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Uniqueness of roots in `1(Γ,N0) over lattices
in simply connected nilpotent Lie groups

By DANIEL NEUENSCHWANDER (Lausanne)

Abstract. We show that roots (if they exist) in `1(Γ,N0) over lattices Γ in certain
simply connected nilpotent Lie groups are uniquely determined.

1. Introduction and statement of the result

Let G be a simply connected nilpotent Lie group, which will be iden-
tified with its Lie algebra G ∼= Rd. Consider the adjoint reperesentation of
the Lie algebra given by ad(x) : G → G, ad(x)(y) := [x, y] (x, y ∈ G). The
product on G is then given by the Campbell-Hausdorff formula, (c.f. Serre
(1965)), where only the terms up to order, say, r ∈ N0 (the step of nilpo-
tency of G) arise:

x · y =
r∑

n=1

zn,(1)

zn =
1
n

∑
p+q=n

(z′p,q + z′′p,q),(2)

z′p,q =
∑

p1+p2+...+pm=p
q1+q2+...+qm−1=q−1

pi+qi≥1
pm≥1

(−1)m+1

m

ad(x)p1ad(y)q1 . . . ad(x)pm(y)
p1!q1! . . . pm!

,(3)
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z′′p,q=
∑

p1+p2+...+pm−1=p−1
q1+q2+...+qm−1=q

pi+qi≥1

(−1)m+1

m

ad(x)p1ad(y)q1 . . . ad(y)qm−1(x)
p1!q1! . . . qm−1!

.(4)

The first few terms are

(5) x · y = x + y +
1
2
[x, y] +

1
12
{[[x, y], y] + [[y, x], x]}+ . . . .

Clearly, e = 0 and x−1 = −x (x ∈ G). Consider an adapted vector space
decomposition of G = G, i.e.

(6) G ∼= G ∼= Rd ∼=
r⊕

i=1

Vi

such that
r⊕

i=k

Vi = Gk−1,

where {Gk}0≤k≤r is the descending central series:

G0 := G, Gk+1 := [G,Gk]

(and thus Gr = {0}). In this case, one can take a Jordan-Hölder basis
for G ∼= Rd, i.e. a basis E =

⋃r
i=1 Ei where Ei = {ei,1, ei,2, . . . , ei,d(i)}

is a basis of Vi (d(i) thus being the dimension of Vi). Let R(r) be the
least common multiple of the denominators of the coefficients occurring in
the Campbell-Hausdorff formula with terms up to order r (so R(1) = 1,
R(2) = 2, R(3) = 12, . . . ). Assume all entries in the matrices describing
[ . , . ] are rational. Let D be the least common multiple of all denominators
of these constants. Consider the lattice

(7) Γ :=
r⊕

i=1

d(i)⊕

j=1

Ze′i,j ⊂ G ∼= G

(where e′i,j := (1/(DR(i)))ei,j), which is evidently a subgroup of G. The
most prominent example is the Heisenberg group H given as H = R3

equipped with the multiplication x · y = x + y + 1
2 [x, y] and [x, y] =

(0, 0, x′y′′ − y′x′′) for x = (x′, x′′, x′′′), y = (y′, y′′, y′′′) ∈ R3 and the
subgroup Γ = Z × Z × 1

2Z. Write {e′i,j} =: {e1, e2, . . . , ed}. Consider
the set `1(Γ,N0) of summable N0-valued functions on Γ with convolution
as multiplication. The algebras `1(Γ,Zp) (where Zp denotes the field of
integers modulo a prime p) are defined analgously. We show that roots in
`1(Γ,N0) (if they exist) are uniquely determined:
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Theorem 1. Let G be a simply connected nilpotent Lie group such
that in the matrices determining [ . , . ] all entries are rational. Let Γ be
the lattice (7) and assume λ, η ∈ `1(Γ,N0), m ∈ N. If λm = ηm then it
follows that λ = η.

The theory of lattices in simply connected nilpotent Lie groups and its
history is exhaustively treated in Raghunathan (1972). See in particular
Mal’cev’s (1951) paper.

2. The proof

The proof of Theorem 1 is to a great extent parallel to the proof
of the uniqueness property of certain Poisson convolution semigroups of
probability measures on simply connected nilpotent Lie groups in Neuen-
schwander (1995). Another major ingredient will be the Vandermonde
determinant.

Let p be a prime.

Lemma 1. A Zp-valued sequence µ = {µ0, µ1, . . . , µp−1} is uniquely
determined by its moments in Zp

Mk =
p−1∑

j=0

jkµj ∈ Zp (0 ≤ k ≤ p− 1).

We have that

(M0,M1, . . . , Mp−1) = (µ0, µ1, . . . , µp−1) ·A,

where A = (ai,j)0≤i,j≤p−1 is the matrix (over Zp) given by

ai,j = ij (i, j ∈ Zp).

