Characterization of additive functions with values in the circle group

By Z. DARÓCZY (Debrecen) and I. KÁTAI (Budapest)

1. Let G be a metrically compact Abelian group, and T the one dimensional torus. A function $\varphi \colon \mathbb{N} \to G$ will be called completely additive, if $\varphi(nn) = \varphi(n) + \varphi(n)$ holds for each couple of $m, n \in \mathbb{N}$. Let \mathscr{A}_G^* be the class of completely additive functions.

Let F be a strictly monotonically increasing function defined on \mathbb{N} and taking positive integer values for each large integer, i.e. $F(n) \in \mathbb{N}$ if $n > n_0$. Let $\{x_v\}_{v=1}^{\infty}$ be an infinite sequence in G. We shall say that it is of property D[F], if for any convergent subsequence $\{x_{v_n}\}_{n=1}^{\infty}$ the subsequence $\{x_{v_{F(n)}}\}_{n=1}^{\infty}$ has also a limit. We say that it is of property $\Delta[F]$ if $\{x_{F(n)} - x_n\}_{n=1}^{\infty}$ is convergent. It is clear, that if $\{x_n\} \in \Delta[F]$, then $\{x_n\} \in D[F]$. For the linear function F(n) = an + b, $a \in \mathbb{N}$, $b \in \mathbb{Z}$ we shall write D[a, b], $\Delta[a, b]$ instead of D[an + b], $\Delta[an + b]$.

Let $\mathscr{A}_{G}^{*}(D[F])$, $\mathscr{A}_{G}^{*}(\Delta[F])$ be the classes of those $\varphi \in \mathscr{A}_{G}^{*}$ for which $\{x_{n} = \varphi(n)\}_{n=1}^{\infty}$

is of property D[F], $\Delta[F]$, respectively.

We are interested in giving a complete determination of $\mathscr{A}_{G}^{*}(D[F])$, $\mathscr{A}_{G}^{*}(\Delta(F))$. We considered this problem with F(n)=n+1 in some earlier papers [1—4]. Recently E. Wirsing [5] proved that $\varphi \in \mathscr{A}_{T}^{*}(D[0,1])$ if and only if

(1.1)
$$\varphi(n) \equiv \tau \log n \pmod{1} \quad (n \in \mathbb{N})$$

for a $\tau \in \mathbb{R}$.

In [1] we proved that $\mathscr{A}_{G}^{*}(\Delta[0, 1]) = \mathscr{A}_{G}^{*}(D[0, 1])$, and by using Wirsing's theorem in [2] we deduced the following assertion: If $\varphi \in \mathscr{A}_{G}^{*}(\Delta[0, 1]) = \mathscr{A}_{G}^{*}(D[0, 1])$, then there exists a continuous homomorphism $\Psi \colon \mathbf{R}_{x} \to G$, \mathbf{R}_{x} denotes the multiplicative group of the positive reals, such that φ is a restriction of Ψ on the set \mathbf{N} , i.e. $\varphi(n) = \Psi(n)$ ($\forall n \in \mathbf{N}$). The converse assertion is obvious. If $\Psi \colon \mathbf{R}_{x} \to G$ is a continuous homomorphism, then $\varphi(n) := \Psi(n) \in \mathscr{A}_{G}^{*}(\Delta[0, 1]) \subseteq \mathscr{A}_{G}^{*}(D[0, 1])$. These results have been extended for additive functions (omitting the completeness of additivity) in [3], [4].

The case F(n)=n+b can be treated similarly as F(n)=n+1. In this paper we shall investigate the case F(n)=2n-1. A complete determination of $\mathcal{A}_G^*(\Delta(2,-1])$ can be given easily, by using previous results [1], [2], [5] (see Sec-

tion 4).

The characterization of $\mathscr{A}_{G}^{*}(D[2, -1])$ seems to be more complicated. We can solve it for G = T, (Theorem).

In the last section we shall formulate some conjectures.

