Inverse limits of the Cantor-manifolds

By IVAN LONCAR (Varazdin)

ABSTRACT. We say that a compact space X is (n, k)-Cantor-manifold if dim X=n, and if
for every closed subset FE X of the dimension dim F=n—k the set X"\ F is connected.

In the present paper we investigate the following question: Under what conditions the limit
of the inverse system of the n-dimensional Cantor-manifolds is (n, k)-Cantor-manifold?

The partial answers for the inverse systems with fully closed monotone bonding mappings
and for inverse systems of metric Cantor-manifolds with open bonding mappings are given.

0. Introduction

All spaces in this paper are assumed to be Hausdorff, and this assumption will
be used without explicit mention.

We say that a compact space X is an ind (Ind, dim)-n-dimensional Cantor-
manifold if ind X (Ind X, dim X)=n=1 such that no closed subset FC X satis-
fying the inequality ind F(Ind F, dim F)=n—2 separates the space X i.e. for
every such set the complement X\ F is connected |7; 91|.

If we omit the assumption that X is a compact space, we obtain the definition

of a generalized Cantor-manifold.
The cardinality of the set A4 is denoted by |A|. The symbol cf (4) means the
cofinality of the well-ordered set A4 i.e. the smallest ordinal number which is

cofinal in A.
If f: X~Y is a mapping, then /¥ 4 is the set {y: fFA((S A} for ACX.

1. Inverse limits of k-dimensional cantor-manifolds

A compact space X is (n, k)-Cantor-manifold if dim X=n and if X\ F is con-
nected for each closed FE X with dim F=n—k.

A k-dimensional Cantor-manifold is (k, 2)-Cantor-manifold.

We start with the next theorem

1.1. Theorem. Let X={X,, f,5, A} be aninverse system of k-dimensional Cantor-
manifolds X,. If X satisfies the property:
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(P1) For every closed (n—k)-dimensional subset FSlim X the set f,(F), acA,
is =(k—2)-dimensional,
(P2) For every open connected Y, X,, acA, the set f;”'(Y,) is connected,

then X=lim X is (n, k)-Cantor-manifold.

PrROOF. Let F be a closed subset of X of the dimension =n—k. By (Pl) we
have dim f,(F)=k—2. This means that Y,=X,\ f;(F) is open and connected.
From (P2) it follows that f~'(Y,) is connected. Since X\ F=U{Y,: ac 4} it
follows that X\ F is connected |6: 435.|. Q.E.D.

1.2. Remark. The property (P2) is satisfied if f,, are monotone or open mappings.
This follows from |6: 6.1.28. Theorem| and from the fact that if X is an inverse system
of connected spaces and open-closed projections, then lim X is connected.

We say that a mapping f: X—Y is fully closed |8| if for every point y€Y and
for each finite cover {U,, U,, ..., U,} of f~Y(y) the set MUrtuU.. U D)
is open |[8].

If f: X—=Y is fully closed then f is closed. If ¥ has no isolated points and
f: X=Y is open fully closed, then fis a homeomorphism |8|.

1.3. Lemma. |8: Lemma 1.|. If f: XY is compact mapping of regular space X,
then fis fully closed iff f is closed and for each pair F,, F, of disjoint closed subset of X
the set f(Fy)Nf(Fy) is discrete.

From this Lemma it follows

14. Lemma. If f: XY is a fully closed compact mapping of T, space X,
then fIF: F—~f(F) is fully closed for every closed subset F of X.

1.5. Lemma. |8| Let X={X,, f,3. A} be an inverse system such that f,; are fully
closed perfect mappings. The projection f,: lim X—X, are fully closed iff f,; are
Sully closed.

1.6. Lemma. |8: Teorema 4.|. If f: XY is fully closed surjection betwen normal
spaces, then dim X=dim X+ 1.

From the preceding Lemmas it follows

1.7. Theorem. Let X={X,, f,3. A} be an inverse system of the n-dimensional Cantor-
manifolds X,. If the mappings f, are montone fully closed, then X=lim X is a (n, 3)-
Cantor-manifold.

