Characterization of additive functions with values
in the circle group

By Z. DAROCZY (Debrecen) and I. KATAI (Budapest)

1. Let G be a metrically compact Abelian group, and T the one dimensional
torus. A function ¢: N—G will be called completely additive, if @ (mn)=¢(m)+
+¢(n) holds for each couple of m, n€N. Let &/ be the class of completely additive
functions.

Let F be a strictly monotonically increasing function defined on N and taking
positive integer values for each large integer, i.e. F(n)éN if n=>n,. Let {x,}ie,
be an infinite sequence in G. We shall say that it is of property D[F], if for any con-
vergent subsequence {x, },-, the subsequence {x,, 1}, has also a limit. We say
that it is of property A[F]if {xp,)— X,}n=11S convergent. It is clear, that if {x,}€A4[F],
then {x,}¢D[F]. For the linear function F(n)=an+b, a€N, b€ Z we shall write
Dla, b], 4[a, b] instead of D[an+b], 4[an+b).

Let o7; (D[F]), ¢ (4[F]) be the classes of those @€.a7¢ for which {x,=¢(n)}i,
is of property D[F], 4[F], respectively.

We are interested in giving a complete determination of /¢ (D[F]), & (4(F)).

We considered this problem with F(n)=n-+1 in some earlier papers [1—4].
Recently E. WIRSING [5] proved that @€/ (D[0, 1]) if and only if

(1.1) @(n)=tlogn (mod 1) (n€EN)
fora €R.

In [1] we proved that 2/ (4[0, 1])=275(D[0, 1]), and by using WIRSINGs theo-
rem in [2] we deduced the following assertion: If @€Z(4[0, 1])=2%(D[0, 1]),
then there exists a continuous homomorphism ¥: R,—~G, R, denotes the multi-
plicative group of the positive reals, such that ¢ is a restriction of ¥ on the set N,
ie. @(m)=%¥(n) (VneN). The converse asseition is obvious. If ¥: R,—~G is a
continuous homomorphism, then ¢(n):=Y (n)€;(4[0, 1])S;(D[0, 1]). These
results have been extended for additive functions (omitting the completeness of
additivity) in [3], [4].

The case F(n)=n+b can be treated similarly as F(n)=n+1. In this paper
we shall investigate the case F(n)=2n—1. A complete determination of
g (4(2, —1]) can be given easily, by using previous results [1], [2], [5] (see Sec-
tion 4).

The characterization of «/¢(D[2, —1]) seems to be more complicated. We can
solve it for G=T, (Theorem).

In the last section we shall formulate some conjectures.
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2. Let gpeo/&(D[2, —1]). Let X denote the set of limit points of {¢(n)|n€N},
i.e. g€X if there exists m<ny=<..., n,€N, for which ¢(n,)—~g. Let ¢(2n,—1)—-g".
Then g’ is determined by g. So the correspondence L: g—g” is a function. Let
X,(EX) be the set of limit points of {p(2m+1)|meN}. Then L: X—X,, L[X]=X,,
and as it is easy to see, L is a continuous function. It is clear that X and X, are closed
semigroups in G, so by a known theorem (see [5], Theorem (9.16)) they are com-
pact groups.

For the proof of these simple assertions see [1].

Since 0€X,CX, we have ¢@(n)€X, p(2n+1)€X, for each neN.

Lemma 1. Let §: X—X, be defined by
(2.1) S(g) = L(2g+¢(2))—L(g).
If m=ny=<..., n,€N is such a sequence for which ¢(n,)—~g, then @(2n,+1)—~
~S(g) (v—=2o).
PrOOF. Since ¢@co/5(D([2, —1]), @(n,)—~g implies that o@(2n})—@(2)+2g,
@(2-2n5)—1) ~ L(¢(2)+2g),
9(@2n,—1)~L(g), p(2n,+1)=0(2-2n})—1)—@(2n,~1)~S(g). O
Corollary 1. We have
(2.2) S(—e(2)=0.
PrROOF. Substitute g=—¢(2) in (2.1). O

Let gcX, ny<n,<... be such a sequence for which ¢(n,)—g. Let m,=2n,,
I® =mk+ =14 ...+m,+1. Then @(m,)~p(2)+g, o(I{?)~S(g). We have IV =
=14+m, %V =142n,-I[(*~Y, and so the limits ¢(/{¥)—~4, (v—+=) exist and

(2.3) L= SEtd-s, k=1, A,=0.
Since @(2*-'rn*)—(k—1)@(2)+kg, we have
¢(mi—1) ~ L((k—1)@(2)+kg), and by nk—1 = (m,—1)[*?

and we get
(24) L((k—D)o()+kg) = L(&)+M-1 (k=1)

Lemma 2. Let E,={h|S(h)=0}. Then E, is closed.
Furthermore, h€E, if and only if

(2.5) L((k—1)@(2)+kh) = L(h), VkeZ
26) L(—¢(2) = L(h).

