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1. Introduction. Let A4,, be an affinely connected manifold of dimension 2n

whose components of the affine connection are I}. Let 4,, be endowed with a tensor
field ff#=6} satisfying
(1.1) fiff=0d, o=+1 or -1

If w=—1, the manifold is an almost complex space, and if @w=+1, itis an
almost product space. In the adapted coordinate systems, the matrix of f/ has the

form: 3
( f) = [Va:)f; _}/05 l'.],

where the indices a, b run over the range 1, 2, ..., n, while i, j, k, ..., run over the
range 1, 2, ..., 2n. Therefore

(1.2) fi=0.
An affine connection I' is called an f~connection if
(1.3) V.fi=0

where V, denotes the covariant derivative with respect to the connection I'.
A curve x'=x'(r) satisfying the differential equations

" 5 APVRE s dx! ¢ X°

L g8t Ta—gr—gr =) —-+8(0)fs Tdr
is a holomorphically planar curve. We see directly from (1.4) that a curve is a holo-
i
morphically planar curve if and only if the plane elements determined by -‘-;—J:-

and f! ‘;—T are parallel along the curve itself.



274 Georgy Markov and Mileva Prvanovié¢

Two f-connections I' and I' are said to be H-projectively (holomorphically
projectively) related to each other if they have all holomorphically planar curves in
common.

H-planar curves and H-projective transformations have been studied by many
authors ([1], [2], [3], [4], [5], [6]). So it is known that two symmetric f~connections I’
and I are H-projectively related if and only if

(1.5) Ty = T+ i+ 0k + o, P fi+ oy, £ i,

where i, is an arbitrary covector field. Equations (1.5) give H-projective transfor-
mations of the symmetric f~connection.

The object of the present paper is to generalize the notion of holomorphically
planar curves and holomorphically projective transformations using the notion of
n-geodesic vector field given by RADzISZEwsK1 [7].

Let be given a fixed symmetric differentiable tensor field n of type (0, 2) in A4,,,
satisfying the condition det (7;;)#0. In this paper we suppose that m;; is a pure
tensor, i.e.

(1.6) *Offm,, =0
where

1
*0ff = = (3185 —af? 7).
The condition (1.6) is equivalent with

(1.7) feny = 1] .
In fact, (1.6) means
Ty = Qf? [ Tpqs

from which, transvecting by f{ and taking into account the symmetry of =;;, we
get (1.7).
It is easy to prove that the tensor field #”, determined by

?t, j ﬁ’l = 6“'
is also a pure tensor field, that is
(1.8) I = LN,

According to the definition given by RApzIszewski1 [7], a vector field w is called
n-geodesic if
(1.9) Vi(mw)WE = Am we

Integral curves of a m-geodesic vector field are called n-geodesics. Their diffe-
rential equations are [7], [8]:

&’ a
i +HTh+ (V)7

dx* dx‘_ldx'_
&t & " &'
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In this paper we consider a vector field w satisfying, instead of (1.9), the condi-
tion
(1.10) Vi(mipwP)w* = m, (a(wP+B(8) S W)

We shall define, in § 2, nH-planar curves and nH-projective transformations and we
shall prove in §§ 3 and 4 th eexistence of two different nH-projective curvature ten-
sors, 1.e. the existence of two different tensors each of which is invariant with respect to
nH-projective transformations. One of them, called the second nH-projective curva-
ture tensor, can be obtained directly from the H-projective curvature tensor.

2. nH-projective transformation. We have from (1.10)

P
Vim,)w?wr+m, [%—;—+ Ff,w‘] wh = 7, (aw?+ BfF W),
so that, transvecting with #™", we get
(2.1) %';,‘i-}- [Th+ (V) PP W wr = awh+ BfwA.

Definition. We say that the integral curves of the vector field w satisfying (2.1) are
n-holomorphically planar curves, abbreviated to nH-planar curves.

