
Publ. Math. Debrecen

51 / 1-2 (1997), 21–33

On extended topologies
Sequential operators and Heine criteria

By STANIS LAW GNI LKA (Poznań)

Abstract. It is the aim of this paper to investigate FU and sequential operators
for spaces endowed with some extensions of topologies. The general Heine criteria of
continuity of maps are discussed and the problem of extensions of sequentially contin-
uous mappings is studied.

1. Introduction

It is well-known that there exist topological spaces in which the topol-
ogy cannot be fully described in terms of sequences. However spaces for
which sequences suffice are of special interest. The general convergence
structures have been studied by many authors from various points of view.
Here we study sequential operators for spaces (X, f) where f is a closure
operation not defining a topology on X but nevertheless fulfilling some of
Kuratowski’s closure axioms and hence defining some extension of topol-
ogy. We define and examine FU (Fréchet-Urysohn) operators and sequen-
tial ones. Next the Heine criteria of the continuity of maps between (X, f)
spaces are defined and studied. As consequences we obtain characteri-
zations of FU and sequential spaces. Finally, we discuss the problem of
extensions of sequentially continuous mappings.
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Key words and phrases: FU operator, sequential operator, Heine criterion, identity

principle, sequentially dense set.
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2. Preliminaries

We follow the notation of [3] and [4]. As for prerequisities, the reader
is expected to be familiar with [4]. We will denote by P(X) the power set
of X. Any mapping f : P(X) −→ P(X) is called a c-operation (closure
operation) for a set X. The following basic definitions of classes of c-
operations are made. A c-operation f is isotonic if A ⊂ B ⊂ X implies
f(A) ⊂ f(B); f is an extended topology (f is ET) if f is isotonic and
f(∅) = ∅; f is enlarging if A ⊂ f(A) for A ⊂ X; f is expansive if f is
isotonic and enlarging; f is idempotent if ff = f ; f is a closure function if
f is expansive and idempotent; f is finitely additive (finitely subadditive)
if f(

⋃
s

As) =
⋃
s

f(As) (f(
⋃
s

As) ⊂
⋃
s

f(As)) for every finite family {As}; f

is a Kuratowski operator if f is finitely additive, enlarging and idempotent.
Write Vf (x) = {U ⊂ X : x ∈ Intf U}, x ∈ X, where Intf U = X \ f(X \
U). We say that a pair (X, f) satisfies the condition (AC1) if, for every
x ∈ X , there exists a countable f -net (see [4] for this notion) Bf (x) of
neighborhoods of x. A pair (X, f) is called quasi-metrizable if there exists
a function d : X ×X −→ R+ = {r ∈ R : r ≥ 0} such that for every x ∈ X

and A ⊂ X, x ∈ f(A) iff d(x,A) = 0, where d(x,A) = inf{d(x, a) : a ∈ A}
if A 6= ∅ and d(x, ∅) = 1 for any x ∈ X (see [5]).

Theorem 2.1 ([5], Theorem 5.1). A pair (X, f) is quasi-metrizable iff

f is finitely additive and the condition (AC1) is fulfilled.

Suppose we are given two spaces (X, f) and (Y, g) and a mapping α

of (X, f) into (Y, g). The mapping α is said to be continuous if α(f(A)) ⊂
g(α(A)) for all A ⊂ X.

Let X 6= ∅ be an arbitrary set. We say that a sequence (xn) ⊂ X

converges to x ∈ X (and denote this by xn −→
f

x or by x ∈ limf xn) if for

every ∅ 6= V ∈ Vf (x) there exists an N ∈ N such that xn ∈ V for every
n ≥ N . Then a point x is called an f -limit of (xn). A constant sequence
such that xn = x for every n ∈ N is denoted by (x). In the sequel we assume
that f is a c-operation for X. Observe that: any sequence (xn) ⊂ X

converges to x ∈ X iff Vf (x) ⊂ {∅, X}; if f is isotonic, card(X) > 1,
x ∈ X and if ∅ ∈ Vf (x) then no sequence (xn) ⊂ X converges to x. Note
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that if f is enlarging then x ∈ limf (x) for every x ∈ X. If f(X) = X then
the converse implication holds. Hence if f is enlarging then (X,−→

f
) is an

L∗-space in the sense of [6] and maximal L-structure in the sense of [2],
and conversely, if (X,−→