2. Let $\varphi \in \mathcal{A}_G^*(D[2, -1])$. Let X denote the set of limit points of $\{\varphi(n)|n \in \mathbb{N}\}$, i.e. $g \in X$ if there exists $n_1 < n_2 < \dots, n_v \in \mathbb{N}$, for which $\varphi(n_v) \to g$. Let $\varphi(2n_v - 1) \to g'$. Then g' is determined by g. So the correspondence $L: g \to g'$ is a function. Let $X_0 \subseteq X$ be the set of limit points of $\{\varphi(2m+1)|m \in \mathbb{N}\}$. Then $L: X \to X_0, L[X] = X_0$, and as it is easy to see, L is a continuous function. It is clear that X and X_0 are closed semigroups in G, so by a known theorem (see [5], Theorem (9.16)) they are compact groups.

For the proof of these simple assertions see [1].

Since $0 \in X_0 \subset X$, we have $\varphi(n) \in X$, $\varphi(2n+1) \in X_0$ for each $n \in \mathbb{N}$.

Lemma 1. Let $S: X \rightarrow X_0$ be defined by

(2.1)
$$S(g) = L(2g + \varphi(2)) - L(g).$$

If $n_1 < n_2 < ..., n_v \in \mathbb{N}$ is such a sequence for which $\varphi(n_v) \to g$, then $\varphi(2n_v + 1) \to S(g)$ $(v \to \infty)$.

PROOF. Since $\varphi \in \mathscr{A}_G^*(D[2,-1])$, $\varphi(n_v) \to g$ implies that $\varphi(2n_v^2) \to \varphi(2) + 2g$, $\varphi(2 \cdot (2n_v^2) - 1) \to L(\varphi(2) + 2g)$,

$$\varphi(2n_{\nu}-1) \to L(g), \ \varphi(2n_{\nu}+1) = \varphi(2\cdot(2n_{\nu}^2)-1) - \varphi(2n_{\nu}-1) \to S(g). \ \Box$$

Corollary 1. We have

$$(2.2) S(-\varphi(2)) = 0.$$

PROOF. Substitute $g = -\varphi(2)$ in (2.1). \square

Let $g \in X$, $n_1 < n_2 < ...$ be such a sequence for which $\varphi(n_v) \rightarrow g$. Let $m_v = 2n_v$, $l_v^{(k)} = m_v^k + m_v^{k-1} + ... + m_v + 1$. Then $\varphi(m_v) \rightarrow \varphi(2) + g$, $\varphi(l_v^{(1)}) \rightarrow S(g)$. We have $l_v^{(k)} = 1 + m_v l_v^{(k-1)} = 1 + 2n_v \cdot l_v^{(k-1)}$, and so the limits $\varphi(l_v^{(k)}) \rightarrow \lambda_k \ (v \rightarrow \infty)$ exist and

$$(2.3) \lambda_k = S(g + \lambda_{k-1}), \quad k \ge 1, \quad \lambda_0 = 0.$$

Since $\varphi(2^{k-1}n_{\nu}^k) \rightarrow (k-1)\varphi(2) + kg$, we have

$$\varphi(m_{\nu}^{k}-1) \to L((k-1)\varphi(2)+kg)$$
, and by $m_{\nu}^{k}-1=(m_{\nu}-1)l_{\nu}^{(k-1)}$

and we get

(2.4)
$$L((k-1)\varphi(2)+kg) = L(g)+\lambda_{k-1} \quad (k \ge 1)$$

Lemma 2. Let $E_0 = \{h | S(h) = 0\}$. Then E_0 is closed. Furthermore, $h \in E_0$ if and only if

$$(2.5) L((k-1)\varphi(2)+kh) = L(h), \quad \forall k \in \mathbb{Z}$$

$$(2.6) L(-\varphi(2)) = L(h).$$

PROOF. It is clear that E_0 is closed. If (2.5) holds for k=2, then S(h)=0, $h \in E_0$. Let us assume that $h \in E_0$. Then (2.5) holds with k=2. Apply now (2.3), (2.4) with h instead of g. We have $\lambda_k=0$ for each $k \ge 1$, and (2.4) gives (2.5) for positive integers k. Let $U_h = \{k(\varphi(2) + h) | k \in \mathbb{N}\}$. So we proved that

