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Semigroups of set-valued functions

By JOLANTA OLKO (Kraków)

Abstract. It is proved that a measurable semigroup of linear continuous set-
valued functions satisfying some additional assumptions is majorized by a one-parameter
family of an exponential type generated by it.

Troughout the paper vector spaces are always real. The symbols R
and N denote the set of all real numbers and the set of positive integers,
respectively. Now recall some definitions connected with set-valued func-
tions (abbreviated to “s.v. functions” in a sequel).

If X is a normed space we denote n(X) the family of all non-empty
subsets of X, the family cc(X) consists of convex compact members of
n(X). Let X, Y, Z be vector spaces and let C be a convex cone in X.
An s.v. function A : C → n(Y ) is said to be additive iff it satisfies the
condition

A(x + y) = A(x) + A(y) for all x, y ∈ C.

An s.v. function A is said to be linear iff it is additive and

A(tx) = tA(x) for all x ∈ C and t ∈ (0, +∞).

Applying Theorem 4 in [16] we define the norm of a linear s.v. function
A : C → n(Y ), denoted by ‖A‖, to be the smallest element of the set

{M > 0 : ‖A(x)‖ ≤ M‖x‖, x ∈ C}.
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For a given s.v. function F : X → n(Y ) and sets B ⊂ X, D ⊂ Y we
define the sets

F (B) =
⋃{F (x) : x ∈ B},

F−(D) = {x ∈ X : F (x) ∩D 6= ∅},
F+(D) = {x ∈ X : F (x) ⊂ D}.

They are called, respectively, the image of B, the lower inverse image of
D and the upper inverse image of D under the s.v. function F .

The superposition G ◦F of s.v. functions F : X → n(Y ) and G : Y →
n(Z) is the s.v. function defined as follows

(G ◦ F )(x) := G(F (x)) for all x ∈ X.

Assume that X and Y are two topological vector spaces. We say that
an s.v. function F : X → n(Y ) is lower semicontinuous (l.s.c.) iff the set
F−(U) is open in X for every open set U in Y . We say that an s.v. function
F is upper semicontinuous (u.s.c.) iff the set F+(U) is open in X for every
open set U in Y . F is said to be continuous iff it is both l.s.c. and u.s.c.

In what follows h denotes the Hausdorff metric on cc(X). If X is
complete, then cc(X) is complete as well.

For the properties of the Hausdorff metric and the convergence in the
space (cc(X), h) see [4], [8] or [9]. Some of them needed here are also
collected in [11].

Let X be a nonempty set. A family {F t : t ≥ 0} of s.v. functions
F t : X → n(X) is called an iteration semigroup iff

F t ◦ F s = F t+s for all s, t ≥ 0.

Let (T,M,m) be a measure space, X be a metric space. An s.v.
function F : T → n(X) is measurable iff for every open set U the set
F−(U) belongs to M (see [1]) and a function f : T → X is measurable
iff the inverse image f−1(U) ∈ M for every open set U . We say that an
iteration semigroup {F t, t ≥ 0} is measurable (continuous) iff for every
x ∈ X the s.v. function t 7→ F t(x) is measurable (continuous) (see [15]).

Now let X be a separable Banach space, (T,M,m) be a complete σ-
finite measure space. Let E ∈ M and F : E → n(X) be an s.v. function.
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We will denote by SF the set of all Bochner integrable functions f : E → X

such that f(x) ∈ F (x) almost everywhere in E. A measurable function
F : E → c(X) is called Aumann integrable iff SF 6= ∅ and then we say
that the set ∫

E

Fdm =
{∫

E

fdm : f ∈ SF

}

is the Aumann integral of F (see [10]). A function F : E → c(X) is
integrably bounded iff there exists a Lebesgue integrable function g : E →
R such that ‖F (x)‖ ≤ g(x) for almost every x ∈ X. It follows easily
that every measurable and integrably bounded s.v. function is Aumann
integrable (see [10] and [17]). The following theorem will be useful in our
considerations.