If x'=x/(t) are nH-planar curves, then w“=%§-, and we obtain from (2.1)

that
d®xt . oy IR dx® . b . ax?
(2.2) —d‘,—-l'[ru'i'(vtﬂp)“ | F T TR aar +ﬂpr

are their differential equations.

Definition. A nH-projective transformation is a change of connection I' which
does not change the system of nH-planar curves.

To find a wH-projective transformation, we first notice that (1.4) and (2.2) show
that a nH-planar curve with respect to the connection I is a holomorphically planar
curve with respect to the connection

(2.3) Gy = Thy+ (Vi) 7P,

If we suppose that Gi is a symmetric f~<connection, a change of G}, which des
not change the system of holomorphically planar curves has the form (1.5). Thus we
have

24 Gis = Gt 03+ + 0 (U fE S+, 2 1)

As for Gj,, it must be a symmetric f~connection too, and must also determine nH-
planar curves, i.e. it must have the form

(2.5) by = T+ (V,m,) 7%,

where V denotes the covariant derivative with respect to the connection I.
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From (2.3) and (2.5), we have

Gl i‘};;': sal __ hnm ﬁ""
Gly = St 7~ [y

1
i Gis—Gis = —(Tfa—Tf)m,, 7%,

from which, transvecting with #*m;, we obtain
I}y = Ij;—(Gis— Gl ny;.
Substituting Gi,—G}i, from (2.4), we get
(2.6) I}y = Tiy— Y@ my— 85— o (ff i+ L) 7 n
Conversely, let us suppose that (2.6) holds good. Then we have

37{“!
ox*
(%Id

= b B = Thamy R i+ S)+ U (OS] +17 1) =

= Gl +¥, 0L+ o) + ol (R f+ 121D,

that is, we can express the connection (2.5) in the form (2.4). Thus, we have the fol-
lowing

Gl = ol —[p,m, 7 =

Theorem. The condition (2.6) is necessary and sufficient for the connections I'
and I to have all nH-planar curves in common.

Taking into account (1.7), the relation (2.6) can be rewritten in the following
form

(2.7 Iy = Ty— V.7 my— S — oY fi f] — oY ff il 7wy
Definition. The correspondence (2.7) is called a nH-projective transformation.

It was already mentioned that (1.5) takes place for two symmetric f~connections.
This means that both connections G and G in (2.4) are symmetric f-connections. But
the symmetry of the connection G implies

(2.8) Fis— M+ (Vimta— Vma) & = 0,

because of (2.3). In the case when I' is a symmetric connection too, this condition
reduces to

(2.9) ViTtas— Ve = 0,
and the connection I" cannot be symmetric. Therefore, it must satisfy the condition

Pl = o+ (V= V)% = 0
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On the other hand, both connections I" and I are f~connections. This statement
follows from the following

Theorem. If G is a f-connection, the connection I' is an f-connection, too.

Proor. If G is an f-connection, we have

X e

or, substituting (2.3) and takmg into account (1.8),
(2.10) Vifi +(Vime) 72 £ —(Vim )@ £ = 0
On the other hand
Vi ) = [(Vintya) £+ (Vi f) moa] 7,
from which, using (1.7), we get
(Vemd @ f7 = Vi D=V f} = (Vimy) fa 78+ (Vi f) 1 7 =V fF
Substituting this into (2.10), we obtain
(Ve f)m, 7 = 0,
from which, transvecting with n;; #", we get

(2.11) V.fi =0.
This proves the theorem.

3. The first nH-projective curvature tensor. Now, we shall consider the curvature
tensor

D
B ™ I ™

After some computation, using (2.7), we get

iurj' r.firz"

Ry = Riuy— 3t (DU ) i [ D )~y (huf)] -

ox?
— 1 (Vi) = Ya R Yi— Y i [{7 W] +
+ 7 [V (WaR) — Y R y— Yo f1 S 7] —
—f{ e [Vi(Wa Sy B) — Vo L B Vi~ W fE /{7 3] +
+@fi [V 3 77) — U O — o ff [a7 W 5]+
+Y, [V, = Vi ny, + (Fh— i) 7] +
+ oY, [ 7V (i ) = Vi (ff ) + (T —T8)) Sy ),
where R',; are the components of the curvature tensor of the connection I
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Transvecting (2.8) with =;;, we find
(Mks—Ti)ny;+Venj—Vymy = 0.