Proor. It is clear that E|, is closed. If (2.5) holds for k=2, then S(h)=0,
h€E,. Let us assume that h€E,. Then (2.5) holds with k=2. Apply now (2.3),
(2.4) with h instead of g. We have A4,=0 for each k=1, and (2.4) gives (2.5) for
positive integers k. Let U,={k(¢ (2)+h)|keN}. So we proved that

(2.6) L(h) = L(u—¢(2) YucU,.
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Let U, be the smallest closed set that contains U,. Since L is a continuous
function and U, is a scm1group, U, is a closed semigroup, therefore by the cited
theorem in [5), we have that U, is a compact group. Since ¢(2)+heU,, the whole
cyclic group {k((o(2)+h)Jk€ z}SU,, consequently (2.5) holds for negative k’s as
well. For k=0 we have (2.6). O

Let

(2.7) R={R<Ry=<..}
be an arbitrary infinite sequence of positive integers. We shall say that R be-
longs to 2, if for each deN, d divides R, for every large v, i.e. if v=v,(R, d). Let

Py(S2,) be the set of those REZ, for which hm @(R,) exists. For an arbitrary
sequence R let

a(R) = lim ¢(R,),
if the limit exists. %

Let a(Z,) be the set of all limit points of a (R), ReZ,. If ReZ, and deN, then
dR={dR,<dR,=.. }6530. and a(d_) ¢(d)+a(R). If RGg"o’ S={S8,=8,=<.. }‘5590,
then R*S={R,S,<R,S;=<.. ]G@*’ﬂ, a(R+S)=a(R)+a(S). So the set {a(_)|R€9'0}
is a semigroup, the set of limit points is a semigroup as well, it is closed, so it is
a compact group. Furthermore, from a(dR)= ©(d)+a(R) we have that (p(d)ea(.% L
consequently X Ca(?.,) The relation a(a‘#’o)CX is obvious. So we have X -a(.%)

Let M¢ .‘?0, a(M)=g. Let k be an arbitrary natural number. For each large
v we have M,=2kt,, t €N, t,<t,.,.

Now
o(t,) ~g—9(2k) (v —=<=).
So we have

P(M,+k) = ¢(2kt,+k) = o(k)+@(2t,+1) = @(k)+S(g— @ (2k)),
and so

(2.8) @(M,+2m) — ¢(2m)+S(g—¢(4m))
2.9) o(M,+2m+1) - o(2m+1)+S(g—@(2m+1))
(2.10) o(M,+2m—1) - o(2m—1)+S(g—@(2(2m—1))).

Now we observe the following relation. If n;<n,<... is such a sequence of
integers for which ¢(2n,)—~x», then ¢@(2n,+1)—~S(x—¢(2)). This follows im-
mediately from the relation ¢ (n,)—x—@(2).

Let us apply now this with 2n,=M,+2m. From (2.8), (2.9) we get that

(2.11) S(e(m)+S(g—p@m))) = ¢(2m+1)+S(g—@(22m+1))).
Substitute g=¢@(2m) in (2.10) and observe (2.2):
(2.12) S(p(m)) = e(2m+1)+S(@(m)—@(2m+1)).

Since S is continuous, and (2.11) is true for every m, it is true for the limit
points as well. Let 7€ X, ¢(m,)—~1. Then ¢(2m,+1)-~S(7), and from (2.12),

S(t) = S(1)+S(r—8())
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which implies that
(2.13) S(t—S(1)) =0 Vr1eX.

If ¢(2n,)—x%, then @(n)—x—¢(2), and so ¢(2n,—1)—~L(x—¢(2)). Apply this
with 2n,=M,+2m. From (2.9), (2.10) we get that

L(p(m)+S(g—@(4m))) = ¢(2m—1)+S(g—¢(2(2m—1))).
Let g=¢(2m). By (2.2) we have
L(p(m)) = ¢(2m—1)+S(p(m)—p@2m—1)),
and so by using the continuity of L and S, we get
(2.14) S(t—L(1)) =0 VY1€X.
Let g€X, ¢(n,)~g. Then ¢(2n,—1)—L(g), ¢(2n,+1)—~S(g),
S(L(g) ~ ¢(2@2n,—1)+1) = ¢(4n,—1) - L(¢(2) +g),
L(S(g) ~ (22n,+1)—1) = ¢(4n,+1) - S(p(2)+g).
So we have proved
Lemma 3. We have

(2.15) SL(g) = L(¢(2)+g),
(2.16) LS(g) = S(p(2)+g).
VgeX.