Lemma 1 (Theorem 3.5 in [7]). Let (T,M) be a measurable space

with complete and σ-finite measure, let (X, d) be a complete separable

metric space and let F : T → cl(X). Then the following conditions are

equivalent:

(a) F−(U) ∈M for every open U

(b) F−(B) ∈M for every Borel B

(c) there exists a sequence {fn : n ∈ N} of measurable selections of F

such that F (t) = cl{fn(t) : n ∈ N}.

In what follows T = [0,∞) and M is the σ-algebra of Lebesgue mea-
surable subsets of [0,∞).

Applying above lemma and properties of the Bochner integral we can
prove analogous properties of the Aumann one given in below lemmas.
(For other informations on the Aumann integral we refer the reader to [1],
[2], [4], [8] and [10].)

Lemma 2. Let X be a separable Banach space. If F : [ξ, t + ξ] →
cc(X) is an Aumann integrable function, then

(1)
∫ t+ξ

ξ

F (x)dx =
∫ t

0

F (x + ξ)dx.
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Lemma 3. Let X be a separable Banach space, A ∈ cc(X) and let
t1 < t2. If F : [t1, t2] → cc(X) is an s.v. function such that

F (t) = A for every t ∈ [t1, t2]

then ∫ t2

t1

F (t) dt = (t2 − t1)A.

A consequence of the Fubini theorem (Theorem 3. 7. 13 in [7]) is the
next

Lemma 4. Let X be a separable Banach space, let n ∈ N, t > 0. If
F : [0, t] → cc(X) is measurable and integrably bounded then

∫∫

E

(t− x)nF (y)dx dy =
1

n + 1

∫ t

0

(t− y)n+1F (y)dy,

where E = {(x, y) ∈ R2 : 0 ≤ x ≤ t, 0 ≤ y ≤ x}.
Proofs of above three lemmas are left to the reader.

Lemma 5. Let X and Y be separable Banach spaces, C be an open
convex cone in X. If A : C → cc(Y ) is a linear continuous s.v. function and
f : [t1, t2] → C, (0 < t1 < t2) is Bochner integrable, then the composition
A ◦ f is Aumann integrable and

A
[∫ t2

t1

f(x)dx
]

=
∫ t2

t1

(A ◦ f)(x)dx.

Proof. An easy computation shows that the composition A ◦ f is a
measurable s.v. function. First we will show that SA◦f 6= ∅. Since A is
linear and continuous, by the corollary after Theorem 2 in [13]

A(x) = {a(x) : a ∈ FA} for x ∈ C

where FA denotes the family of all linear continuous selections of A.
Take an a ∈ FA, then the function a ◦ f is measurable. Moreover,

since f is Bochner integrable,
∫ t2

t1

‖(a ◦ f)(x)‖dx ≤
∫ t2

t1

‖a‖‖f(x)‖dx = ‖a‖
∫ t2

t1

‖f(x)‖dx < ∞

hence a ◦ f ∈ SA◦F .
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It suffices to show the equality of integrals.
Assume that Y = R. Then a linear continuous function A : C → cc(R)

is of the form
A(x) = [a(x), b(x)] for x ∈ C,

where a, b : C → R are linear and continuous.Then

(2)

A
[∫ t2

t1

f(x)dx
]

=
[
a
(∫ t2

t1

f(x)dx
)
, b

(∫ t2

t1

f(x)dx
)]

=
[∫ t2

t1

(a ◦ f)(x)dx,

∫ t2

t1

(b ◦ f)(x)dx
]
.

Observe that a ◦ f, b ◦ f ∈ SA◦f and for every y ∈ ∫ t2
t1

(A ◦ f)(x)dx there
exists λ ∈ [0, 1] such that

y = λ

∫ t2

t1

(a ◦ f)(x)dx + (1− λ)
∫ t2

t1

(b ◦ f)(x)dx.

Since the Aumann integral is a convex set (see [10]),

∫ t2

t1

(A ◦ f)(x)dx =
[∫ t2

t1

(a ◦ f)(x)dx,

∫ t2

t1

(b ◦ f)(x)dx
]

which with (2) gives the equality

A
[∫ t2

t1

f(x)dx
]

=
∫ t2

t1

(A ◦ f)(x)dx.

