Publ. Math. Debrecen
38 /1-2 (1991), 3948

Direct arithmetics of relational systems

By JOSEF SLAPAL (Brno)

The aim of this paper is to define and study direct operations of
addition, multiplication and exponentiation for relational systems. By a
relational system we understand a set G together with a set of mappings of
another set into G. More precisely, let G and I be non-empty sets. Then
a set of mappings R C G’ is called a relation on G and the ordered pair
G = (G, R) is said to be a relational system. The set G is called the carrier
of G and the set I is called the domain of G. The relation R of G (i.e. on
G) will sometimes be denoted by R(G).

Birkhoff’s arithmetics of ordered sets discussed in [1] and [2] has been
generalized by several mathematicians — see e.g. (3], [4]. Especially, in
[4] V. Novak deals with direct operations of addition, multiplication and
mainly exponentiation for relational structures, i.e. for sets endowed with
n-ary relations (where n is a positive integer). As n- ary relations coincide
with relations of finite domains, the presented results can be considered as
a generalization and a completion of those of [4].

Definition 1. Let G = (G, R), H = (H, S) be two relational systems of
the same domain. Let ¢ : G — S be a mapping for which the implication
f€R=pof € Sholds. Then ¢ is called a homomorphism of G into H.
The set of all homomorphisms of G into H is denoted by Hom(G, H). A
bijective homomorphism ¢ of G onto H such that ¢! is a homomorphism
of H onto G 1is called an isomorphism of G onto H. We write G ~ H and
say that the relational systems G and H are isomorphic iff there exists an
isomorphism of G onto H.

Clearly, the class of all relational systems of the same domain together
with homomorphisms as morphisms form a category.

Definition 2. Let {G; / j € J} = {(G,R;) / j € J} be a family of
relational systems of the same domain I and let Gj, N G;, = @ whenever
j1,J2 € J, j1 # Jj2. The direct sum 3 G; of the family {G; / j € J}

JEJ
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is the relational system G = (G, R) of domain I where G = J G, and

JjEJ
R= U RJ'.
jeJ
IfJ ={j1,...,Jn}, then we write ) G; =G;, +--- +G;j,.

JEJ

Having a family of sets {G; / j € J}, we denote by «; (7 € J) the
J—th canonical insertion, i.e. the mapping x; : G; — |J G; defined by

j€J
kj(z) = z whenever z € Gj.

Let G = (G,R), H = (G, S) be two relational systems of the same
domain and with the same carrier. Put G < Hiff R C S. Clearly, < is an
order on the class of all relational systems of the same domain and with
the same carrier.

Proposition 1. Let {G; / j € J} = {(Gj,R;) / j € J} be a family
of relational systems of the same domain I. Let G, N G;, = ) whenever
J1,J2 € J, j1 # j2 and let G = (G,R) = ) Gj. Then G is the least

JEJ
element (with respect to < ) in the class of all such relational systems
H of the same domain I and with the same carrier G for which every
canonical insertion x;(j € J) is a homomorphism of G; into H.

PROOF. Clearly, every canonical insertion x; (j € J) is a homomor-
phism of G; into G. Let H = (G, S) be such a relational system of domain
I and with carrier G for which all canonical insertions x; (j € J) are ho-
momorphisms of G; into H. Let f € R. Then there exists j € J such
that f € R;. Consequently, xjo f € S. Since kj 0 f = f, we have f € S.
Therefore G < H and the assertion is proved.

Evidently, there holds:

Theorem 1. Let {G, / j € J} = {(G,R;) / 7 € J} be a family of
relational systems of the same domain and let G, N G;, = § whenever
J15J2 € J, 1 # j2. Let {Jx | k € K} be a decomposition of the.set J.

Then
3y Y Gi=) G

kEK jE T, JEJ

Definition 3. Let {G; / j € J} = {(G;,R;) / j € J} be a family of
relational systems of the same domain I. The direct product [[ G; of the
jeJ
family {G; / j € J} is the relational system G = (G, R) of domain I
where G = ) G, and R is defined as follows: f € ( X G;)!, fe R &
j€J jEJ
prjof € R; forall j € J.
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Of course, prj(; € J) means here the j-th projection, i.e.

prj : X G; — Gj is the mapping defined by pr;j(z) = z(j) whenever
J€EJ

T E x G,‘.

j€J

KJ={j1,:-.rJn), then we write [ G; =Gy, - ... - G;,.

