On predictive deconvolution of a seismic signal

By PHAN DANG CAU (Hanoi)

Abstract. Robinson’s statistical minimum-delay model (or the method of predictive deconvo-
lution) has been effectively used in seismic prospecting for oil and gas. It is used to eliminate multiple
reflections from surface layers and reverberations in a water layer. However, in our opinion, this
model is not clear in some respects.

In this paper we try to give a new interpretation and a more general condition for this model,
which are possibly more suitable in practice. We also point out that with the new conditions, the
computation process based on observations is just the same as in the case of Robinson’s model.

§ 1. Robinson’s model

In order to fix ideas, let us consider a specific physical situation, namely the prob-
lem of seismic exploration for oil and gas in the earth’s sedimentary strata. The
source is an explosion or another form of energy which is introduced into the ground
at the surface. The reflection response x, is the seismic reflection record (time series)
which is digitally recorded at the surface. The reflection coefficient sequence ¢, is a
digitized reprezentation of the reflectivity of the Earth as a function of depth. As a
result, knowledge of the ¢, sequences for various geographic locations on the surface
allows the seismic interpreter to make contour maps of the earth’s sedimentary struc-
ture at depth.

Under certain assumptions (see [8], p. 457) Robinson introduced the following
equation:

(1) X t+oX, 1+..ta %, ,=8, n=012,..

where a,, s=1,2, ..., p are the unknown parameters, which depend on the geologi-
cal structure of the prospected area.
In the case of a noise appearing, the reflection response has the form

(2) Vn = Xu+0,

Where v, is a noise. Here we suppose that the noise is eliminated. The predictive de-
convolution problem is to compute the ¢,-s from the x,-s. However, (1) implies a
system of equations having more unknown variables than the number of equations,
so it is impossible to find the &,-s.

Robinson proposed the statistical method as follows:
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He supposes that the sequence ¢, is a random white noise, i.e.
(3) Ee,=0, vare,=0*>0, FEge, =0 n=s.
He supposes further that
(4) |+a,z+ay2*+...+a,z? #0 for |z] = 1.

Thus x, is a stationary auto-regressive process. As well known, then the coefficients
@y, 4y, ..., a, can be estimated from the observed x,-s, and the ¢,-s are estimated by

(5) =Xt Xyt ot lyx, sy

§ 2. Some remarks on Robinson’s model

In his model, Robinson identifies the random variables ¢, with the reflection
coefficients. However this identification contradicts the fact that the reflection coeffi-
cients are deterministic physical quantities. Thus if we consider the model (1) as a
stochastic model and denote the reflection coefficients by &,, then it is better to
write the model (1) in an other form:

xn+ﬂlx"_1+ﬂ2xn_g+...+apx,|_p = U,

where u, is a random variable depending on ¢, in some way.

We have recourse to the irregularity of the sequence u, to obtain information
on the earth’s sedimentary structure at depth. The assumption that u, is a stationary
process seems not always suitable in practice.

§ 3. The modified model

In order to modify Robinson’s model so that it be more suitable to practice, let
us first consider the simplest case:

Suppose after explosion the input signal f(¢) propagates to the earth’s crust.
When meeting an interface having reflection coefficient ¢ it reflects to the surface with
reflected wave g(r)=ef(¢z). Since the elastic wave f(¢) represents the motion of a
particle about its equilibrium point, f(7) always has a damped sinusoidal form (in the
case of an explosion it is relatively narrow with great frequency). Now let us consider
some observed value u of g(z). In geophysics the arrival time of a reflected wave is
usually considered as an uniformly distributed random variable (i.e. we do not know
exactly when the reflected wave appears). Thus the observed value u can also be con-
sidered as such a random variable that

u=g(1)
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where 7 is a uniform random variable on some interval [a, b]. We have

Eu=

b
bia JICICLES

= cg?,

or more exactly speaking, Eu is negligible at Eu®. Thus although & is some fixed value,
in the case ¢>0 the measured value ¥ may be an arbitrary value in [—eé, €]. Therefore
u cannot be considered as an approximation of .

For the above reason we propose to modify (1) by the new model

(6) X+ @1 Xy 1+ FayX,_p,=u, n=0,1, 2530,
where ;
) By =0, Egf=cs.

Because the reflection coefficients are different, Eu’ cannot be constant. However,
by measuring the reflection coefficients at a used oil well, WHITE and OBRIEND (1974)
of British Petroleum, SCHOENBERGER and LevIN (1974) of Exxon see that for N

large enough

1 N-1
(8) —_— 2 x>0
N =
(see [9]. p. 490). '
By (7) and (8) we have
1 N-1 N-1
) Z'Eu’—c—z gx~cy=0'>0.

u-l

We suppose that in the case of a complicated geological phenomenon, the Up S
are independent variables.

