On a theorem of Pisot

By I. KORNYEI (Budapest)

Let F be the field of the rational numbers, or an imaginary quadratic field. The
algebraic integers in F form a discrete lattice. For a complex z let | z| denote the
distance from z to the nearest algebraic integer in F. ||z] is zero only for integers of F.

The aim of this paper is to prove the following

Theorem 1. Let wy, ..., a, be distinct algebraic numbers, |x;|=1 (j=1, ..., n),
Pp1(x), ..., p.(x) be nonzero polynomials with complex coefficients. Then the relation

(1) Jim [| 3 (k]| = 0

holds if and only if the following assertions are true:

a) The numbers «; are algebraic integers.

b) The coefficients of p;(x) are elements of the algebraic extension F(a;).

¢) If o; and a; are conjugate elements over F, and the corresponding polynomials
have the form

1 '
pi(x) = ch(;“x"s Pj(-") = j‘ct(tj)x.s

u=0 u=0

then p; and p; have the same degree, ¢’ and ¢ are conjugate elements over F too,
and for any such isomorphism t which is the identical mapping on F and t(x;)=«;, the
relations

t(c")=cP (u=0,1,...54=1t)
hold.

d) All the conjugates of the ;s not occurring in the sum 2 p,(k)x¥ have absolute
i=1

value less than one.
e) The sums

i;j*rr(p.-(k)af)

are algebraic integers in F for every large k (Tr («) denotes the sum of conjugates of «
over F.) The asterisk in the sum denotes, that the summation is taken over non-conju-
gate o;-s.

This assertion is a generalization of a theorem due to Prsor ([1], [2], [3]).
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Remark 1. The condition, that all traces Tr (p;(k)«}) are integers for large k—s,
is not necessary for the relation

| Zpi(k) k|| - 0.
It holds for example

1 B 1 =
l3a+v2re3 6418 ~0 as k-,

but Tr[il-(l-{-l/fc)‘] and Tr [%(3-{-}"3)"] are not integers, since
Tr(((Qu+1)+V2v)) = 2mod 4, if v
is odd.
Remark 2. The relations }im |z)|=0 and

Jim ||z+ 3'p; (k) Y| = 0

are equivalent, when the absolute values of the f;-s are less than one, independently
of the property, that the f;-s are algebraic or transcendental’s.

If the relation
lim || Zp (k)] = 0

is true and the «;-s with |o;|=1 are algebraic, then the conclusions a—e of theorem
1 hold for these a;-s, and inversely, if a—e hold for |o;|=1, then we have

Jim || 3 pi(k)at]| = o.
It is easy to see that the first part of the theorem is true. The sums

dy = 3" Tr(pi(k)af)
are algebraic integers in F according to the property ¢). It follows from b)—d), that

| Z i) etl| = |di— Zpi(k)of| = | > 1p@ (k)afH,

a <1
and so the relation

Jim | = )] = 0
is true.

The proof of the second part of the theorem based on the following generali-
zation of a lemma due to FAtou [5].

Lemma 1. Assume that the polynomials p(x) and q(x) have no common root,
q(0)=1, furthermore the Taylor-coefficients of the function p(x)/q(x) at the zero are
algebraic integers in F. Then the coefficients of p(x) and q(x) are algebraic integers
in F too.

At first we prove the lemma.
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p(x) = ;‘é‘. nxt, p,#0,

q(x) = ,5: @x*, gn #0.

Comparing the coefficients we have

Pi—€iqo—Ci-1q1—...—¢q; =0, for i = min(n, m),
(2 Pi—CiQo—Cic11—.—Ci-mqm =0, for m=i=n,
0—¢iqo—Ci-ah—-.—Ci-mq@m =0, for i=>n.

If the p{, g are solutions of the equations in (2), than for the polynomials

pr(x)= ;Z., pix,
and

g"(x) = é:," g xt
hold the equations
P*(x) = up(x), q*(x) = pq(x),

with a constant g, since p(x) and g(x) are relatively primes. So we have, that the
solutions of the equations in (2) form a one-dimensional linear variety.
Since ¢(0)=1, there are constans y;, y;, that

Pi =7Yiq0s i = Y%

The y;-s and the y/-s are elements of the field F, because of the Gaussian elimina-
tion, so the p;-s and g¢;-s are elements of the field F, because g,=1.