JEJ

Proposition 2. Let {G; / j € J} = {(Gj,R;) / 7 € J} be a family

of relational systems of the same domain I. Let G = (G,R) = [] G;j.
JEJ

Then G is the greatest element (with respect to <) in the class of all such
relational systems H of the same domain I and with the same carrier G
for which every projection pr;(j € J) is a homomorphism of H onto G;.

PROOF. It can easily be seen that every projection prj(; € J) is a
homomorphism of G onto G;. Let H = (G, S) be such a relational system
of domain I and with carrier G for which all projections pr; (j € J) are
homomorphisms of H onto G;. Let f € S. Then prjo f € R; for all j € J.
Consequently, f € R. Hence H < G and the proof is complete.

Theorem 2. Let {G; / j € J} be a family of relational systems of
the same domain and let {J; / k € K} be a decomposition of the set J.

Then
Il I1e:i~]le;

kEK jEx Jj€J

Proor. If j € J, let G, = (G}, R;), and let the domain of G; be I.
Let p: X X Gj— X G, be the mapping defined as follows: for any
kEK jEJ JEJ
z€ X X Gj weput o(z) =y wherey:J — |J Gj is the mapping
kEK jEJ; JjeJ
fulfilling y(7) = z(k)(y) for all j € J where k € K is the index with j € Jj.
Obviously, ¢ is a bijection. Clearly, there holds prj(¢(z)) = ¢(z)(j) =
z(k)(j) = prj(pri(z)) forallz € X X Gj, k € K and j € Ji. Let

kEK jEJ,
fFER(II II Gj) Thenprjof e R([] G;)and so prjopriof € R;
kEK jEI J€T

for all k'e i szt 1t € I,k € K and 3 € Ji. Then we have
pri(e(f(2))) = prij(pri(f(2))) and so prjopo f = prjoprio f € R;.
Therefore ¢ o f € R( [[ G;) and ¢ is a homomorphism. Conversely, let
JEJ
fE€R(]] Gj)- Thenprjof € Rjforallj€ J. Leti € I, k € K and j € J;.
JEJ
Then pr;(pri(¢~'(£(i)))) = pr;(f(i)) and so prjopriop™ o f = prjo
f€Rj.Hence g™ o f € R( [ [I Gj). Thus ¢~ is a homomorphism.
kEK jEJ
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Consequently, [[ [] G; and [] G; are isomorphic. The statement is
kEK jEJi J€J
proved.

Let G = (G, R) be a relational system of domain I. The system G is
called

(1) discrete iff for every mapping f € G' there holds f € R &
Jze€G: f(i)=zforalli €I,

(2) reflezive iff for the discrete relational system H of domain I and
with carrier G there holds H < G,

(3) complete iff R = G'.

Theorem 3. Let G = (G, R) be a relational system of domain I and
let {Gj /j €J}={(Gj,R;) | j € J} be a family of relational systems
of the same domain I. Let G;, N G;, = 0 whenever j1,j2 € J, j1 # Jja-
Let Gj ~ G for every j € J and let J be a reflexive relational system of
domain I and with carrier J. Then there exists a bijective homomorphism
of 3. Gj onto J - G. If J is even discrete, then

JEJ

Y Gj~J-G.
JEJ

PROOF. Let ¢; be an isomorphism of G; onto G for every j € J.
For any element z € |J G; put ¢(z) = (j,p;(z)) where j € J is the
JEJ
index with ¢ € Gj. Clearly, ¢ : |J G; — J x G is a bijection. Let
J€EJ
f € R( 3 Gj). Then there exists j € J such that f € R;. Let ¢ € I. Then
JEJ
e(f(2)) = (7,¢;(f(3))). Since J is reflexive and since ¢, o f € R, we have
wof €R(J-G). So ¢ is a homomorphism of ) G; onto J - G. Let even
JEJ
J be discrete and let f € R(J - G). Then there exist j € J and ¢ € R
such that f(z) = (7,¢(2)) for all : € I. Consequently, for any : € I we have