Lemma 4. Assume that S(g)=L(g) Vg€X,. Then
(2.17) S(g)=L(g) VgeX.

Proor. Let Y,=ko(2)+X, (k=0,1,2,...). We shall prove that (2.17) holds
for geY, (k=0,1,...).

We shall use the relations (2.15), (2.16). By the assumption this is true for
k=0. Let now ge€l,.

Then g=¢(2)+h with a suitable h€Y,. So S(h)=L(h).

Since S(h)€Y,, we have L(S(h))=S(L(h)), i.e. our assertion is true for k=1.
Assume that (2.17) is proved for geY,UY;U...UY,_,. Let g€¥,. Then g=¢(2)+h,
heY,_,. Then L(h)=S(h)€Y,, and so SL(h)=LS(h), and so (2.17) is true for
each g€Y,. Since UY, is everywhere dense in X, and S, G are continuous func-
tions, therefore (2.17) is true for each geX. O

Lemma 5. Let hc X. We have L(h)=0 if and only if S(h)=0.

PrROOF. Assume that L(h)=0. Then, by (2.14) we have S(h)=0. It is clear
that there exists at least one h*, such that L(h*)=0. Then h*€E,, and so by (2.6),
L(—¢(2))=L(h*)=0. So we have L(—¢(2))=0. Let now S(h)=0, ie. h€E,.
Then by (2.6) we have L(h)=0.

Lemma 6. Let V, denote the closure of the set {kglk€N}, g€X. Then V, is a
compact subgroup of X. If h€E,, then —@(2)+V,4o@2)EEo-
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Proor. The assertion that ¥, is a compact subgroup is well-known. If h€E,,
then by Lemma 2 and Lemma 5 we have (k—1)¢(2)+kh=k(h+¢(2))—@(2)€E,
for each k€Z. Since L, S are continuous, our assertion follows immediately. [J

Lemma 7. If E, contains the only element —¢(2), then S(1)=L(1)=1+¢(2)
t€X, furthermore @(n+1)—¢@(n)—=0 as n—-=.

Proor. Since E,={-¢(2)}, from (2.13), (2.14) we have 7—S(t)=—0¢(2),
t—L(1)=—¢(2) V1€X. Let now %, ¢ be such pairs of elements in X, for which
there exists a sequence n,<mny,=... such that ¢(n,)—~x, @(n,+1)—~p. Then L(g)+«
~@(2n,+1)~S(x), andso S(x)=L(g), S(x)=%+¢(2), L()=0+¢(2), ie. x=g.
Hence we can deduce easily that for each convergent sequence ¢(n,) the sequence
@(n,+1) converges as well, lim ¢(n,)=x implies lim ¢ (n,+1)=%, and this gives
almost immediately that ¢(n+1)—@(n)—~0 (n—<=°). O

Let Z=S[X,), W=L[X,). It is clear that g€Z, if there exists a suitable se-
quence n,€N such that @(2n,—1)—~h, and S(h)=g+@(2(2n,—1)+1)=¢(4n,—1).

So Z =closure of {¢(4n—1)|n€N}, and similarly W=closure of {¢(4n+1)|n€N}.

Since the set {4n+1, n=0, 1,2, ...} is a semigroup, {@(4n+1)|n=0,1,2,...}
is a semigroup, and so W is a subgroup in X,. It is clear that

e@n—1)+o@m+1)eZ,
for each n, m, consequently
Z+W S Z.

Similarly, @(@n—1)+¢@@m—1)eW, and so Z+ZSW. Since X,=L[X]US[X,]s

0€ X,, there exists h€X, such that L(h)=0 or S(h)=0. From Lemma 5 we get

that 06 ZNW. Then from the relations Z+WEZ, Z+ZEW we have Z=W =X,.
We have proved the following

Lemma 8. We have
L[Xu] b S[Xu] = Xu-

3. Let us consider now the special case G=T.
Assume that @€/ (D2, —1]).
It is known that the only compact subgroups of 7" are 7 itself and the discrete

groups Z,,,={%(mod 1), kEZ}.

Let us assume first that X=7. If there exists an h€ E, for which the order
of the element h+¢(2) is infinite, then {k (h+qo(2)]|k€N} is everywhere dense in
T, and so by Lemma 6 we have TCE,, ie. L[T]=S[T]=0, which leads to the
trivial case @(n)=0 Yn, (n,2)=1.