f
) is an L∗-space (or maximal L-structure) and

f(X) = X, then f is enlarging. Suppose f is enlarging and T1(Vf ) axiom
holds. Then for every x ∈ X we have limf (x) = {x}. If f(X) = X then the
converse property holds. We say that a pair (X, f) satisfies (T2)f axiom
(T2(Vf ) axiom) if for every pair of distinct points x, y ∈ X there exist
U, V ∈ Tf (∅ 6= U ∈ Vf (x) and ∅ 6= V ∈ Vf (y)) such that x ∈ U , y ∈ V

and U ∩V = ∅ (such that U ∩V = ∅). It is clear that (T2)f axiom implies
(T1)f axiom. Note that for o-metrizable spaces T2(Vf ) axiom reduces to
σ − T2 axiom (see [7]). We see at once that (T2)f axiom implies T2(Vf )
axiom; if f is enlarging and idempotent then they are mutually equivalent;
if f is enlarging and T2(Vf ) axiom holds then T1(Vf ) axiom is satisfied.
In the sequel, every f -net (see [4]) not contained in {∅, X} will be called
a non-trivial f -net. It is easily seen that if T2(Vf ) axiom holds then every
f -net at every point x ∈ X is non-trivial iff f(X) = X.

Let X 6= ∅ and (xn) ⊂ X. Consider the following axiom (uniqueness
of limits):

(UL) if xn −→
f

x and xn −→
f

y then x = y.

It is easily seen that T2(Vf ) axiom implies (UL) and if f is finitely
subadditive, f(X) = X and for every x ∈ X there exists a non-trivial
countable f -net Bf (x) (equivalently, Vf (x) 6= {X} for every x ∈ X and
(AC1) axiom holds, see [5]), then (UL) implies T2(Vf ) axiom.

3. FU operators

Let f be a c-operation for a set X. A sequential modification fseq of
f is defined as follows: x ∈ fseq(A), A ⊂ X, iff there exists a sequence
(xn) ⊂ A such that xn −→

f
x. A c-operation f is called FU operator

(Fréchet-Urysohn) and a pair (X, f) an FU-space if f = fseq. We see that
fseq is finitely additive c-operation (and hence is ET); x ∈ fseq(A) for
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every A 6= ∅ iff Vf (x) ⊂ {∅, X}; if f is enlarging then fseq is enlarging and
conversely, if f(X) = X or if f is isotonic, and fseq is enlarging then f

is enlarging. If card(X) = 1 then fseq 6= ∅. If card(X) = 1, f is isotonic
and f 6= ∅ then fseq ⊂ f and fseq 6= ∅. If card(X) > 1 and f = ∅ then
fseq = ∅.

Proposition 3.1. Suppose f(X) = X or f is isotonic and f 6= ∅ (if

card(X) > 1 the last condition is superfluous). Then fseq ⊂ f . Analo-

gously, if f(∅) = ∅ and f(X) = X then fseq ⊂ pf .

Proof. Let f(X) = X. Then ∅ 6∈ Vf (x) for every x ∈ X. We can
suppose that A 6= ∅ and fseq(A) 6= ∅. Choose x ∈ fseq(A). Hence xn −→

f
x

for some sequence (xn) ⊂ A. If Vf (x) = ∅ then x ∈ f(A) for all A ⊂ X. If
Vf (x) 6= ∅ then V ∩A 6= ∅ for every V ∈ Vf (x) and so x ∈ pf (A) ⊂ f(A).

Now let f 6= ∅ be isotonic. One can suppose that A 6= ∅ and fseq(A) 6=
∅. Let x ∈ fseq(A). Then ∅ 6∈ Vf (x). If Vf (x) = ∅ then x ∈ f(A) for every
A ⊂ X. Let Vf (x) 6= ∅. If A = X then of course x ∈ f(X). If A 6= X

then xn −→
f

x for some (xn) ⊂ A. Suppose x /∈ f(A). It follows that

∅ 6= X \ A ∈ Vf (x), hence xn ∈ X \ A for some N ∈ N and all n ≥ N , a
contradiction. ¤

Proposition 3.2. a) Let card(X) = 1. Then fseq is the finest non-

empty ET g for X with xn −→
f

x =⇒ xn −→
g

x.

b) If card(X) > 1 then fseq is the finest ET g for X with xn −→
f

x

=⇒ xn −→
g

x.

c) If, moreover, f(X) = X then fseq is the finest ET for X with the

same convergent sequences as f .