If Y is any separable Banach space take an y∗ ∈ Y ∗. Then y∗ ◦ A is
a linear continuous function with convex compact images in R and in this
case we have

(3) (y∗ ◦A)
[∫ t2

t1

f(x)dx
]

=
∫ t2

t1

[(y∗ ◦A) ◦ f ](x)dx.

On the other hand

(4) (y∗ ◦A)
[∫ t2

t1

f(x)dx
]

= y∗
[
A

(∫ t2

t1

f(x)dx
)]
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and

(5)
∫ t2

t1

(y∗ ◦A)(f(x))dx = y∗
[∫ t2

t1

(A ◦ f)(x)dx
]

Combining (3),(4) with (5) we obtain

y∗
[
A

(∫ t2

t1

f(x)dx
)]

= y∗
[∫ t2

t1

(A ◦ f)(x)dx
]

for every y∗ ∈ Y ∗. The Aumann integral being weakly closed (see Corol-
lary after Proposition 3.1 in [10]) it is closed. Moreover it is also convex.
Finally the Second separation theorem (see [3] p. 251) ends the proof. ¤

Lemma 6. Let X, Y be separable Banach spaces and let C be an open

convex cone in X. If A : C → cc(Y ) is a linear continuous s.v. function,

F : [t1, t2] → cc(C) (0 < t1 < t2) is measurable and integrably bounded,

then the composition A ◦ F is Aumann integrable and

A
[∫ t2

t1

F (x)dx
]

=
∫ t2

t1

(A ◦ F )(x)dx.

Proof. Observe that the function A ◦F : [t1, t2] → cc(Y ) is measur-
able and analogously to the proof of the Lemma 4 SA◦F 6= ∅.

We only need to show the equality of integrals.
Take an y ∈ A[

∫ t2
t1

F (x)dx], there exsists a w ∈ ∫ t2
t1

F (x)dx such that
y ∈ A(w). Thus there exist f ∈ SF and a ∈ FA which satisfy conditions

w =
∫ t2

t1

f(x)dx and y = a(w),

hence

y = a
(∫ t2

t1

f(x)dx
)

=
∫ t2

t1

(a ◦ f)(x)dx.

Since a ◦ f ∈ SA◦F (cf. the proof of the Lemma 5)

y ∈
∫ t2

t1

(A ◦ F )(x)dx
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and the inclusion

A
[∫ t2

t1

F (x)dx
]
⊂

∫ t2

t1

(A ◦ F )(x)dx

is showed.
The proof of the other inclusion will be done in two steps. Take an

element y ∈ ∫ t2
t1

(A ◦ F )(x)dx. There exsists g ∈ SA◦F such that y =∫ t2
t1

g(x)dx. Define the set

T := {x ∈ [t1, t2] : g(x) ∈ (A ◦ F )(x)}

and the s.v. functions for x ∈ T

G(x) := {t ∈ F (x) : g(x) ∈ A(t)},
H(x) := {t ∈ C : g(x) ∈ A(t)}

where A is a continuous additive extension of the function A on the cone
C. Hence the functions G and H have nonempty closed values.

Now assume that Y = R and take an open ball K(x0, r) ⊂ C. The
following conditions hold

H−(K(x0, r)) = {x ∈ [t1, t2] : H(x) ∩K(x0, r) 6= ∅}
= {x ∈ [t1, t2] : ∃t∈K(x0,r) t ∈ H(x)}
= {x ∈ [t1, t2] : ∃t∈K(x0,r) g(x) ∈ A(t) = A(t)}
= {x ∈ [t1, t2] : g(x) ∈ A(K(x0, r))} = g−[A(K(x0, r))].

Since the image of a connected set by a connected-valued continuous func-
tion is connected as well (see [3]), the set A(K(x0, r)) is an interval. There-
fore it is a borel set. Applying the condition (b) in Lemma 1 we have that
the set

H−(K(x0, r)) = g−[A(K(x0, r))]

is measurable because g is a measurable function.
If U is any open subset of C in the separable space X then there

exsists a countable family {K(xn, rn) : n ∈ N} of open balls in X such
that U =

⋃
n∈NK(xn, rn). Therefore the lower inverse image

H−(U) = H−
( ⋃

n∈N
K(xn, rn)