PROOF. It is known that dim X=pn. From lemmas 1.6. and 1.5. it follows that
dim X=n—1, This means that either dim X=n or dim X=n—1. Consider a
closed FEX with dim F=n—3. From Lemmas 1.6. and 1.4. it follows that
dim f,(F)=dim F+ 1=n-2. Since X, is the Cantor-manifold we infer that X\ f,(F)
is connected. The set f,~(X,\ f.(F)) is also connected since f, are montone
mappings. The properties (P1) and (P2) of Theorem 1.1 are satisfied. The proof
is completed.

1.8. Remark. If dim X=n—1, then X is the (n— 1)-dimensional Cantor-
manifold.
Now we pas to the inverse systems of a generalized Cantor-manifolds.
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1.9. Lemma. Let X={X,, f,m» N} be an inverse sequence of the countably com-
pact spaces X,. If the mappings f,, are fully closed, then the projections f,: X=
=lim X—+X,, nEN, are fully closed.

PROOF. Let x, be a point of X, and {U,, ..., Ux} an open cover of the set £,"1(x,).
We consider the family {f#U,, ..., f# U}, m=n. Ifthe set Y,=fml(x)\(f¥ U, U

U...Uf”fF Uyx) is non-empty for every m=n, then we obtain the inverse system
Y={Y,, fym/Yms n=p=m} which has a non-empty limit |18|. This is imposible since
1 (x) S (U,U...UUy) and U,-=U{f,.."f'fo: m=n}. Hence, there exist my=n
such that Y, =0 ie. finl(x,)<S fiUlu...Uf_fon. Since f,,, is fully closed, the set
{.r,,}U(j;flof;fo U,U...Uﬁlﬁnffovx) is open. The proof is completed since

fnf.of..ﬁ; U =f*U, forevery i€{l,...,k}.
By the similar method of proof we have

1.10. Lemma. Let X={X,, f,3, @} be an inverse system of R,-compact spaces
X,. If the mappings f,z are fully closed, the projections f,: lim X —~X,, a€ A, are
Sfully closed.

1.11. Theorem. Let X={X,, fum,» N} be an inverse sequence of the k-dimensional
normal countably compact generalized Cantor-manifolds X,. If the mappings f,, are
monotone fully closed surjections, then X=lim X is (k, 3)-Cantor-manifold.

Proor. It suffices in the proof of Theorem 1.7. to apply the fact that f,: X—-X,,
ne N, are monotone mappings and X is connected |18].
Similarly, on can prove

1.12. Theorem. Let X={X,, f,5. ®.} be an inverse system of the k-dimensional
normal ¥.-compact generalized Cantor-manifolds X,. If the mappings f,; are mono-
tone fully closed surjections, then X=lim X is (k, 3)-Cantor-manifold.

1.13. Remark. If dim X=k—1, then X is (k—1)-dimensional generalized
Cantor-manifold.

1.14. Remark. The space X in Theorem 1.11. (in Theorem 1.12.) is normal coun-
tably compact (normal §,-compact) |18|.

The next part of this Section is devoted to inverse systems of metric Cantor-
manifold.

1.15. Lemma. If f: X—~Y is an open-closed surjection betwen separable metric
spaces such that for every ycY the fibre f~Y(y) is a discrete subspace of X, then
ind Z=ind f(Z) for every closed subset Z< X.

PrROOF. Let B={U;: ic N} be a base for X and let 4, be definied as in the proof
of 1.12.5. Lemma in |7|. We have X=U{4;: i€ N} (see the proof of 1.12.7. Lemma
in |7|). The set A;NZ is F, relative to Z and f(4;NZ) is F, relative to f(Z). Furthe-
more, Z is separable metric space and f]4,NZ: A,NZ~f(A4;NZ) is a homeomor-
phism. This means that ind(4;,NZ)=indf(4;,NZ)=indf(Z) and indZ=
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=ind (4;NZ)=ind f(4;NZ). From this relations and the relations Z=U{4,NZ:
i€ N}, f(Z)=U{f(4NZ): i€N} it follows that ind Z=ind f(Z). Q.E.D.