The submatrix of A which we get by eliminating the first line and the
first column is a Vandermonde matrix over Zp, so

detA =
∏

1≤i<j≤p−1

(j − i) 6= 0,

hence the assertion.

In the sequel, we will interpret µ ∈ `1(Γ,Zp) as a “Zp-valued proba-
bility measure” on Γ and use the language of probability measures, which
seems more elegant in this context. In particular, we will work with
“random variables” obeying to a certain “distribution”, “independence”,
and we will write E(. . . ) for the “expectation”. The carrying over of
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these notions from the classical situation is straightforward. Put Γ 3
x =:

∑d
i=1 xiei. For µ ∈ `1(Γ,Zp), β = (β1, β2, . . . , βd) ∈ Zd

p, h =
(h1, h2, . . . , hd) ∈ Nd

0, define the “mixed moments”

M
(β)
h (µ) =

∑

x∈Γ

(βjxj)hj µx.

Let H(µ) = M
(β)
0 (µ) =

∑
x∈Γ µx. Consider on Nd

0 the lexicographic order-
ing from behind defined by

(a1, a2, . . . , ad) < (b1, b2, . . . , bd)

⇐⇒ (ad, ad−1, . . . , ad−j+1) = (bd, bd−1, . . . , bd−j+1), ad−j < bd−j

for some j ∈ N0.

Lemma 2. Assume m < p and µ, ν ∈ `1(Γ,Zp) satisfying µ = νm.

Suppose H(µ) 6= 0. Then the M
(β)
` (ν) (β ∈ Zd

p, ` ∈ Nd
0) may be calculated

(exactly in case m is odd and up to the sign in case m even) out of the

M
(β)
` (µ) recursively with respect to `.

Proof. Assume X1, X2, . . . , Xm are “i.i.d.” Γ-valued random vari-
ables with L(X1) = ν. Write

(8) M
(β)
` (µ) = E




d∏

j=1


βj

(
m∏

i=1

Xi

)

j




`j

 .

By the adaptedness, we get, by multiplying out the product in (8),

(9)


βj

(
m∏

i=1

Xi

)

j




`j

=
m∑

i=1

(βj(Xi)j)`j + Pj ,

Pj being a polynomial in (X1)1, (X2)1, . . . , (Xm)1, (X1)2, (X2)2, . . . ,
(Xm)2, . . . . . . , (X1)j , (X2)j , . . . , (Xm)j , where in every monomial the ex-
ponents of (X1)j , (X2)j , . . . , (Xm)j are strictly smaller than `j . Now, by
multiplying out the product

∏d
j=1(. . . )

`j in (8), we get by (9)

d∏

j=1

(. . . )`j =
d∑

i=1

d∏

j=1

(βj(Xi)j)`j + P,

where P is a polynomial in (X1)1, (X2)1, . . . , (Xm)1, (X1)2, (X2)2, . . . ,
(Xm)2, . . . . . . , (X1)d, (X2)d, . . . , (Xm)d such that for every monomial
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γ
∏m

i=1

∏d
j=1(βj(Xi)j)rj we have (r1, r2, . . . rd), (s1, s2, . . . , sd) < `. Now

the assertion follows from the independence of the Xi, the fact that
E(

∏d
j=1(βj(Xi)j)`j ) is equal for every i, and the relation H(µ) = H(ν)m.

¤
Now we may prove our theorem:

Proof of Theorem 1. W.l.o.g. we may assume that K(µ) =∑
x∈Γ µx > 0. Let p > max{m, 2,K(µ)} be a prime and consider the

quotient group

(10) Γp :=
d⊕

i=1

Zpei

of Γ. Denote by πp : Γ → Γp and τp : Z → Zp the canonical projec-
tions and let, for µ ∈ `1(Γ,Z), µ(p) ∈ `1(Γ,Zp) be defined by µ

(p)
x :=∑

τp(µ(π−1
p (x))) (x ∈ Γ). Then (λ(p))m = (η(p))m. By Lemmas 1 and 2

it follows that λ(p) = η(p).
2. Now for µ = {µ1,− p−1

2
, µ1,− p−1

2 +1, . . . , µ1, p−1
2

, µ2,− p−1
2

, µ2,− p−1
2 +1,

. . . , µ2, p−1
2

, . . . µd,− p−1
2

, µd,− p−1
2 +1, . . . , µd, p−1

2
} ∈ `1(Γp,Zp) let qp(µ) be

the “same” (formally) Z-valued sequence over the index set
⊕d

i=1{−p−1
2 ,

−p−1
2 + 1, . . . , p−1

2 }ei ⊂ Γ. Clearly, we have qp(µ(p))x → µx (p →∞) for
every x ∈ Γ, hence by 1. it follows also that λ = η.
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