)
=

⋃

n∈N
H−(K(xn, rn))
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belongs to the σ-algebra M, hence H is measurable.
Observe that G = F ∩ H and by Th. 8.2.4 and 8.1.3 in [1] the s.v.

function G is measurable and there exists a measurable selection f of G,
it means

f(x) ∈ F (x) and g(x) ∈ A[f(x)]

for all x ∈ T . The function f is weakly measurable, because for every
x∗ ∈ X∗ the composition x∗ ◦ f is a strongly measurable function with
values in a separable space R. Therefore by Pettis measurability theorem
(see Th. II.1.2 in [5]) it is strongly measurable. Moreover, since F is
integrably bounded

∫ t2

t1

‖f(x)‖dx ≤
∫ t2

t1

‖F (x)‖dx < ∞,

hence f is Bochner integrable selection of F .
Applying Lemma 5, we conclude that in this case

y =
∫ t2

t1

g(x)dx ∈
∫ t2

t1

A[f(x)]dx = A
[∫ t2

t1

f(x)dx
]
⊂ A

[∫ t2

t1

F (x)dx
]
.

If Y is any separable Banach space we will use the same method as
in the proof of the above lemma.

For every y∗ ∈ Y ∗ we have the equality

(y∗ ◦A)
[∫ t2

t1

F (x)dx
]

=
∫ t2

t1

[(y∗ ◦A) ◦ F ](x)dx,

hence

y∗
[
A

(∫ t2

t1

F (x)dx
)]

= y∗
[∫ t2

t1

(A ◦ F )(x)dx
]

and consequently

A
[∫ t2

t1

F (x)dx
]

=
∫ t2

t1

(A ◦ F )(x)dx. ¤
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Lemma 7. Let X be a separable Banach space, Y be a normed space

and C be an open convex cone in X. If A : C → cc(Y ) is a linear continuous

s.v. function then there exists a real constant M ≥ 0 such that for every

x, y ∈ C

h(A(x), A(y)) ≤ M‖x− y‖.

Proof. First we show that there exists an x0 ∈ C satisfying condition

(6) ∀v∈S ∃u∈C x0 + v = u,

where S is a closed unit ball in X. Indeed, take an z ∈ C. Then there
exists an ε > 0 such that

z + εS ⊂ C.

Therefore, defining x0 := 1
ε z we have

x0 + S ⊂ 1
ε
C = C,

and (6) holds true.
Now take x, y ∈ C and w ∈ A(x). Then there exists a ∈ FA such

that w = a(x) and ‖a(v)‖ ≤ ‖A‖‖v‖ for every v ∈ C. Since C −C = X, a
function â : C − C → Y defined by the formula â(v) := a(v1) − a(v2) for
v = v1 − v2 is a linear continuous extension of the function a. By (6) for
every v ∈ S there exists an u ∈ C such that v = u−x0 and ‖u‖ ≤ 1+‖x0‖
therefore

‖â(v)‖ = ‖a(u)− a(x0)‖ ≤ ‖a(u)‖+ ‖a(x0)‖
≤ ‖a‖(‖u‖+ ‖x0‖) ≤ ‖A‖(1 + 2‖x0‖)

for all v ∈ S thus ‖â‖ ≤ ‖A‖(1 + 2‖x0‖) =: M . It follows that for every
a ∈ FA

d(a(x), A(y)) ≤ ‖a(x)− a(y)‖ = ‖â(x)− â(y)‖
≤ ‖â‖‖x− y‖ ≤ M‖x− y‖,

thus

e(A(x), A(y)) ≤ M‖x− y‖
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and analogously

e(A(y), A(x)) ≤ M‖x− y‖

which completes the proof. ¤

A consequence of the above theorem and the Theorem 1.4 in [15] is
the next

Remark 1. Let X be a separable Banach space, C be an open convex
cone in X. If {At : t > 0} is a measurable semigroup of linear continuous
s.v. functions At : C → cc(C) then it is continuous.

Lemma 8. Let X be a separable Banach space, C be an open convex

cone in X. If F : [0,∞) → cc(C) is a continuous s.v. function then for

every t ≥ 0

lim
ξ→0

1
ξ

∫ t+ξ

t

F (s)ds = F (t).

