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A note on the diophantine equation D1x2 + D2 = 2yn

By MAOHUA LE (Zhangjiang)

Abstract. Let D1, D2 be positive integers such that 2 - D1D2, gcd(D1, D2) = 1,
D1D2 6≡ 7 (mod 8) and D1, D2 are square free. Let h denote the class number of
Q(
√−D1D2). In this note we prove that the equation D1x2 + D2 = 2yn, x, y, n ∈ N,

gcd(x, y) = 1, n > 1, gcd(n, 2h) = 1, has only finitely many non-trivial solutions
(x, y, n). Moreover, if (x, y, n) is a non-trivial solution, then n is an odd prime with
7 ≤ n < 212603 and y <expexpexp 24.17.

1. Introduction

Let Z, N, Q be the sets of integers, positive integers and rational
numbers respectively. Let D1, D2 be positive integers such that 2 - D1D2,
gcd(D1, D2) = 1, D1D2 6≡ 7 (mod 8) and D1, D2 are square free. Let h

denote the class number of the imaginary quadratic field Q(
√−D1D2). In

[4], Ljunggren discussed the solvability of the equation

(1)
D1x

2 + D2 = 2y2, x, y, n ∈ N, y > 1, gcd(x, y) = 1,

n > 1, gcd(n, 2h) = 1.

In this note, using Baker’s method, we prove a general result concern-
ing (1).
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For any non-negative integer m, let Fm, Lm denote the mth Fibonacci
number and the mth Lucas number respectively. Before proceeding we
note that if

(2)
D1r

2 =
1
2

(
s + (−1)(s−1)/2

)
, D2 =

1
2

(
3s− (−1)(s−1)/2

)
,

3 - h, r, s ∈ N, s > 1, 2 - s,

or

(3) D1r
2 =





1
2
F6k−3,

1
2
F6k+3,

D2 =
1
2
L6k, 5 - h, k, r ∈ N,

then (1) has solutions

(4) (x, y, n) =
(r

2
(3D2 −D1r

2), s, 3
)

,

or

(5) (x, y, n) =

=





(r

4
(D2

1r
4 − 10D1D2r

2 + 5D2
2), F6k−1, 5

)
, if D1r

2 =
1
2
F6k−3,

(r

4
(−D2

1r
4 + 10D1D2r

2 − 5D2
2), F6k+1, 5

)
, if D1r

2 =
1
2
F6k+3.

The solutions (4) and (5) are called the trivial solutions of (1). This implies
that (1) has possible infinitely many trivial solutions. For the non-trivial
solutions of (1), we prove the following result.

Theorem. The equation (1) has only finitely many non-trivial solu-

tions (x, y, n). Moreover, if (x, y, n) is a non-trivial solution of (1), then n

is an odd prime with 7 ≤ n < 212603 and y < exp exp exp 24.17.

When D1 = 7 and D2 = 11, (1) has a non-trivial solution (x, y, n) =
(1169, 9, 7). This is the only example of non-trivial solutions that we know.
It is natural to conjecture that (x, y, n) = (1169, 9, 7) is the only non-trivial
solution of (1).
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2. Preliminaries

Lemma 1 ([3, Formula 3.76]). For any positive integer n and any

complex numbers α and β, we have

αn + βn =
[n/2]∑

i=0

(−1)i

[
n

i

]
(α + β)n−2i(αβ)i,

where

[
n

i

]
=

(n− i− 1)! n
(n− 2i)! i !

, i = 0, . . . , [n/2]

are positive integers.

Let α be an algebraic number with the minimal polynomial

a0z
d + a1z

d−1 + · · ·+ ad = a0

d∏

i=1

(z − σiα), a0 > 0,

where σ1α, . . . , σdα are conjugates of α. Then

h(α) =
1
d

(
log a0 +

d∑

i=1

log max(1, |σiα|)
)

is called Weil’s height of α.