It is remained to prove, if the coefficients of p(x), ¢(x) and p(x)/g(x) are integral
in F, then g,, the constant term, is a divisor of all the coefficients of ¢(x). In that
case the coefficients of p(x) are multiples of ¢, too.

Since the polynomials with coefficients in a field form a Euclidean ring, there
are polynomials, having integral coefficients, for which

p(x)u(x)+q(x)v(x) = b,

holds, where b is an algebraic integer in F. If p(x)/q(x) has integral coefficients, then
so has it b/g(x).

If g, does not divide all the g,-s, then there exists a prime ideal P of F, for which
P* is a divisor of ¢,, but is not a divisor of ¢; for at least one i.

Let k; denote the greatest exponent, for which Pk/qg;.

Let k, be the smallest k;, and let j be the smallest index, for which k,=k;.
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In F there exists an (integral) ideal A4, for which AP% is a principal ideal (y),
and there exists an ideal B, for which BA is a principal ideal (f), and 4, B are relati-
vely prime, and they are relatively prime to P too. In that case it is true that

(Bg:) = BA- P4 P5~4Q; = (P4 A)(BPY1Q)),

where the Q;-s are (integral) ideals. Hence we have fg,=7v-p;, where f; is an algeb-
raic integer in F. It is true that

b/(qo+ @1 X+ ... +qux™) = Bbly(Bo+ 1 x+ ... + P x™),

where y is a divisor of Bb:pb=yg, (g is integral in F). So, there is a rational fraction,
the nominator of which is an integer &’ in F, the denominator is a polynomial, hav-
ing integral coefficients in F, and the Taylor-coefficients of the fraction are integers
in F. There is a prime ideal P, for which P divides B,, p,, ..., B;_;, but does not
divide §;.

We prove that this is impossible.

For all integers b let r, denote the exponent to which P appears in the unique
factorization of (b).

Let us consider all those integers b for which the Taylor-coefficients of b/(f,+
... Bnx™) are integers in F. Let b* be such an integer for which r, takes on the
minimal value.

Let

b*/(Bo+Prx+ ... + BuX™ = Co+Cy X+ ..+ X5+ ...

From (2) for i=;j we have
ﬁocj+ﬁ1€'}_l+-..+ﬁjc‘] — 0

Since P is a divisor of g, for i=0, 1, ...,j—1 but not of f;, therefore c, is a
multiple of P.
From (2) with i=j+1 we have

BocjrrtPrcjt+...+Bjer+ P16 = 0.

P divides p,, ..., B;_, and ¢,, but does not divide #;, so P is a divisor of c,.

By induction it follows, that P divides all the ¢;-s.

There exists an ideal A, for which AP is a principal ideal (y), and there exists
an ideal B, such that B4 is a principal ideal (8), 4 and B are relatively prime, and
they are relatively prime to P.

Taking into account the equalities

(Bb*) = BA PB = (AP) BB and
(ﬁ":) = BA PC, = (AP)(BCJ,

where B and the C;-s are integer ideals, we get that y divides all fc;-s and fb*, and
that the Taylor-coefficients of the fraction

Bb*

[Bot B ..+ B



On a theorem of Pisot 173

are integers in F. But it contradicts to the choice of the integer b*, since r, =r,—1
for b,=pb*/y. By this the proof of Lemma 1 is finished.

At present we begin the proof of the second part of the Theorem 1.

Let f;(x) be a minimal polynomial of o; over F with integral coefficients.

Let 7; be the maximal degree of the polynomials p;(x), for which «; is a conju-
gate of «; over F.

We consider the product of the polynomials (f;(x)):*! for all non-conjugates a;.

Let F(x) denote this product:

F(x) = ap+a, x+...+arxT.

The a;-s are integral in F.
If z, denote the sum

2= 3 pbat,
then we have
ayzy+ay 2z 4q+...+ar .y =0, for k=0.
Let us denote by E; the integer in F nearest from z,, and r, be defined by
(6) z=E+r,
In this way we have
©) aoEx+...+arEyor = —(agre+... +arrier)

The left hand side of (7) is an integer in F, the right hand side is tending to zero
as k tends to infinity. Since the integers in F form a discrete lattice, it is true that

(8) apryt...+arrr =0

when k is large enough. Let k, be the smallest natural number for which (8) holds
whenever k=k,.