(2.6)
$$L(h) = L(u - \varphi(2)) \quad \forall u \in U_h.$$

Let \overline{U}_h be the smallest closed set that contains U_h . Since L is a continuous function and U_h is a semigroup, U_h is a closed semigroup, therefore by the cited theorem in [5], we have that \overline{U}_h is a compact group. Since $\varphi(2)+h\in U_h$, the whole cyclic group $\{k(\varphi(2)+h)|k\in z\}\subseteq \overline{U}_h$, consequently (2.5) holds for negative k's as well. For k=0 we have (2.6). \square

Let

$$(2.7) \underline{R} = \{R_1 < R_2 < \ldots\}$$

be an arbitrary infinite sequence of positive integers. We shall say that \underline{R} belongs to \mathscr{P}_0 if for each $d \in \mathbb{N}$, d divides R_n for every large v, i.e. if $v > v_0(\underline{R}, d)$. Let $\widetilde{\mathscr{P}}_0(\subseteq \mathscr{P}_0)$ be the set of those $\underline{R} \in \mathscr{P}_0$ for which $\lim_n \varphi(R_n)$ exists. For an arbitrary sequence \underline{R} let

$$a(\underline{R}) = \lim_{v \to \infty} \varphi(R_v),$$

if the limit exists.

Let $a(\tilde{\mathscr{P}}_0)$ be the set of all limit points of $a(\underline{R})$, $\underline{R} \in \tilde{\mathscr{P}}_0$. If $\underline{R} \in \tilde{\mathscr{P}}_0$ and $d \in \mathbb{N}$, then $d\underline{R} = \{dR_1 < dR_2 < \ldots\} \in \tilde{\mathscr{P}}_0$, and $a(d\underline{R}) = \varphi(d) + a(\underline{R})$. If $\underline{R} \in \tilde{\mathscr{P}}_0$, $\underline{S} = \{S_1 < S_2 < \ldots\} \in \mathscr{P}_0$, then $\underline{R} * \underline{S} = \{R_1 S_1 < R_2 S_2 < \ldots\} \in \tilde{\mathscr{P}}_0$, $a(\underline{R} * S) = a(\underline{R}) + a(\underline{S})$. So the set $\{a(\underline{R}) | \underline{R} \in \tilde{\mathscr{P}}_0\}$ is a semigroup, the set of limit points is a semigroup as well, it is closed, so it is a compact group. Furthermore, from $a(d\underline{R}) = \varphi(d) + a(\underline{R})$ we have that $\varphi(d) \in a(\tilde{\mathscr{P}}_0)$, consequently $X \subseteq a(\tilde{\mathscr{P}}_0)$. The relation $a(\tilde{\mathscr{P}}_0) \subseteq X$ is obvious. So we have $X = a(\tilde{\mathscr{P}}_0)$.

Let $\underline{M} \in \widetilde{\mathscr{P}}_0$, $a(\underline{M}) = g$. Let k be an arbitrary natural number. For each large v we have $M_v = 2kt_v$, $t_v \in \mathbb{N}$, $t_v < t_{v+1}$.

Now

$$\varphi(t_v) \to g - \varphi(2k) \quad (v \to \infty).$$

So we have

$$\varphi(M_{\nu}+k) = \varphi(2kt_{\nu}+k) = \varphi(k) + \varphi(2t_{\nu}+1) \rightarrow \varphi(k) + S(g-\varphi(2k)),$$

and so

$$(2.8) \varphi(M_v + 2m) \to \varphi(2m) + S(g - \varphi(4m))$$

(2.9)
$$\varphi(M_v + 2m + 1) \to \varphi(2m + 1) + S(g - \varphi(2m + 1))$$

(2.10)
$$\varphi(M_v + 2m - 1) \rightarrow \varphi(2m - 1) + S(g - \varphi(2(2m - 1))).$$

Now we observe the following relation. If $n_1 < n_2 < ...$ is such a sequence of integers for which $\varphi(2n_v) \rightarrow \varkappa$, then $\varphi(2n_v+1) \rightarrow S(\varkappa - \varphi(2))$. This follows immediately from the relation $\varphi(n_v) \rightarrow \varkappa - \varphi(2)$.