Assume now that E, contains infinitely many elements /; each of which has
finite order o(h;). Then the orders o(h,) cannot be bounded, and so by Lemma 6
we have immediately that E, is everywhere dense in 7. From the continuity of L
and § we get that T=E,, i.c. that ¢(n)=0 Vn, (n, 2)=1.

There remains the case when E,={h;,hs,...,h ). If r=1, then Lemma 7
gives that @(n+1)—¢@(n)—~0 (n—~<), and Wirsing’s theorem implies that ¢(n)=
=Alogn (mod 1). Assume now that r=2. From S(r—S(7))=0 V1€7, we get
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that t—S(1)€E,. Let B; be the sct of those 7, for which t—S(t)=h;. The scts B;
are disjoint closed sets, |UB;=7, furthermore t—S(7) is a continvous function
on the whole 7. This is impossible if r=2.

Let us assume now that X=Z,, with a suitable M. If X, is the trivial group
containing only the zero element, then ¢@(2n+1)=0 for each n€N. Assume that
X, contains at least two distinct elements. Since L: X,—~X,, S: X,—~X, are such
functions for which L[X]=X,, S[X;]=X,, they are permutations in X,. Con-
sequently there exists a unique 7;€X,, and a unique 7,€X, such that L(y,)=0,
S(y)=0. Since L(y,)=0 implies that S(p,)=0, we have y,=y,=:y. If 1€X,,
then 7—L(7), t—S(1)€X,, and so from (2.13), (2.14) we get

(3.1) S(T) =L(x)=1—7 V1€X,.
Hence, by Lemma 4 we obtain
(3.2) S(t) = L(r) V1eX.
Since X is a discrete group the conditions @€ 27 (D[2, —1]) and (3.2) imply that
9@2n—1) = L(p(n) = S(o(n)) = ¢(2n-+1)

for each large n. But from this we get immediately that ¢(n)=0 for each odd n.
Collecting our results we get the following

Theorem. Let @€ofy(D[—2,1)). Then either

(1) @(n)=0 for each odd n,

or

(2) @¢(n)=Alogn (mod 1) (YnEN) with a suitable real number }.
Conversely, if @€/ and satisfies (1) or (2), then ¢@€a/7(D[—2, 1]).

4. We are unable to prove a similar thecorem for a general metiizable compact
Abelian group.

The determination of &/5(4[—2, 1]) can be solved easily. Let @ca/g(4[—2,1]).
Then @Q2n—1)—¢@(n)—c, @@n*—1)—¢@(2n*)—~c. Since @@n*—1)—e(2n?)=
=@(2n—1)—@(n)+(¢(2n+1)—@(2n))~c, we have @(2n+1)—¢@(2n)—~0. Since
@(2n+1)—@(n+1)—c, the relations ¢(n+1)—@(2n)——c, e(n+1)—@(n)—@((2)—
—c=:A also hold. Then

@(n+1)—o(n) = (e(2n+2)—@2n+1))+(p(2n+1)—0(2n)),
whence we get 4=24, i.e. A=0. So we have @€cZ(4[0, 1]).
5. Now we formulate some conjectures.

Conjecture 1. Let @€o/7 and assume that the set {@(n)|n€N} is everywhere
dense in T. Let n,:=(¢(n), (n+1), ..., ¢(n+k)), and assume that the sequence
{n,In€N} is not everywhere dense in T, .,=TX...XT. Then ¢(n)=4logn (mod 1)
with a suitable A€R.
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Conjecture 2. Let ¢, Pcoff, and assume that both of the sets {¢(n)ln€N},
{7 (n)|n€N} are everywhere dense in 7. Assume furthermore that the sequence
¢n=(o(n), ¥(n+1)) is not everywhere dense in T,=TXT. Then there exist a
suitable A€R and a rational s such that ¥ (n)=s@(n), ¢(n)=Ailogn VYneEN.

Conjecture 3. Let G,, G; be metrically compact Abelian groups, @€/,
Yeolg,. Assume that the sets {o(n)|n€N}, {¥(n)ln€N} are everywhere dense in
G,, G,, respectively. Assume furthermore that the sequence 6,=(¢(n), ¥(n+1))
is not everywhere dense in H=G,XG,. Then there exist integers P and Q such that

PG, = QG,, Po(n)=Q0¥(n),

and there exists a continuous homomorphism A: R,—~PG, such that A(n)=
=P (n)=0¥(n).
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