Proof. We first show that xn −→
f

x implies xn −→
fseq

x. Suppose

xn −→
f

x. If f = ∅ and card(X) = 1 then Vf (x) = P(X) and Vfseq (x) =

{X}; if card(X) > 1 then fseq = ∅. Hence in both cases the implication
holds. Let f 6= ∅. We have ∅ /∈ Vfseq (x). If Vfseq (x) ⊂ {X} then for
every sequence (xn), xn −→

fseq

x. Assume Vfseq (x) 6⊂ {X} and let xn 6−→
fseq

x.

There exists X 6= U ∈ Vfseq (x) such that for every N ∈ N and some kN ,
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xkN /∈ U . But x /∈ fseq(X \ U), hence xkN 6−→
f

x, a contradiction. Now

let card(X) = 1 and let g 6= ∅ be ET for X such that xn −→
f

x implies

xn −→
g

x. If f = ∅ then fseq 6= ∅ and consequently fseq = g. If f 6= ∅ then

fseq = gseq ⊂ g. Hence we obtain a).

To prove b) assume card(X) > 1. If f = ∅ then fseq = ∅ hence
fseq ⊂ g. Let f 6= ∅. If fseq = ∅ then obviously fseq ⊂ g. If fseq 6= ∅ then
x ∈ fseq(A) for some x ∈ X and A ⊂ X. There exists a sequence (xn) ⊂ A

such that xn −→
f

x. By assumption, xn −→
g

x and so x ∈ gseq(A). We

conclude that gseq 6= ∅, hence g 6= ∅. We have to show that fseq ⊂ g.
Suppose, on the contrary, there exist x ∈ X and A ⊂ X such that x ∈
fseq(A) and x /∈ g(A). There is a sequence (xn) ⊂ A such that xn −→

f
x.

It follows xn −→
g

x. But X \ A ∈ Vg(x), which yields xn ∈ X \ A for

every n ≥ N , a contradiction (observe that A 6= X and A 6= ∅ because
card(X) > 1, g is ET and xn −→

g
x).

It remains to prove c). Let f(X) = X and suppose that xn −→
fseq

x.

From Proposition 3.1 we have fseq ⊂ f and hence Vf (x) ⊂ Vfseq (x). Let
V ∈ Vf (x) be arbitrary. Then xn ∈ V for all n ≥ N , because xn ∈ U for
every U ∈ Vfseq (x) and for all n ≥ N . We conclude that xn −→

f
x. ¤

Theorem 3.3. Let f(X) = X. Then fseq is the unique FU operator

for X with the same convergent sequences as f .

Proof. Let g be FU operator for X with the same convergent se-
quences as f . From Proposition 3.2 we have fseq ⊂ g. To prove that
g ⊂ fseq suppose that x ∈ g(A) and x /∈ fseq(A) for some A ⊂ X. By
assumption, x ∈ gseq(A). But ∅ /∈ Vg(x), hence there exists a sequence
(xn) ⊂ A such that xn −→

g
x. Then xn −→

f
x and so x ∈ fseq(A), a con-

tradiction. ¤

Applying Proposition 3.2 we obtain

Theorem 3.4. Suppose f(X) = X and let g be ET for X such that

g ⊂ f . Then g ⊃ fseq iff f and g have the same convergent sequences.
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4. Sequential operators

A c-operation f for X is called a sequential operator and a pair (X, f)
a sequential space if Ff = Ffseq . Of course every FU operator is a sequen-
tial one. Let q(fseq)(A) =

⋂{F ⊂ X : F ⊃ A,F = fseq(F )}, A ⊂ X.
It is clear that q(fseq) is a Kuratowski operator, fseq ⊂ q(fseq) and if f is
enlarging then q(fseq) ⊂ qf . Also if f is sequential operator then qf (∅) = ∅.
If f is enlarging and idempotent then q(fseq) ⊂ f .

Proposition 4.1. a) Let f be enlarging. Then q(fseq) is the finest
idempotent c-operation g for X such that g(X) = X with xn −→

f
x =⇒

xn −→
g

x.

b) If, moreover, f is idempotent then q(fseq) is the finest idempotent c-
operation g for X such that g(X) = X with the same convergent sequences
as f .