Let us apply now this with $2n_y = M_y + 2m$. From (2.8), (2.9) we get that

(2.11)
$$S(\varphi(m)+S(g-\varphi(4m))) = \varphi(2m+1)+S(g-\varphi(2(2m+1))).$$

Substitute $g = \varphi(2m)$ in (2.10) and observe (2.2):

(2.12)
$$S(\varphi(m)) = \varphi(2m+1) + S(\varphi(m) - \varphi(2m+1)).$$

Since S is continuous, and (2.11) is true for every m, it is true for the limit points as well. Let $\tau \in X$, $\varphi(m_v) \to \tau$. Then $\varphi(2m_v+1) \to S(\tau)$, and from (2.12),

$$S(\tau) = S(\tau) + S(\tau - S(\tau))$$

which implies that

(2.13)
$$S(\tau - S(\tau)) = 0 \quad \forall \tau \in X.$$

If $\varphi(2n_v) \to \varkappa$, then $\varphi(n_v) \to \varkappa - \varphi(2)$, and so $\varphi(2n_v - 1) \to L(\varkappa - \varphi(2))$. Apply this with $2n_v = M_v + 2m$. From (2.9), (2.10) we get that

$$L(\varphi(m)+S(g-\varphi(4m))) = \varphi(2m-1)+S(g-\varphi(2(2m-1))).$$

Let $g = \varphi(2m)$. By (2.2) we have

$$L(\varphi(m)) = \varphi(2m-1) + S(\varphi(m) - \varphi(2m-1)),$$

and so by using the continuity of L and S, we get

$$(2.14) S(\tau - L(\tau)) = 0 \quad \forall \tau \in X.$$

Let
$$g \in X$$
, $\varphi(n_v) \to g$. Then $\varphi(2n_v - 1) \to L(g)$, $\varphi(2n_v + 1) \to S(g)$,
 $S(L(g)) \leftarrow \varphi(2(2n_v - 1) + 1) = \varphi(4n_v - 1) \to L(\varphi(2) + g)$,
 $L(S(g)) \leftarrow \varphi(2(2n_v + 1) - 1) = \varphi(4n_v + 1) \to S(\varphi(2) + g)$.

So we have proved

Lemma 3. We have

$$(2.15) SL(g) = L(\varphi(2)+g),$$

(2.16)
$$LS(g) = S(\varphi(2) + g),$$

 $\forall g \in X.$

Lemma 4. Assume that $S(g)=L(g) \ \forall g \in X_0$. Then

$$(2.17) S(g) = L(g) \quad \forall g \in X.$$

PROOF. Let $Y_k = k\varphi(2) + X_0$ (k = 0, 1, 2, ...). We shall prove that (2.17) holds for $g \in Y_k$ (k = 0, 1, ...).

We shall use the relations (2.15), (2.16). By the assumption this is true for k=0. Let now $g \in Y_1$.

Then $g = \varphi(2) + h$ with a suitable $h \in Y_0$. So S(h) = L(h).

Since $S(h) \in Y_0$, we have L(S(h)) = S(L(h)), i.e. our assertion is true for k = 1. Assume that (2.17) is proved for $g \in Y_0 \cup Y_1 \cup ... \cup Y_{k-1}$. Let $g \in Y_k$. Then $g = \varphi(2) + h$, $h \in Y_{k-1}$. Then $L(h) = S(h) \in Y_0$, and so SL(h) = LS(h), and so (2.17) is true for each $g \in Y_k$. Since $\bigcup Y_k$ is everywhere dense in X, and S, G are continuous functions, therefore (2.17) is true for each $g \in X$. \square

Lemma 5. Let $h \in X$. We have L(h) = 0 if and only if S(h) = 0.