=1 (f(1) = ¢7H(7,9(3)) = ¢ (4, »i(j(9(1))))) = ¥ (9(i)) because
¢; ' (9(1)) € Gj. Thus ™ o f = np_’-_l 0g. As ¢; ' is a homomorphism of G
onto Gj, there is cp;-'log € R;. Hence p~'of € R; C R( Y. G;). Therefore
JEJ
¢~! is a homomorphism of J - G onto 3 G;j. This proves the statement.
j€J
Theorem 4. Let {G; / j € J} = {(G;,R;) /| j € J} be a family
of relational systems of the same domain and let {Jx / k € K} be a
decomposition of the set J. Let Gj, NG;, = ) whenever there exists k € K
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such that j,,72 € Ji and j; # jo. Denote P = X Ji. Then
kEK

11 > Gs=2. 11 G}

kEK JEJ: PEP kEK

PROOF. At first, it can easily be seen that the carriers of the sys-
tems [[ G, ) and [] Gp,(x) are disjoint whenever p;,p; € P, p; # pa.
kEK kEK

Hence, the direct sum ) [] G is defined. Next, the carriers of the
pEP kEK
systems [[ 3 Gj and E [ G,x) are clearly equal. We shall prove
kEK jEJ; PkeEK
that also the relations of these systems are equal. On that account, let
fFER(]I X Gj). Then for every k € K there exists j € Ji such that
kEK j€ Tk
pri o f € Rj. In other words, there exists p € P such that for every
k € K we have pri o f € R(Gpx)). Therefore f € R( [[ Gpx)) C
kEK

R(Y. Il Gpx)) We have proved the inclusion [[ 3 G; C
pEP kEK kEK FE
Y. II G- Reversing the arguments we can easily prove the inverse
pEP kEK
inclusion.

Definition 4. Let G = (G,R), H = (H,S) be a relational systems
of the same domain I. The direct power G¥ is the relational system
K = (K,T) of domain I where K = Hom(H,G) and T is defined as
follows: f € K!, f € T & *f € R for all z € H. By *f we understand the
mapping *f : I — G defined by “f(:) = f(2)(z) whenever ¢ € I.

Theorem 5. Let G be a relational system of domain I and let {G; /
j € J} be a family of relational systems of the same domain I. Let G ~ G,
for every j € J and let J be a relational system of domain I and with carrier
J. Then there exists an isomorphic embedding of G? into [[ G;. If G is
Jj€J
complete or if G is reflexive and J is discrete, then

T~ T] G;.

JEJ

PROOF. Let G = (G,R) and G; = (G;, Rj) for all j € J. Let ¢; be
an isomorphism of G onto G; for every j € J. For any ¢ € Hom(J, G) put

¢(z) =y wherey : J - |J G is the mapping defined by y(j) = ¢;(z(j))
J€J
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whenever j € J. Clearly, ¢ : Hom(J,G) — X Gj is an injection. Let f €
JEJ .
R(G?). Then we have pr;(¢(f())) = @(£(2)) (j) = ¢;(f(i)(7)) = #;(*f(7))
for any i € I and j € J. Hence prjopo f = ¢; o f for every j € J. As
Jf € R for all j € J, there holds pj o ’f € R, i.e. prjopo f € R; for all
j € J. From this p o f € R([] G;) and therefore ¢ is a homomorphism
JjEJ
of G? into [] G,. Conversely, let f € (Hom(J, G))’ be a mapping with
JET _
pof € &(H Gj), i.e. with prjogpo f € Rj for all j € J. Then ’f(i) =

f()G) = ‘P, '(%(f(*)(})) 1('P(f( ))(7)) = ¢ (pri(p(f(i)))) for
any ¢ € I and j € J. Hence /f = %5 opr,ocpofeRforalljero
that f € R(G?). Thus ¢ is an isomorphic embedding of G¥ into [] G;.
=
Now suppose that G is complete or that G is reflexive and J is d;screte.
Then clearly Hom(J, G) = G’ and hence ¢ is a bijection. Therefore ¢ is
an isomorphism of G? onto [] G;. The assertion is proved.
JEJ

Corollary. Let G,J,K be relational systems of the same domain I.
Let G be complete or let G be reflexive and both J and K be discrete.

Then
(GJ )K 2 GJ-K_

PROOF. If G is complete, then clearly G? is complete, too. If G is
reflexive and both J and K are discrete, then it can easily be seen that
GY is reflexive and J - K is discrete. Therefore, putting G;x = G for
all 7y € J and all k € K, in consequence of Theorems 2 and 5 we obtain
(G)¥ ~ I [IGjx~ [I Gjr~ G'® whenever G is complete

kEK jE€J (J,k)EIxK
or G is reflexive and both J and K are discrete.