Proof. Fix t ≥ 0. By continuity of F the function s 7→ h(F (t), F (s))
is continuous as well and therefore

(7) lim
ξ→0

1
ξ

∫ t+ξ

t

h(F (t), F (s))ds = 0.

By the Lemma 3

h
(1

ξ

∫ t+ξ

t

F (s)ds, F (t)
)

=
1
ξ
h
(∫ t+ξ

t

F (s)ds,

∫ t+ξ

t

F (t)ds
)
.

Since it is easy to check that Lemma 9 in [14] is true for integrably bounded
functions it follows

h
(1

ξ

∫ t+ξ

t

F (s) ds, F (t)
)
≤ 1

ξ

∫ t+ξ

t

h(F (s), F (t))ds

for all t ≥ 0, which with (7) gives our assertion. ¤
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The main goal is to prove

Theorem. Let X be a separable Banach space, C be an open convex

cone in X. Let {At : t ≥ 0} be a measurable semigroup of linear continuous

functions At : C → cc(C) satisfying conditions

(i) A0(x) = {x} for x ∈ C

(ii) At(x)− x ⊂ C for x ∈ C, t ≥ 0

(iii) the family of s.v. functions {1
ξ (Aξ −A0) : ξ > 0} is uniformly conver-

gent to an s.v. function G for ξ → 0 on each compact subset of C.

Then for every x ∈ C and t ≥ 0

At(x) ⊂ Bt(x) :=
∞∑

i=0

ti

i!
Gi(x).

Proof. By assumption (iii), G is a linear continuous function on C

with convex compact values, therefore the formula

Bt(x) :=
∞∑

i=1

ti

i!
Gi(x) for x ∈ C

defines the family {Bt : t ≥ 0} of linear s.v. functions Bt : C → cc(C)
which are continuous on C (see Theorem and Corollary 2 in [11]).

Fix an x ∈ C and define F (t) := At(x) for t ≥ 0. By the Remark 1 F

is continuous on (0,∞). We will show that it is continuous at the origin.
Take an ε > 0, then by (iii) there exists 0 < t0 < 1 such that for every
0 < t < t0

h

(
At(x)− x

t
, G(x)

)
<

ε

2
and t‖G‖‖x‖ <

ε

2
,

thus
At(x)− x ⊂ tG(x) +

ε

2
tS ⊂ tG(x) +

ε

2
S.

Therefore for t < t0

h(F (t), F (0)) = h(At(x)− x, {0}) = ‖At(x)− x‖
≤ ‖tG(x) +

ε

2
S‖ ≤ t‖G‖‖x‖+

ε

2
< ε.
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Now observe that

(8) F (t + s) = At+s(x) = At(As(x)) = At(F (s))

which implies

(9)
∫ t

0

F (ξ + s)ds =
∫ t

0

Aξ[F (s)]ds.

By Lemma 2, we have

(10)
∫ t

0

F (ξ + s)ds =
∫ ξ+t

ξ

F (s)ds.

Lemma 6 gives

(11)
∫ t

0

Aξ[F (s)]ds = Aξ
[∫ t

0

F (s)ds
]
.

Combining (10) and (9) with (11) we obtain

∫ ξ+t

ξ

F (s)ds = Aξ
[∫ t

0

F (s)ds
]
,

and adding to the both sides of the above equality an integral
∫ ξ

0
F (s)ds

we have
∫ t+ξ

ξ

F (s)ds +
∫ ξ

0

F (s)ds = Aξ
[∫ t

0

F (s)ds
]

+
∫ ξ

0

F (s)ds.

Thus and by Theorem 1.1.8 in [2]

(12)
∫ t

0

F (s)ds +
∫ t+ξ

t

F (s)ds = Aξ
[∫ t

0

F (s)ds
]

+
∫ ξ

0

F (s)ds,

for every t, ξ ≥ 0. Fix an ε > 0, t ≥ 0 and put K :=
∫ t

0
F (s)ds. If

f ∈ SF then by Corollary II.2.8 in [5]
∫ t

0
f(s)ds ⊂ tcof([0, t]). Therefore

K =
∫ t

0
F (s)ds ⊂ tcoF ([0, t]) =: K0. Continuous image F ([0, t]) of [0, t] by

F is compact and by Mazur’s theorem (Th. II.2.12 in [5]) K0 is compact
too. Since the Aumann integral K is a closed (cf. the proof of the Lemma 4)
subset of the compact set it is compact.
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By assumption (iii), there exists δ > 0 such that for y ∈ K, ξ ∈ (0, δ)

h

(
Aξ(y)− y

ξ
,G(y)

)
< ε.