So the sequence r, satisfies a linear recurrence relation. The characteristical poly-
nomial of the sequence is the product of the minimal polynomials of the a;-s, so
the roots of the characteristical polynomial of the sequence are the conjugates of
the a;-s. In this case there are suitable polynomials ¢{/’, that the representation

)] =2 Q’i(j)(k)(“im)*
LJ

is valid, where the «{/’-s are the conjugates of the «; and the degrees of the polyno-
mials ¢/’ are at most #,.

Since r, tends to zero, therefore ¢/’ is identically zero for |x{’|=1.

The polynomials p;(x) and ¢g{”’(x) have a representation in the form

n+1 P e
(10) LIOED cff’[" v

G o —ko+u—1
(11) =5 agn(*hatr

u=1
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Let the following rational function be considered

n 4+l O ko HEL GG (g Yke
& 0=3 & Ty 72 P

Since the equation

'(]"_{T)n » “n [v+n l]

holds, we have from (10), (11), (12) and (13)

(14) s = 3 2(5 co"heq")) arvne-

ve=0 \i=1 ‘u=1

b Z"-*Z E-l dgd) [”"'" 1]](ai(f))n+a.] s

i=1 j \u=1
- F (2" pi(k)af— Z‘* 2 g (k) () xk—*e,
k=ky i=1 i=1 j

The terms in (14) with |z{/|=1 are identically zero, and the asterisk notes,
that the sum is restricted to non-conjugates a;.
It follows from (6) and (9), that

(15) g(x) = 3 Extb,
=

The function g(x) is a rational function, the Taylor-coefficients of which are
integral in F.
The coefficients of the denominator

g(x) = JT* [T A —af x)4+?
i J

are integral in F in consequence of the lemma, so the coefficients of the reciprocal
polynomial of ¢(x)

T

are integral in F too. So we proved, that the a;-s are algebraic integers, because the
leading coefficient of §(x) is one. The roots of §(x), except the a;-s, accuring in the
sum ' p;(k)af, have absolute values less than one.

So we finished the proof of the assertions a) and d) of theorem 1. Now we begin
to prove b and c. It is sufficient to prove, that the coefficients ¢{” in (10) are elements
of the field F(x;). First we prove this for the highest coefficients.
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The nominator of g(x) is a polynomial p(x) with integral coefficient. From (12)
we have
p(x)

1 P
(16) Gkt = oa x]_m‘ G - (1 —o;x)

_ __ p(Yaal =41
N 1 (d:))'“g‘ﬁ(a)'t*‘ j

Analogously we have

(17

~d¢D = (1)) (af?)T—*o—4—1
i (S @)y+t kg*f;(ggf))fkﬂbl
It follows from (16) and (17), that —-d,‘:fl) are conjugates of cf"+ i c‘ b i

conjugate of c, b, e ; is a conjugate of «;. So the degrees of p; and ¢; are equals
if a; and «; are conjugate.

J6D (s
(18) g(x) = Z[(1Cl!a:';;,j+1 2 (l::'f'xj;')a“] (2; = conj. of a))

forms a rational function, having coefficients in F.
The difference

g1(x) = g(x)—g(x)

is a rational function with coefficients in F too. From (18) we have the representation
for ¢,(x)

n 4 ol gk o qGd) (gD
aW =2 20522 2 (i

So we can see the assertions for the coefficients ¢, too. By repeating the argu-
ment used earlier we get, that all the ¢{”-s have the desired properties. So the proof
of b) and c) is finished. The Taylor-coefficients of g(x) are the E,-s, where the E,-s
are integers in F. It follows from the precedings and from the Taylor expansion of
the functions staying in the right side of (12), that the E,-s have the representations

E =2"Tr (Pi(k)t!f).

so we proved the assertion e) too.
The proofs of Theorem 1 and the Lemma 1 are modifications of the proofs in [5].
In Theorem 1 we assumed that the «;-s are algebraic. Leaving that assumption
we can prove

Theorem 2. Let z, denote the sequence

7= ig_'; pik)at,
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where the a;-s are different complex numbers. If the series

2 lzl?
ke=0
is convergent, then the a;-s with |x;|=1 are algebraic numbers.

From the convergence of the series

Zlal*

follows, that |z,]|~0, so the properties of Theorem 1 are valid for the a;-s with
|e;|=1, that one can see from Remark 2. stated after Theorem 1.

The proof of Theorem 2 is based on the lemmas in [3] and on their generali-
zZations.

Lemma 2. A sequence (z,) satisfies a linear recurrence relation if and only if the
determinants

vanish, if k is large enough.