In summary, we suppose that the reflection response x, satisfies (6) and the
following conditions:

(a) The variables u,, u, #,, ... are independent with mean 0 and

(10) Elu,|*t% <k << for some k and g =0
| N=1
(11)(b) Lim— 3 Eui=0%>>0

N-+e Nm-ll
(12)(c) F l'+aiz+a,zz+...+a,z' #0 for |zl =1"

We would like to remark that condition (10) is obvious because the variables u,
are bounded. For the validity of condition (12) see [8] and [9].

10
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§ 4. Predictive deconvolution of a long-run stationary
auto-regressive process

Definition 1. We call a process x, satisfying (6) and the conditions (10), (11), (12)
a long-run stationary auto-regressive process.

Definition 2. We call the process y, a stationary auto-regressive process corres-
ponding to the above defined long-run stationary process x, if y, satisfies y,+a,y,_1+
+... +@,Y,—p =0, where v, is white noise with Ev; ="

Theorem 1, Le.' x, be a long-run stationary process satisfying (6), (10), (11), (.12).
Then there exist the limits

] N-1

JEW.E. Xoreky = qo-,. as. s= 0, .1’2’_

(13)
where @, is the correlation function of the corresponding stationary process y,.
ProOF. By (12) we can take the reciprocal B(z) of the Z-transform A(z)

1
1+a,24+...4+a,2*

(14) B(z) = = bo+byz+b, 22 +...

and the process x, can be written in the form
Xy = S' byu,_, where u,=0 for n<0.
5=0

By (10) Eul<d for some d=0.
Let

§,=H§—Eu§, (5°='—-
Using Mi:;kows_ki’s inequality, we have )

1 1' :
(E|E 1 +%) T+ = (E|u}— Eulj1+%)1+3 =

1 1
= (E|uy|*+%) *% + Eup < K '+% +d
from which
1
E|E |15 < (KT+% +d)1+% < o,

The sequence ¢, satisfies the conditions of Markov’s theorem (see [4], p. 287) there-

fore
.1 N=1
Pl e 2 =0,
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Thus we have
1 N-1 ] N-1 1 N-1
(15) th—z (uz— Eu:)-Pllm [— uy—— 2 Eu,’,]=0.
n-ﬂ N n-ll N n=0
By (11) and (15)

Plim 3 u= lim — 5 Eu=o?
fim 5 3 = lim 5 3 Eat= ot

Since the u;-s are independent variables, by the theorem 3.2 in [1], p. 159 we have
oy
(16) lim — 3 ul =0 as.

-~ N n=0

For s=1,2,3,... we can write

1 [N l-l
L Z; UnlUpys = S “rs+l+tu(:+1)¢+l+:'
it = 0
Now consider
L% Yo L ¥ NE @
E[—ﬁ.go"'] =F'§o£u§‘+'+=‘£u?r+l)s+l+:_=’ NE =—'ﬁ-—'0
where
N—-I-1
s+l P = Uegtt+eU(e+)s+1+

Here we have used the independence of the variables u,. Using Tchebychef’s inequa-
lity we get

Pllm—Zn,—O

l'-ﬂ

We can see that the variables #,-s are independent, and using the theorem 3.2 again
we have

From and (17) we have

. 1 N=1
(18) JTE»TV_,.‘.?'; Ui, =0 as.
From (17) and (18) we get
! 1 N-1 1 N=1 o oo
oy & ren = gy 8 8 bbb
oo o l .N—l =
5 ,g; 'g; bib, ll__l'll W,.g; Uy 5=t Up—y = O 'é: b,isb, = EVpis¥n = Q-
Thus the proofis complete.

10*
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Remark. If we know ¢,, s=0,1,...,p then a,,a,, ..., ap are determined by
Yule—Walker-type equations

L) 21 Ppa
(19) ?l Po ¢p -2 K
‘Pp 1 @p—2- Pp.

Therefore the u,- are determined by
(20) U = Xyt Oy Xyt i Ay X

In practice we can estimate ¢, by
1 N-1
Fs = Tné; xuflxu
and then a,, a,, ..., a, are estimated by

(21) Réd=-—r

where

Focnulyyees Ty

Since the matrix on the left hand side of (19) is positive definite, for N large enough
the matrix R is invertible and we ha\(e :

=—R"'r.
Using the above theorem we get' '

Py P - Pp i @,

lim @ = j\!im —Rr=—|Pr Po .- Pp-2 P2l=4q as.
qop-.l ‘Pp-z v Qo (Pp
therefore the estimate 4, of , is obtained by

=Xt bh X+ ..+ 2,
and we have

(22) Nlim i, = u, a.s.
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§ 5. Limiting distribution of the estimate

In this section we shall show that it is difficult to test hypotheses for a long-run

statitonary process.
For simplicity, let us consider the first order process

(23) Xptax,,=u, n=0,1,2,...