On the other hand, transvecting (2.8) with f?x,, and taking into account (1.7)
and (1.8), we have

(FL,—=ri) 2y, + Ve (for) -V, (f2r,) = O.

1) Ry = RS =20 ot [t s -

-7 \AUA e — Ve - Y—oy, ffq' ﬁb‘!”b] R

+ 1, [V; (Vs 7o) -y, 7% ';hj = w'a(’afff; Y] —
— f [ [Vi(Wa S5 77) =Y [ B — W fE L7 3] +
+fi 1 [V (Wa S5 7)o f3 7 y— o fF [ 75U 7).

Therefore

Let us put
(3 .2) Blic e Vl (% ﬁm.) e '!’c 7 d’k o w‘!’af: f:zl 5 % .
(3.3) Qi = %—%‘,
(34 M = g Do) s a1

Then, taking into account (1.8) and (2.11), we have

Ve(Wa 3 7) =Y 7 — oo S S 75, S = 13 0F.
This means that (3.4) may be written in the form
(3.5) Ry = Riyy+8iop+afing—

— 7, 0% + 70, 05 — O f g, £ OF + Ofi¥ 7o, £305.
It is easily seen that

““1.:9: = "vﬁl’j’"'abbﬂjavkﬁ“"'f’;l"k—w!ba'l’bﬂ'f}b-

From n,#**=46%, we have

= njd V*_ ﬁba = (Vk Ij&) ﬁh-

13008 =~ T (V) — o I}

Therefore

and

b)) o o
— 08+ m,0f = —aﬁ—;—%*‘[rﬁj“r§t+ﬂ”(vn7‘1a—vﬂfu)wu
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from which
(3.6) ‘ﬂkaej—ﬂ'jaef = Qjk»
because of (2.8) and (3.3).

Similarly

—ny falf = x" (%ﬁ)'*"r"b 3./} +fjb HY8

U [ (Vima) R+ [ U+ s SRV

From (2.11) we obtain
Vs = —VuT S} s S2 Tl

Substituting this into the preceding relation, we get

— My Ja Ok = — ‘a'%.' W D)+ RT3+ U 7 (Vo) B+ [T+ U SRV -

Thus

3.7 ﬂhﬁﬂj‘" n}:f:a: = Njk
because of (2.8) and (3.4).
Now we shall determine the functions 0, ¢ and #.
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Contracting (3.5) with respect to i and r and taking into account (1.2), (1.7)

and (3.6), we find

(3.9) :

*=2m+1)
Also, we have from (3.5)

R fd = RO fa + 17 0+ 0inu+ mi, fi 05—, f308 4/ 700 0y —ff 74 6F

(R%4;— R%uy)

from which, contracting with respect to i and r and taking into account (1.2), (1.7)

and (3.4), we get

(3.9) Nik = 2("+ ]) — (R* ) — Ra)) JG -
Contracting (3.5) with respect to i/ and j, we obtain
(3'10) Rrk o= Rrk+qorl+wfr‘qak_2nar9:+nkr6:+wfr’r¢rf;9f!

from which, transvecting with #*, we find
R,,,Tt' = R kT ~'k+§0,kﬁ't+mﬁ'ﬁ'*q“+2(n— 1)9:.

Here, R,, and R,, are Ricci tensors of connections I' and I' respectively.