Obviously, the law (G¥)¥ ~ G7¥ does not hold generally, i.e. for
arbitrary relational systems G,J, K of the same domain. At the end of
the article we give other sufficient conditions for the validity of this law.

The following statement is evident:

Theorem 6. Let G,J be relational systems of the same domain and
let J be reflexive. Then there exists an isomorphic embedding of J into

JG. If moreover J is a singleton, then
J~JC.

J} be a family of

Theorem 7. Let {G; / j € J} = {(G;,R )/J
H = (H, S) be a relational

relational systems of the same domain I. Let



Direct arithmetics of relational systems 45

system of domain I. Then

(H G;)" ~ [] G¥.

JEJ JEJ
ProoF. For any f € Hom(H, ][] G;) and any j € J denote f; =
JEJ
prjo f. Then f; € Hom(H, G;) for any j € J. Let ¢ : Hom(H, [] G;) —
JEJ

X Hom(H, G;) be the mapping defined as follows:
JEJ
f € Hom(H, [] Gj),¢(f) = g where g : J — |J Hom(H, G;) is the
JEJ Jj€J
mapping with g(j) = f; whenever j € J. It can easily be seen that ¢ is a
bijection. Let h € R(( [] G;)®. Then *h € R( [[ G;) for all z € H. Thus
JEJ J€J
prjo*h € Rjforall j € J and z € H. We have po h € %(HG;‘)#
JEJ
prjopoh € ?R(Gfl) forall j € J & *(prjopoh) € Rjforallz € H, j € J.
There holds *(pry 0 0 h)(i) = (pr; 0 @ 0 h)(i)(z) = pr;((h(i)))(z) =
w(h(1))(4)(z) = (h(i));j(z) = (pr; o h(i))(z) = (pr;j o *h)(:) for every i €
I, j€J, z € H. Thus *(prjopoh)=prjo*h€ Rjforallz € H, j € J.
Therefore ¢ o h € R([] G?) Consequently, ¢ is a homomorphism of
JjE€J
(I1 G;)® into [] G?. By the reverse considerations we can easily show
jEJ J€j
that ¢~! is a homomorphism of [] G}{ into (][] G;)¥ and the proof is
JEJ JjEJ

complete.

Theorem 8. Let G = (G, R) be a relational system of domain I. Let
{H; /;e€J}={(H;,S;) /7 € J} be a family of relational systems of the
same domain I and let H;, N Hj, = 0 whenever ji,j2 € J, j1 # j2. Then

PRrOOF. For any f € Hom( )  H;,G) and any j € J denote by
jEJ
f;j the restriction f/H;. Then f; € Hom(H;,G) for any j € J. Let
¢ : Hom( ) H;,G) - X Hom(Hj;,G) be the mapping defined as fol-
J€EJ j€J
lows: f € Hom( ) H;,G), ¢(f) = g where g : J — |J Hom(H;,G) is
j€J Jj€J



46 Josef Slapal

the mapping fulfilling ¢(j) = f; whenever j € J. It can easily be seen that ¢
2 H;
is a bijection. Let h € R(G’€’ ). Then*h € Rforallz € |J H;. We have
JEJ
woh € R(J] G®) & prjopo h € R(GHi)forall j € J & *(prjopoh) € R
j€J
for all j € J,z € H;. There holds *(pr;j o ¢ o h)(i) = (prj o ¢ o h)(i)(z) =
pri((h()))(z) = ¢(h(2))(5)(z) = (h(2));(z) = (h(1)/H;)(z) = h(i)(z) =
*h(i) for every i € I, j € J, z € H;. Thus *(prjopoh) = *h € R for
all j € J, 2 € H;. Therefore ¢ o h € R( [ G¥i). Consequently, ¢ is a
jEJ
2 H;

homomorphism of Gi€/  into [] GHi. Reversing the arguments we can

€J

; s,

is a homomorphism of [ G¥ into Gi€’ . The
j€J

easily show that ¢!

theorem is proved.

Let G = (G, R) be a relational system of domain I. The system G is

called diagonal iff the following is valid:
Let {f; / i € I} be a family of elements of G such that f; € R for all
i € I. Let {g; / j € I} be the family of elements of G' where g;(i) = fi(j)
for all i,5 € I. If g; € R for all j € I, then putting h(z) = fi(z) for every
1€ I weget he R.

Let us note that for a relational system G = (G, R) of finite domain
the diagonality of G coincides with the diagonal property of R defined
in [4]. If R is even a binary relation on G, then G is diagonal iff R is
transitive.