Taking an y ∈ K and ξ ∈ (0, δ), we have

h(Aξ(y)− y, ξG(y)) < εξ

which implies
Aξ(y)− y ⊂ ξG(y) + εξS,

therefore for every y ∈ K

Aξ(y) ⊂ y + ξG(y) + εξS.

It follows that for y ∈ K

Aξ(y) ⊂ K + ξG(K) + εξS

and therefore

(13) Aξ(K) ⊂ K + ξG(K) + εξS.

Substituting K we can rewrite (13) as

(14) Aξ
[∫ t

0

F (s)ds
]
⊂

∫ t

0

F (s)ds + ξG
[∫ t

0

F (s)ds
]

+ εξS for ξ ∈ (0, δ),

which with (12) yields

∫ t+ξ

t

F (s)ds +
∫ t

0

F (s)ds = Aξ
[∫ t

0

F (s)ds
]

+
∫ ξ

0

F (s)ds

⊂
∫ t

0

F (s)ds + ξG
[∫ t

0

F (s)ds
]

+ εξS +
∫ ξ

0

F (s)ds.

Thus and by Lemma 1 in [12]

1
ξ

∫ t+ξ

t

F (s)ds ⊂ G
[∫ t

o

F (s)ds
]

+ εS +
1
ξ

∫ ξ

0

F (s)ds,



94 Jolanta Olko

for ξ ∈ (0, δ). When we let ξ → 0 then we obtain

F (t) ⊂ G
[∫ t

0

F (s)ds
]

+ εS + F (0) for ε > 0,

(see Lemma 8) because G(
∫ t

0
F (s)ds) ∈ cc(X), hence t ≥ 0 and x ∈ C

(15) F (t) ⊂ G
[∫ t

0

F (s)ds
]

+ x.

Observe that (15) with the properties of the Aumann integral yield

1
n!

Gn+1
[∫ t

0

(t− s)nF (s)ds
]

⊂ 1
n!

Gn+1
{∫ t

0

(t− s)n
[
G

(∫ s

0

F (u)du
)

+ x
]
ds

}

=
1
n!

Gn+2
[∫ t

0

∫ s

0

(t− s)nF (u)du ds
]

+
1
n!

Gn+1
[∫ t

0

(t− s)nx ds
]

=
1

(n + 1)!
Gn+2

[∫ t

0

(t− u)n+1F (u)du
]

+
tn+1

(n + 1)!
Gn+1(x),

for every n ∈ N0, t ≥ 0 and x ∈ C. Therefore

F (t) ⊂ G
[∫ t

0

F (s)ds
]

+ x ⊂ G2

∫ t

0

(t− s)F (s)ds + tG(x) + x

⊂ 1
2!

G3
[∫ t

0

(t− s)2F (s)ds
]

+
t2

2!
G2(x) + tG(x) + x.

hence substituting in such way we can write

F (t) ⊂ x + tG(x) +
t2

2
G2(x) + . . . +

1
n!

Gn+1
[∫ t

0

(t− s)nF (s)ds
]

for every n ∈ N, t ≥ 0 and x ∈ C. Since

∥∥∥ 1
n!

Gn+1
[∫ t

0

(t− s)nF (s)ds
]∥∥∥ ≤ ‖G‖n+1

n!

∫ t

0

(t− s)n‖F (s)‖ds

≤ tn‖G‖n+1

n!

∫ t

0

‖As(x)‖ds
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and
∫ t

0
‖As(x)‖ds < ∞ the rest of the series converges to {0}, when ξ → 0,

therefore
At(x) ⊂ Bt(x) for x ∈ C, t ≥ 0

and the proof is complete. ¤
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Ślaskiego w Katowicach nr 759, Katowice, 1985.

[16] W. Smajdor, Superadditive set-valued functions and Banach-Steinhaus theorem,
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