1.16. Theorem. Let X={X,, f,3, A} be an inverse system of k-dimensional gene-
ralized metric Cantor-manifolds X, and open—closed surjections f,;. The space X=
=lim X is k-dimensional generalized Cantor-manifold if the following conditions are
satisfied:

(Cl) X is a metric space,
(C2) For every x,cX,, acA, the fiber f;'(x,) is a discrete subspace of X.

PROOF. X is separable metric space of the dimension dim X=k (Lemma 1.15.).
For every FC X of the dimension dim F=k—2 it follows that dim f,(F)=
=dim F=k—2 (Lemma 1.15.). Hence, condition (P1) of Theorem 1.1. is satisfied.
The condition (P2) follows from the fact that the projections f;: X—~X,, ac A, are
open-closed. (See 1.2. Remark.). The proof is completed.

1.17. If the spaces X, are compact (countably compact), then (C2) means that
£ 4(x,) is finite.

1.18. Lemma. Let X={X,, f,3, A} is an inverse system such that the cardinality
| fa5" (x)I =1 for each fiber f,5'(x,) and some fixed natural number I. Then | f;*(x,)| =1
for every f:'(x,), acA.

ProoF. Trivial.
From Theorem 1.16. and Lemma 1.18. it follows

1.19. Theorem. Let X={X,, f,m, N} be an inverse sequence of metric k-dimen-
sional Cantor-manifolds. If the mappings f,,, are open onto mappings with the property
that there exists a natural number 1=1 such that |f.'(x,)|=I for every n,m and
Xy, then X=lim X is a metric k-dimensional Cantor-manifold.

By the same method of proof we have the next theorem.

1.20. Theorem. Let X=({X,,f,;, A} be an inverse system of k-dimensional
metric Cantor-manifolds. If the mappings f,; are open surjections with the property
that for every n and x, there exist a natural numbers m, I such that | f,;}(x,)|=1, then
X=lim X is a Cantor-manifold.

Proor. The space X is metrizable |3| i.e. separable metric space since X is
compact. Theorem 1.16. completes the proof.

1.21. Lemma. Let X={X,, f.3, A} be an o-directed inverse system. If the fiber
fi5*(x,) are finite, then the fiber ;"1 (x,) are finite.

Proor. Suppose that |f'(x)l={xM, x®, ..., x™M, ...}. For every pair of
points xV, x() there exists «(i, j) such that fz(x?)=f;(x)) for each B=a(i,)).
Since X is g-directed, there exist y=wa(i, j), i€ N, j¢ N. This means that the cardina-
lity of the set f, £;7'(x,)=/f5"(x,) is 8. A contradiction!

1.21. Theorem. Let X={X,, f,3, A} be a a-directed inverse system of k-dimen-
sional locally connected metric Cantor-manifolds X such that f;3'(x,) are finite subsets
of Xy, then X=lim X is k-dimensional locally connected metric Cantor-manifold.
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ProoOF. X is locally connected |9|. This means that w(X)=8, |22: Theorem 1.|
i.e. X is separable metric space. Now, apply Theorem 1.16.

1.22. Theorem. Let X={X,, f,5, A} be a well-ordered inverse system such that
cf (A)>w,. If the fibers f,3'(x,) are finite, and if X, are metric k-dimensional Cantor-
manifold, then X=|im X is k-dimensional metric Cantor-manifold.

ProoF. The space X is metric since w(X)= 8, |28|. As in the preceding theorems
we infer that X is a Cantor-manifold.
In the non-metric case, we can prove

1.23. Theorem. Let X={X,, f,3, A} be an inverse system of n-dimensional Can-
tor-manifold X,. If the mappings f,: X=lim X—~X,, ac A, are open with finite fibers,
then X is n-dimensional Cantor-manifold.

Proor. From |14: III. 2. Theorem| it follows that dim f,(F)=dim F for every
a€ A and every closed FC X. Hence dim F=n. Furthermore, the property (P1)
of Theorem 1.1. is satisfied. For (P2) see 1.2. Remark.