Since ¢, is a skew-symmetric tensor, while #* is symmetric, ¢, #*=0. Simi-

larly f#"™*n. =0. Therefore, the preceding relation reduces to

1

(3.11) 0 = s

(ﬁrk g Rrk) -
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Also, we find from (3.10)

Rrbflb T Rrb.ﬁb ¥ (Prb.fkb + wf;‘ﬁb Hab * nbrﬁeg e 2“:1! kbﬂg T erf:!i‘ 92'
Transvecting with &, we get

3.12) 20 = :

e e P e; (1 » I b mrk
Transvecting (3.10) with #”", we find
= (- Ry Ry 4 e+ of ibing, + 8,08+ of /202

so that, substituting from (3.8), (3.9), (3.11) and (3.12), we get

1 ’ 1 :
(3.13) b=~ R.,+R,,)n"+ml—)(1€’m~ R0 7 +
+ gy R~ Rad R
+ gy 0k (R~ Ra) %+ fi (Roy— R fi %],
If we put
(3.14) oy = %(5}'63+wj}"j}"),

we can express (3.5) in the form
R'y; = R+ 0L o+ off ny+208 r,, 08 — 209, 7,,0f .
Thus, substituting (3.8), (3.9) and (3.13), we find

1 it =
R',— STl (0FR°g; + wff Rby; f3) +

S [T 2 BRI
40ty [Ryy o7 - — 77 R, 08— —L— 7 R,.05] -

e ORI
77 Ry 0 ——L 7 R, 0] =

—0%,,, [E,,‘ P — -

1
= Riy\y— FICET)) (0} Rogy+of} RP; ) +

1

+0f 7, [R,, S — 7 R, Ol — —— :‘i"‘Rc,Ogg] -

L_wR,00.

% R 4y Ot —

—0% x,, [Ra,‘:‘i‘“' -
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Thus, we have the following
Theorem. The tensor

1
(3.15) }l-ﬂrk g R ’—mwm’ﬁ-’-wﬂ Rbu, /) +
~a ~a 1 =a 5
O g [RuyoP — 1 57 R O~ ¥ R, O3] -
—Oj‘rr [R 7P — :  d o~ : 7 R O[’]
pltgr ak n+1 skb“ ta ﬂ—l as“’ kb

is invariant with respect to the nH-projective transformation (2.7).

We shall call this tensor the first nH-projective curvature tensor.
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4. The second nH-projective curvature tensor. Taking into account (3.6) and

(3.7), we can express (3.5) in the form
(4.1) Ry, = R‘rlj + 0 (73005 — 7 08) + @fy (s £3 0 — 75, £208) +

+ 7, 95 = ”jrgi + wfl?”ar ;ﬂf —mj_}“x,,f: Bf
Therefore

(4.2) *Ry = *Riy—(2n+1)0; + % mu 05 + 0 fimy, 700 + o £d 6,

where we have put
(4.3) *‘Riy=%"R'sy, *Ri=2"FR,,.

From (4.2), we get
*R%mai = *R%my— (2n+ 1) 05 g+ 7 0F + f 7 £ (s 03+ 705 03),
which may be written as

4.4) ROy = * RO Tty —2(n+ 1) 05 7001+ 208 (s 03+ 03, 62).

If we put in (4.4) g instead of k, p instead of 7, transvect with O} and take into

account that 0.0=0, we get
(*R%mp—*R% 7, )O53 = —2(n+1) 057, 088+ 2050 (7o 05 + 7y, 03).
Changing indices and adding, we obtain
—2(037ap+ 05 7o) O =
1

— n—1 [(*Raqﬂap'{" *R’pnaq)_(*R‘qxap + *R“pnaq)]ofkq°

Substituting this into (4.4), we get
(4.5) Ofmg =—Su+Sy and 0 = (— S, +S) 7%,
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where