Lemma 2 ([2, Theorem 3]). Let ε = (X1

√
D1 +

√−D2)/
√

2 and

ε = (X1

√
D1 −

√−D2)/
√

2 for some positive integers X1. Let α = ε/ε

and Λ = n log α−kπ
√−1 for some integers n, k with 0 ≤ |k| < n. If Λ 6= 0,

then we have

log |Λ| ≥ −9AB2,

where A = max(20, 12.85| log α|+ h(α)), d = [Q(α) : Q]/2,

B = max(17, d log n(1/2A + 1/25.7π) + 4.6d + 3.25).
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Lemma 3 ([1, Theorem 3]). Let k ∈ Z with k 6= 0, and let F (X, Y ) ∈
Z[X, Y ] be an irreducible binary form of degree r with r ≥ 3. Then all

solutions (X,Y ) of the equation

f(X, Y ) = k, X, Y ∈ Z, gcd(X, Y ) = 1,

satisfy

max(|X|, |Y |) < exp
(
33(r+9)r18(r+1)H2r−2(log H)2r−1 log |k|

)
,

where H is the maximum absolute value of the coefficients of f .

3. Proof of Theorem

Let (x, y, n) be a solution of (1). Since D1D2 6≡ 7 (mod 8) and
gcd(n, 2h) = 1, it follows from the analysis in [3] that 2 - y and that
there exist suitable positive integers X1 and Y1 such that

D1X
2
1 + D2Y

2
1 = 2y, gcd(X1, Y1) = 1, 2 - X1Y1,(6)

x
√

D1 +
√
−D2 =

λ1

2(n−1)/2

(
X1

√
D1 + λ2Y1

√
−D2

)n

,(7)

λ1, λ2 ∈ {−1, 1}.

Let α = λ1(X1

√
D1 +λ2Y1

√−D2)/
√

2 and β = λ1(X1

√
D1−λ2Y1

√−D2)
/
√

2. Since α− β = λ1λ2Y1

√−2D2 and αβ = y, by (7), we get

(8)
√
−2D2 = αn − βn = λ1λ2Y1

√
−2D2

(
αn − βn

α− β

)
.

Applying Lemma 1, we obtain from (8) that

1 = λ1λ2Y1

(n−1)/2∑

i=0

[
n

i

]
(α− β)n−2i−1(αβ)i

= λ1λ2Y1

(n−1)/2∑

i=0

[
n

i

]
(−2D2Y

2
1 )(n−1)/2−iyi.
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It follows that Y1 = 1 and

(9)
(n−1)/2∑

i=0

[
n

i

]
(−2D2)(n−1)/2−iyi = ±1.

Let ε = (X1

√
D1 +

√−D2)/
√

2 and ε = (X1

√
D1 −

√−D2)/
√

2. For
any m ∈ N with 2 - m, let Ym = (εm − εm)/(ε− ε). From (9), we get

(10)
εn − εn

ε− ε
= ±1.

If n is not a prime, then n has an odd prime factor p and n = pq, where
q ∈ N with q > 1 and 2 - q. By Lemma 1, we get from (10) that

Yp

(
(εp)q − (εp)q

εp − εp

)
= Yp

(q−1)/2∑

j=0

[
q

j

]
(−2D2Y

2
p )(q−1)/2−jypj = ±1.

This implies that Yp = ±1 and

(11)
εp − εp

ε− ε
=

(p−1)/2∑

i=0

[
p

i

]
(−2D2)(p−1)/2−iyi = ±1.

Similarly, by (10), we have

Yq

(
(εq)p − (εq)p

εq − εq

)
= Yq

(p−1)/2∑

i=0

[
p

i

]
(−2D2Y

2
q )(p−1)/2−iyqi = ±1,

whence we get Yq = ±1 and

(12)
(p−1)/2∑

i=0

[
p

i

]
(−2D2)(p−1)/2−iyqi = ±1.

By (12), there exists a suitable λ ∈ {−1, 1} such that

(13) (−2D2)(p−1)/2 − λ ≡ 0 (mod yq).
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Since gcd
(
(−2D2)(p−1)/2 − λ, (−2D2)(p−1)/2 + λ

)
= 1, we see from (11)

that

(14)

(
(−2D2)(p−1)/2 − λ

)
+ p(−2D2)(p−3)/2y

+p

(
p− 3

2

)
(−2D2)(p−5)/2y2 ≡ 0 (mod y3).