Proof. a) It is clear that q(fseq)(X) = X. Suppose xn −→
f

x 6=⇒
xn −→

q(fseq)
x for some (xn) ⊂ X and x ∈ X. Then there is V ∈ Vq(fseq)(x)

such that for every N ∈ N, xkN
/∈ V for some kN ≥ N . As x /∈ q(fseq)(X \

V ) we have x /∈ fseq(X \ V ). But (xkN
) ⊂ X \ V and xkN

−→
f

x, a

contradiction. It remains to show that q(fseq) ⊂ g for every idempotent
c-operation g with g(X) = X and xn −→

f
x =⇒ xn −→

g
x. Choose

A ⊂ X (we can assume that A 6= ∅ and A 6= X) and let x ∈ q(fseq)(A).
Then A ⊂ fseq(A) ⊂ g(A) and g(A) ∈ Fg ⊂ Ffseq . Hence g(A) = fseqg(A)
and x ∈ g(A).

b) By assumptions, q(fseq) ⊂ f . Hence Vf (x) ⊂ Vq(fseq)(x) for every
x ∈ X and so xn −→

q(fseq)
x =⇒ xn −→

f
x. With a) we obtain our assertion.

¤

Note that under the assumptions of Proposition 4.1b we have fseq =
(q(fseq))seq.

Theorem 4.2. Suppose f is enlarging and idempotent. Then q(fseq)

is the unique isotonic (and also ET) idempotent sequential operator such
that g(X) = X with the same convergent sequences as f .

Proof. Let A ∈ Fq(fseq) . We have (g(fseq))seq(A) ⊂ A, because if
x /∈ A and x ∈ (q(fseq))seq(A) for some x ∈ X then X \ A ∈ Vg(fseq)(x)
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and xn ∈ X \A for n ≥ N , where (xn) ⊂ A, which is impossible. Now let
A ∈ F(q(fseq))seq

. From Proposition 4.1b it follows that A = fseq(A), hence
q(fseq)(A) ⊂ A and A ∈ Fq(fseq) . Hence Fq(fseq) = F(q(fseq))seq

and we
see that q(fseq) satisfies the conditions. We show the uniqueness of q(fseq).
Let g be isotonic idempotent sequential operator such that g(X) = X

with the same convergent sequences as f . From Proposition 4.1b we have
q(fseq) ⊂ g. By assumptions, gseq = fseq. As g is idempotent we have
q(gseq) = qg. Since g is isotonic, g ⊂ qg and hence g ⊂ q(fseq). ¤

Applying Proposition 4.1b we obtain

Theorem 4.3. Let f be enlarging and idempotent. Suppose g is idem-

potent, g(X) = X and g ⊂ f . Then g ⊃ q(fseq) iff g and f have the same

convergent sequences.

The next theorem provides a criterion for (X, f) to be FU-space.

Theorem 4.4. a) Suppose f is enlarging and idempotent. If f is FU
operator then fseq = q(fseq).

b) Suppose f is isotonic sequential operator. If fseq = qfseq then f is

FU operator.

Proof. a) We have f = fseq ⊂ q(fseq) ⊂ f . b) As Ff = Ffseq , qf =
q(fseq) = fseq. By assumptions, fseq is idempotent hence fseq = ffseq and
so X = q(fseq)(X) = fseq(X) = ffseq(X) = f(X). It follows fseq ⊂ f ⊂ qf .

Thus f = fseq (and f = q(fseq)). ¤

Of course, if f is an idempotent FU operator then fseq is idempotent.
Conversely, if f is isotonic and enlarging sequential operator and fseq is
idempotent then f is FU. Hence we obtain

Corollary 4.5. a) A topological sequential space (X, f) is FU-space

iff fseq is idempotent.

b) Let f be idempotent. Then a sequential space (X, f) is FU iff fseq

is idempotent and ffseq = fseqf .

Finally we establish some sufficient conditions under which f is FU
operator.
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Proposition 4.6. Suppose f is finitely additive and f 6= ∅ or

card(X) > 1 and let condition (AC1) holds. Then f is FU operator.