1
(4.6) Su *R%my+ s ) (tR‘q Tap+ *R‘p T!,,)Oﬁ‘] >

ol

Su = gy | Rt o R+ R ) O
Substituting (4.5) into (4.1), we find
4.7) Rirkj =018k =S +af L (f%S;a—f1Sk) +
+ (M4 Sjo— 7y Sia) B+ @f 7P 7, (8 855 —f7 Sw) =
= R ;=0 (S, — Sp) +f (f%Sja—11 Ska) +
+ (e S ja— 7y Sia) A+ f g 7P 7, (%S jo — 7 Sis)-
Thus we get this
Theorem. The tensor
(4.8) {)‘rkj = R‘rkj'—éli'(stj_sjk)+ ff (f%Sja—S1Ska) +

+ (ke S ja— Ty Spa) A+ @f y AP 00, (14 S jo =11 Sks)-
is invariant with respect to the nH-projective transformations (2.7).

We obtained the tensors (3.15) and (4.8) starting from the same relation (3.5).
Thus, it is natural to ask: are they two different tensors? To answer the question, we
shall discuss the case of a special space, namely the space satisfying R%,;=0. Then

]:"M o *R‘J ax—" Ry 7oy = (R%q ”at_R’pkq“aJ) P,
On the other hand, we find from (3.15) that

1
{,“alj = RU"Rjk+2(n__|_l)w(R'skbﬁb_R'dbﬁ)ﬁ'°

Thus

f‘ akj # }:‘ akj*
But if

-f 'ntj = f‘ rkj
it would be

I:’atj' — f‘au-

This proves that {’ and {" are two different tensors.

We shall call the tensor (4.8) the second nH-projective curvature tensor.

The relation (4.7) can also be obtained in the following way.

Let G',; indicate the components of the curvature tensor of the connection G.
By straightforwar computation, using (2.3), we find

(4.9) G‘rkj =TS Rbﬂlj Ty %,
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from which

(4.10) Gy = G = —"RO7,,.
Similarly

(4.11) Gy = — Ry, %,

and

(4.12) G, =—*R%m,,

where G',;; are the components of the curvature tensor of the connection G.

On the other hand, we know ([2], [3], [4] p. 263, [5]) that two symmetric f-con-
nections, G and G, which are related to each other as in (2.4), have the H-projective
curvature tensor in common, that is

Gl +01(Pyj—Py)+off (ff Pra—f*Pj) +
+68§ Py, — 64 P;,+oof | £ Pra—fi f°, Pjo =
- G‘,.,u+6£(P,‘,—Pﬁ)+mf‘,(ﬁP&,—f‘,‘PJ¢)+

+65 Py — i Pjy+ f | £ Pra— 0f§ %+ Pjas
where

1
Py = Gu+ n— 1 (Gap+Gra) O] s

=l
2(n+1)
1 1 :

A T [t GurGra08]-

(Let us remember that the dimension of our space is 2n.)
Substituting from (4.9) and (4.11), we find.

Ry, 8% — 6} (Pyj— Py) — O ', (ff Pra—S " Pja) —
— &84 P+ 8L Py —f | [ Pra+ 0Ofii % Py =
= Ry My, 8% —6}(Py;— P ) — f ', (ff Pra—f "4 Pja) —
=05 P+ 0y Pj,—f | 7 Pra+ Of [ Pjgs
Ry =01 (Pey—Pp)—f ' (ff Pra—f "4 Pja) —
(4.13) — 15 % Pog+ Ty R Py — 0f f R f 3 7% Py + f 47y fE 7P Py =
= Ryj—=01(Pyy—P ) — off (ff Pra=f"Pjs) —

— 7, R4 Py, + ﬂhﬁ"Pﬁ,-—wj}":r,,f:i’"ﬁ“+wf’kn,,f:ﬁ"pj,,.

or
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As for the tensors P, and P, they can be, taking into account (4.10) and (4.12),
expressed as follows

1 1

P, = —2(n+1) [*Rbkrch_-p e, (*R*, 7y +*R% 1) 02|,
1 - 1

P = 565D [*Rb"‘*"" P (*R'o"sﬁ'*R'wu)O::].

Now, it can be seen at once that (4.13) is the same relation as (4.7).
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