Since q ≥ 3 and gcd(y, 2D2) = 1, we find from (13) and (14) that p(−2D2+
y(p − 3)/2) ≡ 0 (mod y2), and hence, y | 2D2, a contradiction. Thus n

must be an odd prime.
If n = 3, then from (9) we get −2D2 +3y = ±1. Since 2 - D1D2y and

y ≡ (−1)(y−1)/2 (mod 4), we see from (6) that D1, D2 satisfy (2) and (1)
has solutions (4).

If n = 5, then from (9) we get 4D2
2 − 10D2y + 5y2 = ±1. Then we

have (4D2 − 5y)2 − 5y2 = ±4, and hence,

(15) |4D2 − 5y| = Lm, y = Fm, m ∈ N, m > 1.

Notice that 2 - LmFm, 2 ‖ Fm and 2 ‖ Lm if and only if 3 - m, m ≡ 3
(mod 6) and 6 | m, respectively. We find from (6) and (15) that D1, D2

satisfy (3) and (1) has solutions (5). Therefore, if (x, y, n) is a non-trivial
solution of (1), then n ≥ 7.

For any complex number z, we have either |ez−1| > 1/2 or |ez−1| ≥
|z − kπ

√−1 |/2 for some k ∈ Z. Hence, by (10), we get

(16)
log |ε− ε| = log |εn − εn| = n log |ε|+ log |(ε/ε)n − 1|

≥ n log |ε|+ log
∣∣n log α− kπ

√−1
∣∣− log 2,

where k ∈ Z with |k| < n. Let Λ = n log α − kπ
√−1. Since y ≥ 3 and α

satisfies

(17) yα2 − (D1X
2
1 −D2)α + y = 0,

α is not a root of unity, and hence, Λ 6= 0. Notice that [Q(α) : Q] = 2,
0 < | log α| < π and h(α) = log

√
y by (17). Applying Lemma 2, we get

(18)
log |Λ| ≥ −9(12.85π + log

√
y)

×(max(17, 7.85 + log n(1/(25.7π + log
√

y) + 1/25.7π)))2.
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If 7.85 + log 2n/25.7π ≥ 17, then n > 380038. Further, by (16) and (18),
we get

log
√

2y + 9(12.85π + log
√

y)(7.85 + log 2n/25.7π)2 > n log
√

y.

It follows that

log
√

2 + 735.65(7.85 + log 0.0247712n)2

> log
√

2 + 9
(

12.85π

log
√

y
+ 1

) (
7.85 + log

2n

25.7π

)2

> n,

whence we conclude n < 380000, a contradiction. So we have 7.85 +
log 2n/25.7π < 17 and

(19) log |Λ| ≥ −2601(12.85π + log
√

y).

The combination of (16) and (19) yields

(20) n ≤ 212603.

Let

f(X, Y ) =
(n−1)/2∑

i=0

[
n

i

]
X(n−1)/2−iY i.

Notice that n is an odd prime and
[

n

(n− 1)/2

]
= n, n

∣∣∣
[
n

j

]
, j = 1, . . . , (n− 1)/2.

Then f(X, Y ) ∈ Z[X,Y ] is an irreducible binary form of degree (n− 1)/2
with

H = max
i=0,...,(n−1)/2

[
n

i

]
= max

i=0,...,(n−1)/2

n

n− 2i

(
n− i− 1

i

)
< 2n−1.

We see from (9) that (X, Y ) = (−2D2, Y ) is a solution of the equation

f(X, Y ) = ±1, X, Y ∈ Z.
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Therefore, by Lemma 3, if n ≥ 7, then we have

(21) y ≤ max(2D2, Y )

< exp

(
33(n+17)/2

(
n− 1

2

)9(n+1)

2(n−1)(n−3)
(
(n− 1) log 2

)n−3

)
.

Substituting (20) into (21), we deduce that y < exp exp exp 24.17. The
proof is complete.
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