A note on the diophantine equation $D_{1} x^{2}+D_{2}=2 y^{n}$

By MAOHUA LE (Zhangjiang)

Abstract

Let D_{1}, D_{2} be positive integers such that $2 \nmid D_{1} D_{2}, \operatorname{gcd}\left(D_{1}, D_{2}\right)=1$, $D_{1} D_{2} \not \equiv 7(\bmod 8)$ and D_{1}, D_{2} are square free. Let h denote the class number of $\mathbb{Q}\left(\sqrt{-D_{1} D_{2}}\right)$. In this note we prove that the equation $D_{1} x^{2}+D_{2}=2 y^{n}, x, y, n \in \mathbb{N}$, $\operatorname{gcd}(x, y)=1, n>1, \operatorname{gcd}(n, 2 h)=1$, has only finitely many non-trivial solutions (x, y, n). Moreover, if (x, y, n) is a non-trivial solution, then n is an odd prime with $7 \leq n<212603$ and $y<\operatorname{expexpexp} 24.17$.

1. Introduction

Let $\mathbb{Z}, \mathbb{N}, \mathbb{Q}$ be the sets of integers, positive integers and rational numbers respectively. Let D_{1}, D_{2} be positive integers such that $2 \nmid D_{1} D_{2}$, $\operatorname{gcd}\left(D_{1}, D_{2}\right)=1, D_{1} D_{2} \not \equiv 7(\bmod 8)$ and D_{1}, D_{2} are square free. Let h denote the class number of the imaginary quadratic field $\mathbb{Q}\left(\sqrt{-D_{1} D_{2}}\right)$. In [4], LJUNGGREN discussed the solvability of the equation

$$
\begin{gather*}
D_{1} x^{2}+D_{2}=2 y^{2}, x, y, n \in \mathbb{N}, y>1, \operatorname{gcd}(x, y)=1, \\
n>1, \operatorname{gcd}(n, 2 h)=1 . \tag{1}
\end{gather*}
$$

In this note, using Baker's method, we prove a general result concerning (1).

Mathematics Subject Classification: 11D61, 11J86.
Key words and phrases: exponential diophantine equation, non-trivial solution, Baker's method.
Supported by the National Natural Science Foundation of China and the Guangdong Provincial Natural Science Foundation.

For any non-negative integer m, let F_{m}, L_{m} denote the m th Fibonacci number and the m th Lucas number respectively. Before proceeding we note that if

$$
\begin{gather*}
D_{1} r^{2}=\frac{1}{2}\left(s+(-1)^{(s-1) / 2}\right), D_{2}=\frac{1}{2}\left(3 s-(-1)^{(s-1) / 2}\right), \tag{2}\\
3 \nmid h, r, s \in \mathbb{N}, s>1,2 \nmid s,
\end{gather*}
$$

or

$$
D_{1} r^{2}=\left\{\begin{array}{l}
\frac{1}{2} F_{6 k-3}, \tag{3}\\
\frac{1}{2} F_{6 k+3},
\end{array} \quad D_{2}=\frac{1}{2} L_{6 k}, 5 \nmid h, k, r \in \mathbb{N},\right.
$$

then (1) has solutions

$$
\begin{equation*}
(x, y, n)=\left(\frac{r}{2}\left(3 D_{2}-D_{1} r^{2}\right), s, 3\right) \tag{4}
\end{equation*}
$$

or

$$
= \begin{cases}\left(\frac{r}{4}\left(D_{1}^{2} r^{4}-10 D_{1} D_{2} r^{2}+5 D_{2}^{2}\right), F_{6 k-1}, 5\right), & \text { if } D_{1} r^{2}=\frac{1}{2} F_{6 k-3} \tag{5}\\ \left(\frac{r}{4}\left(-D_{1}^{2} r^{4}+10 D_{1} D_{2} r^{2}-5 D_{2}^{2}\right), F_{6 k+1}, 5\right), & \text { if } D_{1} r^{2}=\frac{1}{2} F_{6 k+3}\end{cases}
$$

The solutions (4) and (5) are called the trivial solutions of (1). This implies that (1) has possible infinitely many trivial solutions. For the non-trivial solutions of (1), we prove the following result.