One can find the proof of Lemma 2 in [3].
Let m be the smallest natural number for which

4,=0, if k=m.
Let Dy, D, ..., D,, denote the minors of 4,,. Then with

2
e
the relation
Zysm = 01 Zpam-1F .. +0m 2
holds.
So if the z, -s are elements of a field F, then the §;-s are elements of the field F too.

For the proof of Theorem 2 the next theorem is useful.

Theorem 3. Ler z, be a sequence of complex numbers, and A, be a sequence of
integers in F, and let moreover the series

2 |z — A?

k=0
be convergent. :
If the sequence z; satisfies a linear recurrence relation, then the sequence A,
satisfies a linear recurrence relation too (but not necessarily the same).

The proof of the Theorem 3 is the same as the proof of the Theorem 8.4. in [3].
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Let A, be the nearest algebraic integer in F from z, and let r, be defined by the
relation

(19) zy = Ag+ry.

Since the sequence z; satisfies a linear recurrence relation, so the sequence A4,
does too. The A4,-s are element in F, we have a linear recurrence relation for the 4,-s:

(20) ﬁﬂAt+m+ﬁlAk+n—l+'“+BuAt = 0

where the f;-s are integers in F, according to the note after Lemma 2 and ;0.
Since r, tends to zero for k-—<, so we have

Bozismt+PrZxsm-1+ - +PBmz = 0
for k- o,
It follows, that

@) 3 (Boarpktm)+ fuar piktm— 1)+ + Bupi ()t .

The factor of the «f is a polynomial in k, the leading coefficient of which is the
product of the number

Boa"+Brof '+ ...+ B,

and of the leading coefficient of p; (k).
The left hand side of (21) tends to zero, then the equation

ﬂoﬂi"‘!‘ﬂla —l+...+ﬁm - 0
holds for |o;|=1, as we saw earlier. So we proved Theorem 2.
The assumption on the convergence of the series > | z/|* one can replace by
k=0

the assumption, that | z,/| tends to zero faster as 1 Vk.
It holds the

Theorem 4. Let
= ‘Zi‘ pi(k)ag,
where u; are different complex numbers, p;(k) are polynomials. If ¢ is a positive number
small enough depending on the ;s and on the degrees of the polynomials, and
c
Vk+1’
then the a;-s with |a;|=1 are algebraic numbers and so the properties in Theorem 1
hold.

(22) Izl =

The Theorem 4 is a generalization of a theorem due to GELFOND. [6].
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Let A, and r; be as in (15). We prove, that the determinant
v i N
A1 A: " At+1

4,=

Ak Atd-! Aﬂ
tends to zero for k—ce,
Let B, ..., Br be the coefficients of the polynomial
I (x—a,)',
where #; is the degree of the p;(x). Then we have
Zrertbrzisr-1+ .. +Brz = 0.
Let g be defined by the relation
& = Ay +P1 Ay +... +PrAs-r.
From (19) it follows that

g = —(re+Pyrg—r+... +Brri-p)
So we have

(23) o = (1+ 2 Bf) —=— for k=T

Vk—

Let n, be defined in the following manner:

M = &+Preg—r+... +Brég-r.
Then we have

|=(1+ I’—— for k=2T.
[ ( Z'ﬁj) Vk—2T 1
It follows by elementary transformations
v I O
o Liskikarel Ar-y Ayr-1y Ear-1 EkeT-2
3 & Ear-1 Mar Mesr |
Ay... Ay €k Nr+k Mak

We define 4 and ¢, by the relations

A= max |4,
0=j=%T—1)

el +,§T, 1B,1)"
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Let ¢ be such small that

(24) Czc-f-'.A.
So we have
(25)
k 1 1 ]
2 — 4oT T T G R YO
a4; = A*(k+1) lg.[z"-’z'? [I—T'i'l Foet 14+k=2T+1 ] =

k —

I=T+1

(k+1)+-T-1

= ATTQETH(k+ DT log (k=T + 1) =
If the inequality

2ecic® < 1

holds, then it follows from the Stirling’s formula that 4, tends to zero.

But the 4,-s are algebraic integers in F, so 4, is zero, if k is large enough.

If 4, is zero for large k, the series z; satisfies a linear recurrence relation, and so
the o;-s with |o;|=1 are algebraic numbers, as we saw in the proof of Theorem 2.
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