Where the sequence u, satisfies (10). The condition (11) is replaced by a more special
condition :
Let L be a subset of the set A" of non-negative integers such that

e
(24) lim = Sy =2 0<A=1

n=1
Where
1 n€éL

0 otherwise.

x(n) = {
Let Eu;=0%y;(n) that is
L2 jm
Let

Eul = .

M=

s
N,

U
-t

N-1

Yn = Xy—1 Uy, S = Z Vas D=Vﬁl‘-
n=0

Theorem 2. For the above mentioned process x,, if l:-% then N(dT—a) has

a limiting normal distribution N [0, %]
0
PrOOF. It is easily seen that

N@—a) S

F; BRICIECL  T
Because P Jim r-'=@g'=>0 we have to prove that %—-./V (0,1). Let H=AN\L

then
i ] X b 1.0% 1
fim —= 2 xa(m) =1-2<=.

n=1

Hence we can choose N, such that for every N> N,

N
(26) N-2 3 yg(n)—1 > 6, N forsome J,>0.
n=1

We can see
(27) xe(My(n—=1) = 1=[xg(n)—xa(n—1)].
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Hence

N N n—-1 N
ES*= JEREx;_ = 3 3 a**Vy(m)x(s) = é:x.-.(n)x:.(n—l) =

n=1 n=1s=0
N N
= .§ [1-(a(m)+xa(n—1))] = N—zg1 xa(n)—1 > 8, N.

Thus for N=N,
(28) D? = ES* > §,N
Now for meAN" let

xi(|M) = Zm. (_ a)’un—a

2 (—a)Yu,_, n>m

z™ = x, —x™ = {s=m+1
0 n=m
Y = X

N
S® = 3y

n=1

Zm — g__gm 2" E‘M ("‘a)’unuu—l—-s‘

n=1 s=m+1

Then
(29) B S T e ama T
n=1 s=m+1 1 —-a?
For N> N, using (28) and (29) we have
EZ2(m) Ng2im+1) Ng2lm+1) q¥m+1)

-0 as m —»eo,

D' = (—a)D - (1—-a)No, _ (1—ad,
Now for given k, 2m=<k=<N, let
N=Mk+r r<k.
2, = Y1+ 0k st IR, s=1,2,.. . M
Zy+1 = Yalbert o+ YN
0= Vi1t Vi miat IR s=1,2,.., M.

If we put

M
M+1 >y RN

Ziy = 2 2z, Xan =)=t
S 0 k= N.
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Thell S(m)=Xw +Zk~'
It is easy to see that

EXiy < MC,,, E|z|**% < G;.
Hence
EX}y M 1
N = N Cn= T C,.
We can see that S'™ too has the property (28), i.e. for N> N,

ES*™ = D2 > 5 N.

Thus for N>N,

ES'™ _ EZh 1
N =l ok

0<d,=

e,

Therefore there exist y,>0 and k, such that for every k>k,
Diy = EZ}y >y, N.

We can see that the variables z,, z,, ... zy,, areidependent and

B g P o)L SUCHGE. SRR DR WS
Di» = N1+E/2) i+ (s0/2) N1+(e/2)pl+(20/2) Na/z ylt(e)

Hence by Ljapounov’s theorem (see [4], p. 374), for fixed k

Z-*i-m(o,l) as N — oo,
DA'N

Now let us consider

EXL. BY% N ). g
Dfnr = N D;N d

Then
S ZkN XkH

(30) == +
D EX2 EX2

s |/ 1+-@'— Dl T4 “;*”

DkN DkN

uniformly in N as k- <. By (30)

P'}im Vix = 0 uniformly in N.
Applying Anderson’s theorem (see [2], p. 415) we have
2 A0,1) as N
D 1 ;

Thus the theorem is proved.
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Remark. 1t is well known, that if x, is a stationary autoregressive process, then

E(/N@-a) ~ 2.

Therefore var 4 can be estimated and we can test hypotheses. For the process x,

satisfying (23) we can see D*=>0 for }.>%, but D? may be O for Aé%. Thus in the
general case it is difficult to estimate the variance of 4 and therefore it is difficult to

test hypotheses.