Proof. It suffices to show that f ⊂ fseq. Choose A ⊂ X (we can
assume that A 6= ∅ and f(A) 6= ∅) and let x ∈ f(A). Then ∅ /∈ Vf (x) and
Vf (x) 6= ∅. By assumption, there exists a countable f -net Bf (x) = {Un :
n ≥ 1} such that Un+1 ⊂ Un for n ∈ N. Of course, Un ∩ A 6= ∅ for n ∈ N.
Choose xn ∈ Un ∩ A, n ∈ N, and let V ∈ Vf (x) be arbitrary. There exists
Un ⊂ V , hence xn ∈ V and xm ∈ Un ⊂ V for m ≥ n. It follows that
x ∈ fseq(A) and so f ⊂ fseq. ¤

Corollary 4.7. If (X, f) is quasi-metrizable then f is FU operator.

5. Heine criteria

The Heine criterion of the continuity of maps between topological
spaces is well-known (see [1], Proposition 1.7). Here we examine this
problem from the general point of view and obtain necessary and suffi-
cient conditions under which the space (X, f) is FU or sequential space.
We start with the notion of sequential continuity.

Let α : (X, f) −→ (Y, g) be an arbitrary mapping. The mapping α

is said to be sequentially continuous if xn −→
f

x implies α(xn) −→
g

α(x)

for x ∈ X and (xn) ⊂ X; in other words if α(limf xn) ⊂ limg α(xn)
for every (xn) ⊂ X. It is clear that if α is sequentially continuous then
αfseq(A) ⊂ gseqα(A) for every A ⊂ X, i.e., α is continuous as a map of
(X, fseq) into (Y, gseq).

Proposition 5.1. Suppose α : (X, f) −→ (Y, g) where f 6= ∅ or

card(X) > 1 and let g be isotonic or α be onto. If α is continuous then α

is sequentially continuous.

A set F ⊂ X is called sequentially closed if F ∈ Ffseq . It is clear
that if f is enlarging and if αfseq ⊂ gseqα then α−1(F ) ∈ Ffseq for every
F ∈ Fgseq , F ⊂ Y .

Let W be a property of c-operation g for Y . We consider the following
properties W: W = is means g is isotonic; W = fa: g is finitely additive;
W = cl: g is a closure; W = Ko: g is a Kuratowski operator. We say
that for (X, f) the Heine criterion (HW) holds if a map α of (X, f) into
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any (Y, g) where g has the property W is continuous iff α is sequentially
continuous. It is clear that the following implications hold: (His) =⇒
(Hfa) =⇒ (HKo) and (His) =⇒ (Hcl) =⇒ (HKo). We say that a
map α : (X, f) −→ (Y, g) is t-continuous if α−1(B) ∈ Tf for every B ∈ Tg.
One can prove that if f is enlarging and g is isotonic or α is onto then
continuity of α implies t-continuity of α. If f is isotonic and g is enlarging
and idempotent then the converse implication holds. Replacing in the
above definition of (HW) continuity by t-continuity we obtain the t-Heine
criterion (tHW).

Theorem 5.2. Suppose α : (X, f) −→ (Y, g) and f(X) = X. The

following conditions are equivalent:

a) f is FU operator.

b) For (X, f) criterion (His) holds.

c) For (X, f) criterion (Hfa) holds.

Proof. a) =⇒ b): Let α be continuous. Then α is sequentially
continuous. Conversely, let α be sequentially continuous. Hence α is con-
tinuous as a map of (X, fseq) into (Y, gseq). As g is isotonic, gseq ⊂ g, i.e.,
idY : (Y, gseq) −→ (Y, g) is continuous. But f = fseq and α = idY ◦α :
(X, f) −→ (Y, g) is continuous.

c) =⇒ a): Since f(X) = X, fseq ⊂ f . From Proposition 3.2 it follows
that idX is sequentially continuous as a map of (X, f) onto (X, fseq). But
fseq is finitely additive, hence by criterion (Hfa) idX is continuous. This
gives f ⊂ fseq and f is FU. ¤

Note that in implication b) =⇒ c) the condition f(X) = X is super-
fluous. If f is a Kuratowski operator we obtain a criterion for topological
space to be an FU space.

Theorem 5.3. Let α : (X, f) −→ (Y, g). a) Suppose f is expansive. If

f is a sequential operator then for (X, f) criterion (tHcl) (and also (Hcl))
holds.

b) Let f be enlarging. If for (X, f) criterion (tHKo) holds then f is a

sequential operator.

c) Suppose f is enlarging and idempotent. If for (X, f) criterion (HKo)
holds then f is a sequential operator.