Theorem. The equation (1) has only finitely many non-trivial solutions (x, y, n). Moreover, if (x, y, n) is a non-trivial solution of (1), then n is an odd prime with $7 \leq n<212603$ and $y<\exp \exp \exp 24.17$.

When $D_{1}=7$ and $D_{2}=11$, (1) has a non-trivial solution $(x, y, n)=$ $(1169,9,7)$. This is the only example of non-trivial solutions that we know. It is natural to conjecture that $(x, y, n)=(1169,9,7)$ is the only non-trivial solution of (1).

2. Preliminaries

Lemma 1 ([3, Formula 3.76]). For any positive integer n and any complex numbers α and β, we have

$$
\alpha^{n}+\beta^{n}=\sum_{i=0}^{[n / 2]}(-1)^{i}\left[\begin{array}{l}
n \\
i
\end{array}\right](\alpha+\beta)^{n-2 i}(\alpha \beta)^{i},
$$

where

$$
\left[\begin{array}{c}
n \\
i
\end{array}\right]=\frac{(n-i-1)!n}{(n-2 i)!i!}, \quad i=0, \ldots,[n / 2]
$$

are positive integers.
Let α be an algebraic number with the minimal polynomial

$$
a_{0} z^{d}+a_{1} z^{d-1}+\cdots+a_{d}=a_{0} \prod_{i=1}^{d}\left(z-\sigma_{i} \alpha\right), \quad a_{0}>0
$$

where $\sigma_{1} \alpha, \ldots, \sigma_{d} \alpha$ are conjugates of α. Then

$$
h(\alpha)=\frac{1}{d}\left(\log a_{0}+\sum_{i=1}^{d} \log \max \left(1,\left|\sigma_{i} \alpha\right|\right)\right)
$$

is called Weil's height of α.
Lemma 2 ([2, Theorem 3]). Let $\varepsilon=\left(X_{1} \sqrt{D_{1}}+\sqrt{-D_{2}}\right) / \sqrt{2}$ and $\bar{\varepsilon}=\left(X_{1} \sqrt{D}_{1}-\sqrt{-D_{2}}\right) / \sqrt{2}$ for some positive integers X_{1}. Let $\alpha=\varepsilon / \bar{\varepsilon}$ and $\Lambda=n \log \alpha-k \pi \sqrt{-1}$ for some integers n, k with $0 \leq|k|<n$. If $\Lambda \neq 0$, then we have

$$
\log |\Lambda| \geq-9 A B^{2}
$$

where

$$
\begin{aligned}
& A=\max (20,12.85|\log \alpha|+h(\alpha)), d=[\mathbb{Q}(\alpha): \mathbb{Q}] / 2, \\
& B=\max (17, d \log n(1 / 2 A+1 / 25.7 \pi)+4.6 d+3.25) .
\end{aligned}
$$

Lemma 3 ([1, Theorem 3]). Let $k \in \mathbb{Z}$ with $k \neq 0$, and let $F(X, Y) \in$ $\mathbb{Z}[X, Y]$ be an irreducible binary form of degree r with $r \geq 3$. Then all solutions (X, Y) of the equation

$$
f(X, Y)=k, \quad X, Y \in \mathbb{Z}, \quad \operatorname{gcd}(X, Y)=1
$$

satisfy

$$
\max (|X|,|Y|)<\exp \left(3^{3(r+9)} r^{18(r+1)} H^{2 r-2}(\log H)^{2 r-1} \log |k|\right)
$$

where H is the maximum absolute value of the coefficients of f.

3. Proof of Theorem

Let (x, y, n) be a solution of (1). Since $D_{1} D_{2} \not \equiv 7(\bmod 8)$ and $\operatorname{gcd}(n, 2 h)=1$, it follows from the analysis in [3] that $2 \nmid y$ and that there exist suitable positive integers X_{1} and Y_{1} such that

$$
\begin{align*}
D_{1} X_{1}^{2}+D_{2} Y_{1}^{2}= & 2 y, \quad \operatorname{gcd}\left(X_{1}, Y_{1}\right)=1, \quad 2 \nmid X_{1} Y_{1} \tag{6}\\
x{\sqrt{D_{1}}}_{1}+\sqrt{-D_{2}}= & \frac{\lambda_{1}}{2^{(n-1) / 2}}\left(X_{1} \sqrt{D}_{1}+\lambda_{2} Y_{1} \sqrt{-D_{2}}\right)^{n} \tag{7}\\
& \lambda_{1}, \lambda_{2} \in\{-1,1\}
\end{align*}
$$