PROOF. Assume that L(h)=0. Then, by (2.14) we have S(h)=0. It is clear that there exists at least one h^* , such that $L(h^*)=0$. Then $h^* \in E_0$, and so by (2.6), $L(-\varphi(2))=L(h^*)=0$. So we have $L(-\varphi(2))=0$. Let now S(h)=0, i.e. $h \in E_0$. Then by (2.6) we have L(h)=0.

Lemma 6. Let V_g denote the closure of the set $\{kg|k\in\mathbb{N}\}$, $g\in X$. Then V_g is a compact subgroup of X. If $h\in E_0$, then $-\varphi(2)+V_{h+\varphi(2)}\subseteq E_0$.

PROOF. The assertion that V_g is a compact subgroup is well-known. If $h \in E_0$, then by Lemma 2 and Lemma 5 we have $(k-1)\varphi(2)+kh=k(h+\varphi(2))-\varphi(2)\in E_0$ for each $k \in \mathbb{Z}$. Since L, S are continuous, our assertion follows immediately. \square

Lemma 7. If E_0 contains the only element $-\varphi(2)$, then $S(\tau)=L(\tau)=\tau+\varphi(2)$ $\tau\in X$, furthermore $\varphi(n+1)-\varphi(n)\to 0$ as $n\to\infty$.

PROOF. Since $E_0 = \{-\varphi(2)\}$, from (2.13), (2.14) we have $\tau - S(\tau) = -\varphi(2)$, $\tau - L(\tau) = -\varphi(2) \ \forall \tau \in X$. Let now \varkappa , ϱ be such pairs of elements in X, for which there exists a sequence $n_1 < n_2 < \ldots$ such that $\varphi(n_v) + \varkappa$, $\varphi(n_v + 1) + \varrho$. Then $L(\varrho) \leftarrow \varphi(2n_v + 1) + S(\varkappa)$, and so $S(\varkappa) = L(\varrho)$, $S(\varkappa) = \varkappa + \varphi(2)$, $L(\varrho) = \varrho + \varphi(2)$, i.e. $\varkappa = \varrho$. Hence we can deduce easily that for each convergent sequence $\varphi(n_v)$ the sequence $\varphi(n_v + 1)$ converges as well, $\lim \varphi(n_v) = \varkappa$ implies $\lim \varphi(n_v + 1) = \varkappa$, and this gives almost immediately that $\varphi(n+1) - \varphi(n) \to 0$ $(n \to \infty)$. \square

Let $Z=S[X_0]$, $W=L[X_0]$. It is clear that $g\in Z$, if there exists a suitable sequence $n_v\in \mathbb{N}$ such that $\varphi(2n_v-1)\to h$, and $S(h)=g+\varphi(2(2n_v-1)+1)=\varphi(4n_v-1)$.

So Z=closure of $\{\varphi(4n-1)|n\in\mathbb{N}\}$, and similarly W=closure of $\{\varphi(4n+1)|n\in\mathbb{N}\}$. Since the set $\{4n+1, n=0, 1, 2, ...\}$ is a semigroup, $\{\varphi(4n+1)|n=0, 1, 2, ...\}$ is a semigroup, and so W is a subgroup in X_0 . It is clear that

$$\varphi(4n-1)+\varphi(4m+1)\in Z$$

for each n, m, consequently

$$Z+W\subseteq Z$$
.

Similarly, $\varphi(4n-1)+\varphi(4m-1)\in W$, and so $Z+Z\subseteq W$. Since $X_0=L[X_0]\cup S[X_0]$, $0\in X_0$, there exists $h\in X_0$ such that L(h)=0 or S(h)=0. From Lemma 5 we get that $0\in Z\cap W$. Then from the relations $Z+W\subseteq Z$, $Z+Z\subseteq W$ we have $Z=W=X_0$. We have proved the following

Lemma 8. We have

$$L[X_0] = S[X_0] = X_0.$$

3. Let us consider now the special case G = T.

Assume that $\varphi \in \mathcal{A}_T^*(D[2, -1])$.