Proof. a) Suppose α is t-continuous. Then α is continuous. As g

is isotonic, α is sequentially continuous. Conversely, let α be sequentially
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continuous. Choose B ∈ Tg and let x ∈ fseqα
−1(B). Then there exists

a sequence (xn) ⊂ α−1(B) such that α(x) ∈ limg α(xn). It follows that
α(x) ∈ gseq(B) ⊂ g(B) = B and so x ∈ α−1(B). We conclude that
fseqα

−1(B) ⊂ α−1(B). Since f is enlarging, α−1(B) ∈ Ffseq = Ff and α

is t-continuous. Consequently, criterion (tHcl) holds.
b) Since f is enlarging, Ff ⊂ Ffseq . From Proposition 4.1a it follows

that idX is sequentially continuous as a map of (X, f) onto (X, q(fseq)),
hence idX is t-continuous. We obtain Fq(fseq) ⊂ Ff . But Ffseq ⊂ Fq(fseq)

and Ff ⊂ Ffseq and so Ff = Ffseq .
c) Arguing as in b) we have that idX is continuous as a map of (X, f)

onto (X, q(fseq)), hence f ⊂ q(fseq) and so f = q(fseq). This implies that
Ffseq ⊂ Ff . This clearly forces Ffseq = Ff and so f is a sequential
operator. ¤

We can rephrase the above result as follows.

Theorem 5.4. Suppose α : (X, f) −→ (Y, g) and let f be expansive.

The following conditions are equivalent:

a) f is a sequential operator.

b) For (X, f) criterion (tHcl) holds.

c) For (X, f) criterion (tHKo) holds.

Remark. If f and g are Kuratowski operators the above theorem gives
necessary and sufficient conditions under which a topological space is a
sequential one (see [1], 1.7 Proposition).

6. Quotient operators

Let f be c-operation for X and ∼ an equivalence relation on X. Let us
denote by k the natural map k : X −→ X/ ∼. A c-operation f∼ for X/ ∼
is defined as follows: (f∼)(A) = A ∪ k(f(k−1(A))) for every A ⊂ X/ ∼.
It is clear that f∼ is enlarging; (f∼)(∅) = ∅ iff f(∅) = ∅. If f is finitely
additive or isotonic then so is f∼; if f is isotonic then k is continuous
and sequentially continuous and also it is continuous as a map of (X, fseq)
onto (X/ ∼, (f∼)seq), i.e., k(fseq(A)) ⊂ (f∼)seq(k(A)) for every A ⊂ X;
k is sequentially continuous iff k is continuous as a map of (X, fseq) onto
(X/ ∼, (fseq)∼).
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Proposition 6.1. If f is isotonic then f∼ is the finest enlarging c-

operation g for X/ ∼ such that k : (X, f) −→ (X/ ∼, g) is continuous and

sequentially continuous.

Proof. By assumptions it follows that k : (X, f) −→ (X/ ∼, f∼)
is continuous, hence k(f(A)) ⊂ (f∼)(k(A)) for every A ⊂ X. Let g be
enlarging c-operation such that k : (X, f) −→ (X/ ∼, g) is continuous
and let B ⊂ X/ ∼. We have k(f(k−1(B))) ⊂ g(B), hence (f∼)(B) ⊂
B ∪ g(B) = g(B) and f∼ ⊂ g. ¤

7. Identity principle

In this section we discuss the problem of extension of sequentially
continuous mappings. We start with two definitions. Let f be c-operation
for X and Xo ⊂ X. A set Xo is called sequentially dense in X if fseq(Xo) =
X. Note that if α is a continuous mapping of (X, fseq) onto (Y, gseq) and
Xo ⊂ X is sequentially dense in X, then α(Xo) is sequentially dense in
Y . A set Xo ⊂ X is called weakly sequentially dense in X if for every
A ∈ Ffseq such that Xo ⊂ A ⊂ X we have A = X (this definition fails if
X /∈ Ffseq ). It is easily seen that sequential density implies weak sequential
density if X ∈ Ffseq .