Theorem 9. Let G,H, K be relational systems of the same domain
and let H and K be reflexive. Then there exists an isomorphic embedding

of GF'X into (GH)X. If moreover G is diagonal, then

Proor. Let G = (G,R), H = (H,S), K = (K,T) and let I be
their domain. Let f € Hom(H - K,G) and y € K. By f, we denote the
mapping f, : H — G defined by f,(z) = f(z,y) whenever z € H. Let
gGS.Puttingg() (g(i),y) for all : € I, we have g* € R(H - K).
Hence f o ¢g* € R. But fog = fy 0 g and thus f, o g € R. Therefore
fy € Hom(H,G). Let z € H and h € T. Put h( ) = (z,h(2)) for every
i € I. Then h € R(H - K). Consequently, foh € R. Let f' : K —
Hom(H, G) be the mapping defined by f'(y) = f, for any y € K. There

holds (f' o h)(i) = f'(h(i))(z) = fa(iy(z) = f(z, h(i)) = F(h(i)) for every
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z € H and i € I. This yields *(f' o h) = f o h so that *(f' o h) € R for
all z € H. Therefore f' o h € R(GH) and thus f' € Hom(K, GH¥). Let
¢ : Hom(H - K, G) — Hom(K, G¥) be the mapping defined by ¢(f) = f'
for every f € Hom(H - K, G). Let f,g € Hom(H - K,G), f # g. Then
there exists (z,y) € H x K with f(z,y) # g(z,y). Hence f,(z) # gy(z)
for some z € H and y € K. Thus f'(y) = fy # g, = ¢'(y) for some y € K.
We have ¢(f) = f' # ¢' = ¢(g) which implies that ¢ is an injection. Let
p € R(GHX), Then (*¥)p € R for all (z,y) € H x K. For any y € K,
by 7 we denote the mapping § : Hom(H - K, G) — Hom(H, G) defined
by 4(f) = f, whenever f € Hom(H - K, G). There holds *(j o p)(i) =
9(p()))(z) = (p(i))y(2) = p(i)(z,y) = E¥p(i) for every i € I, = € H,
y € K. Consequently, *(j op) = ®¥p for all z € H,y € K, so that
*(jop) € Rfor all z € H,y € K. Therefore j o p € R(GH) for all y € K.
There holds ¥(¢ 0 p)(i) = ¢(PH)(¥) = (P())'(¥) = (B(3))y = #(p(i))
for all : € I, y € K. This yields ¥(pop) = yop for all y € K, so
that ¥(¢ o p) € R(GH) for all y € K. From this ¢ o p € R((GH)K).
Hence ¢ is a homomorphism of GH'¥ into (GH¥)X. Conversely, let p €
(Hom(H - K, G))! and suppose that ¢ o p € R((GH)X). Reversing the
previous considerations we can easily show that p € R(GH¥). Thus ¢ is
an isomorphic embedding of GH'X into (GH)K,

Suppose moreover that G is diagonal. Let p € Hom(K,G¥) and
put f(z,y) = p(y)(z) for any ¢ € H, y € K. Let h € R(H - K). Then
there exist hy € S and h, € T such that k(i) = (hy(i), h2(2)) for all
i € I. From po hy € R(GH) it follows that *(po hy) € R for all z € H.
Thus, putting fi = ") (po hy) we have f; € R for all i € I. Next, as
p(y) € Hom(H, G) for all y € K, there is p(h,(j)) € Hom(H, G) for all
j € I. Therefore, putting g; = p(hs(j)) o h; we obtain g; € R for all j € I.

There holds fi(j) = MO (p o ha)(j) = p(ha(j))(h1(i)) = F(ha(i), ha(3))
and g;(i) = (p(h2(7)) 0 h1)(i) = p(h2(j))(h1(2)) = f(h1(7), h2(j)) for all
t,j € I. So fi(j) = g(¢) for every pair ¢,j € I. Since fi(z) = f(h(7))
for all 1 € I and since G is diagonal, we have f o h € R. Consequently,
f € Hom(H - K, G). Now, according to the first part of the proof, there
holds p(y)(z) = f(z,y) = fy(z) = f'(y)(z) = ¢(f)(y)(z) for all z €
H, y € K. Hence p = ¢(f). Therefore ¢ is a surjection and the proof is
complete.
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