let us substitute the numbers p, p—1, ..., 3,2 into y. Then we
get the homogeneous linear congruence system

(3.5) :g_: -]:—I (By—Ax(p—1))j* = 0 (mod p)

for 1=j=p—1 from (3.4).
We assert that the congruence

1

(3.6) F—l_)!(B -1—4,-1(p—1)) = 0 (mod p)
holds. Namely
3) 2D~ -1

On the other hand the only solution of the linear congruence system

DetU
0

vr=| . | x=w
0

x; =(p—1)DetU (modp)

is
for 1=k=p-—1. Thus

(3.8) %}T = (p—-D!(p—1)"(Det Uy*~* = (p—1)! (mod p).

From (3.7) and (3.8) we get our statement (3.6).
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Taking (3.6) into account we get that (3.5) can be reduced to the homogeneous
linear congruence system

_2 1
A -5 (Be=A(p—=1))j* =0 (modp). 1=j=p-1,

with matrix U, which has only the trivial solution by (3.2). Thus, using also (3.6),
(3.9) B, = A(p—1) = (p— 1) 4 (p—1)(mod p)
where for 0=k=p—1
p=1=—k =K
(r= 1P o= = (=== 2 (P T H -1ty

is an integer. From here we get the statement (1.4) of Theorem 1.2 by (3.9) using
the elementary congruences (3.1).

Substituting n=p—1 into Corollary 2.1 we get the following Corollary using
congruences (3.1).

Corollary 3.1. The congruence
-] p—1—k
Iyt S 0 -
p—-1—k=W)I]P2(p—1—v)! =1 (modp)
holds.

Since A4, ,(p—1)=0, we have the congruence B,_,=0 (modp) by (3.9).
Moreover B, ;=1 (modp) from (3.8).
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