Theorem 7.1 (Identity principle). a) Suppose α and β are sequen-

tially continuous as mappings of (X, f) into (Y, g) and let (Y, g) satisfies

condition (UL). Let α|Xo = β|Xo where Xo ⊂ X is sequentially dense in

X. Then α = β.

b) If g is enlarging then the condition (UL) is also a necessary one.

Proof. a) Let A = {x ∈ X : α(x) = β(x)}, (xn) ⊂ A and xn −→
f

x ∈
X. By assumptions α(xn) −→

g
α(x), β(xn) −→

g
β(x) and α(xn) = β(xn)

for n ∈ N. Applying (UL) we obtain α(x) = β(x), i.e., x ∈ A. It follows
that fseq(A) ⊂ A. But Xo ⊂ A, hence X = fseq(Xo) ⊂ fseq(A) ⊂ A ⊂ X

and so A = X.
b) Let g be enlarging. It suffices to prove that if (Y, g) does not satisfy

(UL) then there exist a space (X, f), sequentially continuous mappings
α, β : (X, f) −→ (Y, g) and sequentially dense subset Xo ⊂ X such that
α|Xo = β|Xo but α 6= β. Let Xo = {a1, a2, . . . }, X = {x, a1, a2, . . . },
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x 6= ai, i = 1, 2, . . . , and let f(∅) = ∅, f(X\{ak}) = X\{ak}, k = 1, 2, . . . ,
f({x, a1, . . . , ak}) = {a1, . . . , ak}, k = 1, 2, . . . , and f(A) = X otherwise.
Then fseq(Xo) = X. Since (UL) is not satisfied, there exists a sequence
(yn) ⊂ Y such that yn −→

g
y, yn −→

g
z and y 6= z. Let α(ak) = β(ak) = yk,

k = 1, 2, . . . , α(x) = y, β(x) = z. Then α|Xo = β|Xo and α 6= β. One can
easily show that α and β are sequentially continuous. ¤

Remarks. 1◦ Note that (X, f) and (Y, g) in general are not L-spaces
in sense of [2].

2◦ Suppose f is enlarging. Then in the above theorem Xo may be
weakly sequentially dense (“weak identity principle”).

Let α : (X, f) −→ (Y, g) be sequentially continuous. A mapping α is
called an epimorphism if for every (Z, h) and every sequentially continuous
mappings φ : (Y, g) −→ (Z, h) and ψ : (Y, g) −→ (Z, h) the condition
φα = ψα implies φ = ψ.

Theorem 7.2. Let α : (X, f) −→ (Y, g) be sequentially continuous.
a) If α is onto then α is an epimorphism.
b) Suppose g is isotonic. If α is an epimorphism then α is onto.

Proof. The proof of a) is immediate. To prove b) suppose α is not
onto, i.e., Y \ α(X) 6= ∅. Let ∼= α(X)× α(X)∪⋃{(y, y) : y ∈ Y \ α(X)}
and let Z = Y/ ∼ and h = g∼. Let k : (Y, g) −→ (Z, h) be a natural
mapping. Fix xo ∈ X and put φ = k(α(xo)) and ψ = k. Since g is isotonic
and k is onto, ψ is sequentially continuous. Of course, φ is also sequentially
continuous. It is clear that φα = ψα but φ 6= ψ. ¤

Remark. Let IS denote the category whose objects are isotonic spaces
(pairs (X, f), where f is isotonic) and whose morphisms are sequentially
continuous mappings. Then Theorem 7.2 can be restated as follows: Let
α be an IS-morphism. Then α is an epimorphism in IS iff α is onto.

Applying the identity principle and arguing similarly as in the proof
of Theorem 7.2 we have

Theorem 7.3. a) Let U denote a family of spaces satisfying condition
(UL). Let α : (X, f) −→ (Y, g) be sequentially continuous, where (X, f)
and (Y, g) are in U . If α(X) is sequentially dense in Y then α is an
epimorphism in U .

b) Suppose g is isotonic. If α is an epimorphism in U then α(X) ∪
gseqα(X) = Y .
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Remarks. 1◦ Let UES denote the full subcategory of IS whose ob-
jects are expansive spaces satisfying condition (UL). From Theorem 7.3 it
follows that: If α : (X, f) −→ (Y, g) then α is an epimorphism in UES iff
α(X) is sequentially dense in Y .

2◦ If f is enlarging then in Theorem 7.3 α(X) may be weakly sequen-
tially dense in Y .
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