1.24. Remark. From |14: III. 2. Theorem| it follows also that Theorem 1.23.
holds for inverse system X of generalized Cantor-manifolds always when f, are
open-closed mappings with finite fibers and normal limit X. This is the case, for
example, for inverse sequence of countable compact normal generalized Cantor-
manifolds since X is normal countably compact spaces |18|. From |6: 2.7.15(b)| it
follows that Theorem 1.23. holds for inverse sequence of perfectly normal generalized
Cantor-manifolds with open-closed onto bonding projections which have
finite fiber.

1.25. Corollary. If X in Theorem 1.23. is o-directed or |f-'(x)|=I for each
a, P, x, and some fixed natural number I, then X is n-dimensional Cantor-manifold.

1.26. Theorem. Let X={X,, f,5, A} be an inverse system of n-dimensional Cantor-
manifold. If there exists a natural number I1=1 such that |fz'(x)|=! for each
a, B and x,, then X=lim X is (dim X, dim X—n+ /4 1)-Cantor-manifold.

Proor. Let F be a closed subset of X such that dim F=dim X —(dim X—n+
+1+1)=n—I—1. By |1:450| and Lemma 1.18. we have dim f,(F)=dim F+I/—-1=
=n—I]—141—-1=n—2. The condition (P1) of Theorem 1.1. is satisfied. This means
that the set Y,=X,\ f,(F) is connected. For every f=>a the set Y 3=/;"f(F)
has the dimension =n—2 |1: 452| since dim f,=0. It follows that the set Y, ;=
=Xp\Y.5=/3'(Y,) is connected. The inverse system Y={Y,,, f=a} has a con-
nected limit |6: 6.1.18. Theorem|. Since lim ¥Y=f,"'(¥,) we infer that X satisfies
(P2) of Theorem 1.1. This means that X\ F is connected i.e. X is (dim X,
dim X—n+ 1+ 1)-Cantor-manifold. Q.E.D.

1.27. Remark. If dim X=n—I+1, then X is (n—1I+ 1)-dimensional Cantor-
manifold.
Now we consider the inverse system with monotone bonding mappings.

1.28. Theorem. Let X={X,, f,5, A} be an inverse system of hereditarily normal
Ind-n-dimensional Cantor-manifolds X,. If f,; are monotone mappings such that there
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exists a natural number I=1 such that |Fr f3'(x,)|=! then X=lim X is (Ind X,
Ind X—n+ [+ 1)-Cantor-manifold.

ProoF. It is readily seen that |Frf,~'(x,)|=/ From |24: Theorem VII. 8] it
follows that Indf,(F)=Ind F+I/—1=(Ind X—Ind X+n—I/—1)+/—1=n-2 for
each closed FE X and each a€A. This means that ¥,=Y,\ f;(F) is connected.
Furthermore, the set f,7(Y,) is connected since f, is a monotone mapping. Theorem
1.1. completes the proof.

1.29. Corollary. Let X={X,, f,3, N} be an inverse system of metric n-dimensio-
nal Cantor-manifolds. If f,, are monotone mappings such that |Fr f3'(x,)|=11=1,
then lim X is (Ind X, Ind X—n+ I+ 1)-Cantor-manifold.

1.30. Corollary. If X in the preceding theorem is an inverse sequence, then lim X
is (dim X, dim X—n+ [+ 1)-Cantor-manifold.

1.31. Corollary. If in the preceding Theorems |Fr f3'(x,)|=1, then Ind X=n,
dim X=n respectively. This means that in 1.30. X is n-dimensional Cantor-manifold.

1.32. Remark. The inductively-open mapping were introduced by Arhangelskii
|4:209|. A mapping f: XY is said to be inductively-open if there exists a subspace
X, S X such that f(X;)=Y and if f]X,: X;—~Y is open.

If f: X-Y an inductively-open and closed mapping betwen metric spaces X
and Y such that [f~'(y)|=R,, y€Y, then dim Y=dim X |4: 9.1. Theorem|. If
we asume that X and Y are Cantor-manifolds and |[f~Y(y)|=k, then dim X=
=dim Y +dim f=dim Y.

1.33. Problem. Is it true that the assumption that f,; are open in Theorem 1.16.,
1.19., 1.20—1.27. can be replaced by the assumption “f,, are inductively-open™?

Acknowledgement. The author wish thanks to the referee for several valuable
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