§ 6. On the rate of convergence

As we have seen in the previous section, for the long-run stationary process, we
cannot always give the asymptotic variance of the estimates. Here we show that under
certain conditions, we can give a rough bound for this quantity. Let us write

R} =(Cil'.) l,k= l, 2, very P

Theorem 3.
(31) (@) If Elcyl* <K< fori,k=1,2, ..., p then there exists L,>0 such that
(32) Ela;—d;| = Tvl%i— {7 T SRR 3

(33) (b) If E|u,|*<K;<-<o, E|lcy|*<Kz<e then there exists Ly,>0 such that

(34) Elu,—4,| = Kf;-j—.

Proor. For an arbitrary random variable x having g-th moment, let us write
lxl, = (E|x|9)"e.

Let further %,=(x,, Xy—1s..-» X,—p4+1)” where x,=0 for n<0. Then (7) can be
written in the form

x~+£;_1a -— u”.
We can see that

R S 4 15«
e n=1xn—1s T = 5% n—1%n
N ﬂg; ¥ : N n=0 .
1 N-1

a—-4d=R" —AT' z;, fn—lun]‘
Hence

P 1 N-1
(35) w-ty= 3 calr 3 Faain) i=12.0p.

(a) Suppose (31) is satisfied.
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T,

where Eul<d, Ex:<c. Hence

Notice that

1 cd
Ns Z EuﬁEx: k =—ﬁ-

Ela;—é| = ”ai_dihl =

ZP' Cik [‘— 2 xu—-l;un]ul =

k=1 n=0
P N-
= Zlealy 2 5] = Zleals z st =
* PKM2 V22 Bt -
B N1z - N2

which proves (32).
(b) Suppose (33) is satisfied. Then we can see

Ex: < K, forsome K,=>0.
Notice that for arbitrary random variables x and y having 2k-th moment

(36) lxyle = [l plex-

Suppose n is the largest value between different n, s, / and h. Then u, is independent
of g, Uy, Upy Xy—_ks Xg—ks X1—x» Xp—x and hence

(37) Euty iyt uy X, g X)X Xy = 0.

Using (36) we can show that

(38) Eluguguyxs_yXo_ X4 = K3 KJ2,
By (36) and (38) we have
1 N-1 ‘ | N=1 N-1 N-1 K2 KM
‘I—ﬁ' é; Xp—kUp A -— ‘F‘-'gl; ng; 'g; Eu’u u.x,._;x _,‘x,_t — —'—'—'—'N .
Thus
1 K18 K18
[ 2 e, = T
We now consider
o (1 N-1 \ P N-1
(39) ley—dl,= N Z.; xn—k“uJ : = 12; r.'“,[ Z xn-tuu]
P N-1 PKMSKMAKY/®
= I:é; ”Cikﬂl TVH“%; Xy —k Up 3 = N[,‘
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Hence

|1 = Ié; l(a;—d)x,—ill =

P
Elu,—d,| = "‘2; (a;—ad)x,_;

PAKYPKAKBCYE L,

P
= ig; lai—dilla|xa—il2 = NI =N

Therefore (34) and thus theorem 3 is proved.

Acknowledgement. The author would like to thank Prof. Dr. NGUYEN XUAN
Loc, Dr. NGUYEN VAN Ho and Dr. ANDRAS KRAMLI for their valuable remarks and

suggestions.
The author would also like to express deep gratitude to his teacher, Dr. JOZSEF

ToMko for his help, valuable comments and suggestions.

References

[11 A. D. AcosTA, (1981) Unequalities for B-valued random vectors with applications to the
strong law of large numbers, The Annals of Probability, 1981, Vol. 9, No. 1, 157—
181.

[2] T. W. ANDERSON, (1972) The statistical analysis of time series John Wiley and sons.

[3] M. ARATO, A. BENCZUR, A. KRAMLI, J. PERGEL, (1974) Statistical problems of elementary Gaus-
sian process, I. Stochastic process (MTA SZTAKI Tanulmdnyok 22 (1974).

[4] MICHAEL, LokvE, (1977) Probability theory, D. van Nostrand Co., Inc. New York.

[5] A. MgskO, (1984) Digital filtering applications in Geophysical Exploration for oil, Akadémiai
Kiadd, Budapest.

[6] ALFrRED RENYI, (1973) ValoszinGségszamitas, Tankonyvkiado, Budapest.

[7]1 E. A. RoBinson, (1967) Predictive deconvolution of time series with application to seismic explo-
ration, Geophysics, Vol. XXX11, N-3 (June, 1967, pp. 418—84).

[8] E. A. RosinsoN and the Treitel, seven (1980) Seismic signal processing, Englewood cliffs, N. J.:
Prentice-Hall.

[9] E. A. RoBinsoN, (1981) Time series analysis and applications, Houston, Goose Pond Press.

INSTITUTE OF COMPUTER SCIENCES
AND CYBERNETICS, HA NOI

( Received January 23, 1987 )