It is known that the only compact subgroups of T are T itself and the discrete

groups
$$Z_m = \left\{ \frac{k}{m} \pmod{1}, \ k \in \mathbb{Z} \right\}.$$

Let us assume first that X=T. If there exists an $h \in E_0$ for which the order of the element $h+\varphi(2)$ is infinite, then $\{k(h+\varphi(2))|k\in\mathbb{N}\}$ is everywhere dense in T, and so by Lemma 6 we have $T\subseteq E_0$, i.e. L[T]=S[T]=0, which leads to the trivial case $\varphi(n)=0 \ \forall n, (n,2)=1$.

Assume now that E_0 contains infinitely many elements h_j each of which has finite order $o(h_j)$. Then the orders $o(h_j)$ cannot be bounded, and so by Lemma 6 we have immediately that E_0 is everywhere dense in T. From the continuity of L and S we get that $T=E_0$, i.e. that $\varphi(n)=0 \ \forall n, (n,2)=1$.

There remains the case when $E_0 = \{h_1, h_2, ..., h_r\}$. If r = 1, then Lemma 7 gives that $\varphi(n+1) - \varphi(n) \to 0$ $(n \to \infty)$, and Wirsing's theorem implies that $\varphi(n) \equiv \exists \lambda \log n \pmod{1}$. Assume now that $r \ge 2$. From $S(\tau - S(\tau)) = 0 \ \forall \tau \in T$, we get

that $\tau - S(\tau) \in E_0$. Let B_j be the set of those τ , for which $\tau - S(\tau) = h_j$. The sets B_j are disjoint closed sets, $\bigcup B_j = T$, furthermore $\tau - S(\tau)$ is a continuous function on the whole T. This is impossible if $r \ge 2$.

Let us assume now that $X=Z_M$ with a suitable M. If X_0 is the trivial group containing only the zero element, then $\varphi(2n+1)=0$ for each $n\in\mathbb{N}$. Assume that X_0 contains at least two distinct elements. Since $L\colon X_0\to X_0$, $S\colon X_0\to X_0$ are such functions for which $L[X_0]=X_0$, $S[X_0]=X_0$, they are permutations in X_0 . Consequently there exists a unique $\gamma_1\in X_0$, and a unique $\gamma_2\in X_0$ such that $L(\gamma_1)=0$, $S(\gamma_2)=0$. Since $L(\gamma_1)=0$ implies that $S(\gamma_1)=0$, we have $\gamma_1=\gamma_2=:\gamma$. If $\tau\in X_0$, then $\tau-L(\tau)$, $\tau-S(\tau)\in X_0$, and so from (2.13), (2.14) we get

$$S(\tau) = L(\tau) = \tau - \gamma \quad \forall \tau \in X_0.$$

Hence, by Lemma 4 we obtain

$$S(\tau) = L(\tau) \quad \forall \tau \in X.$$

Since X is a discrete group the conditions $\varphi \in \mathcal{A}_T^*(D[2, -1])$ and (3.2) imply that

$$\varphi(2n-1) = L(\varphi(n)) = S(\varphi(n)) = \varphi(2n+1)$$

for each large n. But from this we get immediately that $\varphi(n)=0$ for each odd n. Collecting our results we get the following

Theorem. Let $\varphi \in \mathcal{A}_T^*(D[-2,1))$. Then either

(1) $\varphi(n)=0$ for each odd n,

or

- (2) $\varphi(n) \equiv \lambda \log n \pmod{1} \ (\forall n \in \mathbb{N})$ with a suitable real number λ . Conversely, if $\varphi \in \mathscr{A}_T^*$ and satisfies (1) or (2), then $\varphi \in \mathscr{A}_T^*(D[-2, 1])$.
- **4.** We are unable to prove a similar theorem for a general metrizable compact Abelian group.