Let $\alpha=\lambda_{1}\left(X_{1} \sqrt{D_{1}}+\lambda_{2} Y_{1} \sqrt{-D_{2}}\right) / \sqrt{2}$ and $\beta=\lambda_{1}\left(X_{1} \sqrt{D_{1}}-\lambda_{2} Y_{1} \sqrt{-D_{2}}\right)$ $/ \sqrt{2}$. Since $\alpha-\beta=\lambda_{1} \lambda_{2} Y_{1} \sqrt{-2 D_{2}}$ and $\alpha \beta=y$, by (7), we get

$$
\begin{equation*}
\sqrt{-2 D_{2}}=\alpha^{n}-\beta^{n}=\lambda_{1} \lambda_{2} Y_{1} \sqrt{-2 D_{2}}\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right) \tag{8}
\end{equation*}
$$

Applying Lemma 1, we obtain from (8) that

$$
\begin{aligned}
1 & =\lambda_{1} \lambda_{2} Y_{1} \sum_{i=0}^{(n-1) / 2}\left[\begin{array}{c}
n \\
i
\end{array}\right](\alpha-\beta)^{n-2 i-1}(\alpha \beta)^{i} \\
& =\lambda_{1} \lambda_{2} Y_{1} \sum_{i=0}^{(n-1) / 2}\left[\begin{array}{c}
n \\
i
\end{array}\right]\left(-2 D_{2} Y_{1}^{2}\right)^{(n-1) / 2-i} y^{i}
\end{aligned}
$$

It follows that $Y_{1}=1$ and

$$
\sum_{i=0}^{(n-1) / 2}\left[\begin{array}{c}
n \tag{9}\\
i
\end{array}\right]\left(-2 D_{2}\right)^{(n-1) / 2-i} y^{i}= \pm 1
$$

Let $\varepsilon=\left(X_{1} \sqrt{D}_{1}+\sqrt{-D_{2}}\right) / \sqrt{2}$ and $\bar{\varepsilon}=\left(X_{1} \sqrt{D_{1}}-\sqrt{-D_{2}}\right) / \sqrt{2}$. For any $m \in \mathbb{N}$ with $2 \nmid m$, let $Y_{m}=\left(\varepsilon^{m}-\bar{\varepsilon}^{m}\right) /(\varepsilon-\bar{\varepsilon})$. From (9), we get

$$
\begin{equation*}
\frac{\varepsilon^{n}-\bar{\varepsilon}^{n}}{\varepsilon-\bar{\varepsilon}}= \pm 1 \tag{10}
\end{equation*}
$$

If n is not a prime, then n has an odd prime factor p and $n=p q$, where $q \in \mathbb{N}$ with $q>1$ and $2 \nmid q$. By Lemma 1 , we get from (10) that

$$
Y_{p}\left(\frac{\left(\varepsilon^{p}\right)^{q}-\left(\bar{\varepsilon}^{p}\right)^{q}}{\varepsilon^{p}-\bar{\varepsilon}^{p}}\right)=Y_{p} \sum_{j=0}^{(q-1) / 2}\left[\begin{array}{l}
q \\
j
\end{array}\right]\left(-2 D_{2} Y_{p}^{2}\right)^{(q-1) / 2-j} y^{p j}= \pm 1
$$

This implies that $Y_{p}= \pm 1$ and

$$
\frac{\varepsilon^{p}-\bar{\varepsilon}^{p}}{\varepsilon-\bar{\varepsilon}}=\sum_{i=0}^{(p-1) / 2}\left[\begin{array}{c}
p \tag{11}\\
i
\end{array}\right]\left(-2 D_{2}\right)^{(p-1) / 2-i} y^{i}= \pm 1
$$

Similarly, by (10), we have

$$
Y_{q}\left(\frac{\left(\varepsilon^{q}\right)^{p}-\left(\bar{\varepsilon}^{q}\right)^{p}}{\varepsilon^{q}-\bar{\varepsilon}^{q}}\right)=Y_{q} \sum_{i=0}^{(p-1) / 2}\left[\begin{array}{c}
p \\
i
\end{array}\right]\left(-2 D_{2} Y_{q}^{2}\right)^{(p-1) / 2-i} y^{q i}= \pm 1
$$

whence we get $Y_{q}= \pm 1$ and

$$
\sum_{i=0}^{(p-1) / 2}\left[\begin{array}{c}
p \tag{12}\\
i
\end{array}\right]\left(-2 D_{2}\right)^{(p-1) / 2-i} y^{q i}= \pm 1
$$

By (12), there exists a suitable $\lambda \in\{-1,1\}$ such that

$$
\begin{equation*}
\left(-2 D_{2}\right)^{(p-1) / 2}-\lambda \equiv 0 \quad\left(\bmod y^{q}\right) \tag{13}
\end{equation*}
$$

Since $\operatorname{gcd}\left(\left(-2 D_{2}\right)^{(p-1) / 2}-\lambda,\left(-2 D_{2}\right)^{(p-1) / 2}+\lambda\right)=1$, we see from (11) that

$$
\begin{align*}
&\left(\left(-2 D_{2}\right)^{(p-1) / 2}-\lambda\right)+p\left(-2 D_{2}\right)^{(p-3) / 2} y \\
&+p\left(\frac{p-3}{2}\right)\left(-2 D_{2}\right)^{(p-5) / 2} y^{2} \equiv 0\left(\bmod y^{3}\right) . \tag{14}
\end{align*}
$$

Since $q \geq 3$ and $\operatorname{gcd}\left(y, 2 D_{2}\right)=1$, we find from (13) and (14) that $p\left(-2 D_{2}+\right.$ $y(p-3) / 2) \equiv 0\left(\bmod y^{2}\right)$, and hence, $y \mid 2 D_{2}$, a contradiction. Thus n must be an odd prime.

If $n=3$, then from (9) we get $-2 D_{2}+3 y= \pm 1$. Since $2 \nmid D_{1} D_{2} y$ and $y \equiv(-1)^{(y-1) / 2}(\bmod 4)$, we see from (6) that D_{1}, D_{2} satisfy (2) and (1) has solutions (4).

If $n=5$, then from (9) we get $4 D_{2}^{2}-10 D_{2} y+5 y^{2}= \pm 1$. Then we have $\left(4 D_{2}-5 y\right)^{2}-5 y^{2}= \pm 4$, and hence,

$$
\begin{equation*}
\left|4 D_{2}-5 y\right|=L_{m}, y=F_{m}, m \in \mathbb{N}, m>1 . \tag{15}
\end{equation*}
$$

Notice that $2 \nmid L_{m} F_{m}, 2 \| F_{m}$ and $2 \| L_{m}$ if and only if $3 \nmid m, m \equiv 3$ $(\bmod 6)$ and $6 \mid m$, respectively. We find from (6) and (15) that D_{1}, D_{2} satisfy (3) and (1) has solutions (5). Therefore, if (x, y, n) is a non-trivial solution of (1), then $n \geq 7$.

For any complex number z, we have either $\left|e^{z}-1\right|>1 / 2$ or $\left|e^{z}-1\right| \geq$ $|z-k \pi \sqrt{-1}| / 2$ for some $k \in \mathbb{Z}$. Hence, by (10), we get

$$
\begin{gather*}
\log |\varepsilon-\bar{\varepsilon}|=\log \left|\varepsilon^{n}-\bar{\varepsilon}^{n}\right|=n \log |\bar{\varepsilon}|+\log \left|(\varepsilon / \bar{\varepsilon})^{n}-1\right| \\
\quad \geq n \log |\bar{\varepsilon}|+\log |n \log \alpha-k \pi \sqrt{-1}|-\log 2, \tag{16}
\end{gather*}
$$

where $k \in \mathbb{Z}$ with $|k|<n$. Let $\Lambda=n \log \alpha-k \pi \sqrt{-1}$. Since $y \geq 3$ and α satisfies

$$
\begin{equation*}
y \alpha^{2}-\left(D_{1} X_{1}^{2}-D_{2}\right) \alpha+y=0, \tag{17}
\end{equation*}
$$