The determination of $\mathscr{A}_G^*(\Delta[-2,1])$ can be solved easily. Let $\varphi \in \mathscr{A}_G^*(\Delta[-2,1])$. Then $\varphi(2n-1)-\varphi(n) \to c$, $\varphi(4n^2-1)-\varphi(2n^2) \to c$. Since $\varphi(4n^2-1)-\varphi(2n^2) = \varphi(2n-1)-\varphi(n)+(\varphi(2n+1)-\varphi(2n)) \to c$, we have $\varphi(2n+1)-\varphi(2n) \to 0$. Since $\varphi(2n+1)-\varphi(n+1) \to c$, the relations $\varphi(n+1)-\varphi(2n) \to -c$, $\varphi(n+1)-\varphi(n) \to \varphi(2) -c =: A$ also hold. Then

$$\varphi(n+1) - \varphi(n) = (\varphi(2n+2) - \varphi(2n+1)) + (\varphi(2n+1) - \varphi(2n)),$$

whence we get A=2A, i.e. A=0. So we have $\varphi \in \mathscr{A}_G^*(\Delta[0,1])$.

5. Now we formulate some conjectures.

Conjecture 1. Let $\varphi \in \mathcal{A}_T^*$ and assume that the set $\{\varphi(n)|n \in \mathbb{N}\}$ is everywhere dense in T. Let $\eta_n := (\varphi(n), \varphi(n+1), ..., \varphi(n+k))$, and assume that the sequence $\{\eta_n|n \in \mathbb{N}\}$ is not everywhere dense in $T_{k+1} = T \times ... \times T$. Then $\varphi(n) = \lambda \log n \pmod{1}$ with a suitable $\lambda \in \mathbb{R}$.

Conjecture 2. Let φ , $\Psi \in \mathcal{A}_T^*$, and assume that both of the sets $\{\varphi(n)|n \in \mathbb{N}\}$, $\{\Psi(n)|n \in \mathbb{N}\}$ are everywhere dense in T. Assume furthermore that the sequence $\xi_n = (\varphi(n), \Psi(n+1))$ is not everywhere dense in $T_2 = T \times T$. Then there exist a suitable $\lambda \in \mathbb{R}$ and a rational s such that $\Psi(n) = s\varphi(n)$, $\varphi(n) \equiv \lambda \log n \ \forall n \in \mathbb{N}$.

Conjecture 3. Let G_1 , G_2 be metrically compact Abelian groups, $\varphi \in \mathscr{A}_{G_1}^*$, $\Psi \in \mathscr{A}_{G_2}^*$. Assume that the sets $\{\varphi(n)|n\in\mathbb{N}\}$, $\{\Psi(n)|n\in\mathbb{N}\}$ are everywhere dense in G_1 , G_2 , respectively. Assume furthermore that the sequence $\theta_n = (\varphi(n), \Psi(n+1))$ is not everywhere dense in $H = G_1 \times G_2$. Then there exist integers P and Q such that

$$PG_1 = QG_2$$
, $P\varphi(n) = Q\Psi(n)$,

and there exists a continuous homomorphism $\Lambda: R_x \to PG_1$ such that $\Lambda(n) = P\varphi(n) = Q\Psi(n)$.

References

- Z. Daróczy and I. Kátai, On additive number-theoretical functions with values in a compact Abelian group, Aequationes Mathematicae 28 (1985), 288—292.
- [2] Z. DARÓCZY and I. KÁTAI, On additive arithmetical functions with values in topological groups, Publ. Math. Debrecen 33 (1986), 287—292.
- [3] Z. DARÓCZY and I. KÁTAI, On additive arithmetical functions with values in topological groups, II. Publ. Math. Debrecen 34 (1984), 65—68.
- [4] Z. Daróczy and I. Kátai, On additive functions taking values from a compact group.
- [5] E. Wirsing, The proof is given in a letter to I. Kátai (9.3. 1984).
- [6] E. HEWITT-K. A. Ross, Abstract harmonic analysis, Berlin 1963, Springer.

Z. DARÓCZY DEPARTMENT OF MATHEMATICS UNIVERSITY OF L. KOSSUTH DEBRECEN 4010, HUNGARY I. KÁTAI EÖTVÖS LORÁND UNIVERSITY COMPUTER CENTER BUDAPEST, H—1117 BOGDÁNFY U. 10/B

(Received February 13, 1987)