α is not a root of unity, and hence, $\Lambda \neq 0$. Notice that $[\mathbb{Q}(\alpha): \mathbb{Q}]=2$, $0<|\log \alpha|<\pi$ and $h(\alpha)=\log \sqrt{y}$ by (17). Applying Lemma 2, we get

$$
\begin{gather*}
\log |\Lambda| \geq-9(12.85 \pi+\log \sqrt{y}) \\
\times(\max (17,7.85+\log n(1 /(25.7 \pi+\log \sqrt{y})+1 / 25.7 \pi)))^{2} . \tag{18}
\end{gather*}
$$

If $7.85+\log 2 n / 25.7 \pi \geq 17$, then $n>380038$. Further, by (16) and (18), we get

$$
\log \sqrt{2 y}+9(12.85 \pi+\log \sqrt{y})(7.85+\log 2 n / 25.7 \pi)^{2}>n \log \sqrt{y}
$$

It follows that

$$
\begin{gathered}
\log \sqrt{2}+735.65(7.85+\log 0.0247712 n)^{2} \\
>\log \sqrt{2}+9\left(\frac{12.85 \pi}{\log \sqrt{y}}+1\right)\left(7.85+\log \frac{2 n}{25.7 \pi}\right)^{2}>n
\end{gathered}
$$

whence we conclude $n<380000$, a contradiction. So we have $7.85+$ $\log 2 n / 25.7 \pi<17$ and

$$
\begin{equation*}
\log |\Lambda| \geq-2601(12.85 \pi+\log \sqrt{y}) \tag{19}
\end{equation*}
$$

The combination of (16) and (19) yields

$$
\begin{equation*}
n \leq 212603 \tag{20}
\end{equation*}
$$

Let

$$
f(X, Y)=\sum_{i=0}^{(n-1) / 2}\left[\begin{array}{c}
n \\
i
\end{array}\right] X^{(n-1) / 2-i} Y^{i}
$$

Notice that n is an odd prime and

$$
\left[\begin{array}{c}
n \\
(n-1) / 2
\end{array}\right]=n, \quad n \left\lvert\,\left[\begin{array}{l}
n \\
j
\end{array}\right]\right., \quad j=1, \ldots,(n-1) / 2 .
$$

Then $f(X, Y) \in \mathbb{Z}[X, Y]$ is an irreducible binary form of degree $(n-1) / 2$ with

$$
H=\max _{i=0, \ldots,(n-1) / 2}\left[\begin{array}{c}
n \\
i
\end{array}\right]=\max _{i=0, \ldots,(n-1) / 2} \frac{n}{n-2 i}\binom{n-i-1}{i}<2^{n-1}
$$

We see from (9) that $(X, Y)=\left(-2 D_{2}, Y\right)$ is a solution of the equation

$$
f(X, Y)= \pm 1, \quad X, Y \in \mathbb{Z}
$$

Therefore, by Lemma 3 , if $n \geq 7$, then we have
(21) $y \leq \max \left(2 D_{2}, Y\right)$

$$
<\exp \left(3^{3(n+17) / 2}\left(\frac{n-1}{2}\right)^{9(n+1)} 2^{(n-1)(n-3)}((n-1) \log 2)^{n-3}\right)
$$

Substituting (20) into (21), we deduce that $y<\exp \exp \exp 24.17$. The proof is complete.

References

[1] Y. Bugeaud and K. Győry, Bounds for the solutions of Thue-Mahler equations and form equations, Acta Arith. 74 (1996), 273-292.
[2] M. Laurent, M. Mignotte and Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 285-321.
[3] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, MA, 1983.
[4] W. Luunggren, On the diophantine equation $C x^{2}+D=2 y^{n}$, Math. Scand. 18 (1966), 69-86.

```
MAOHUA LE
DEPARTMENT OF MATHEMATICS
ZHANJIANG TEACHERS COLLEGE
POSTAL CODE 524048
ZHANJIANG, GUANGDONG
P.R. CHINA
```

(Received February 19, 1996)

