Direct arithmetics of relational systems

By JOSEF ŠLAPAL (Brno)

The aim of this paper is to define and study direct operations of addition, multiplication and exponentiation for relational systems. By a relational system we understand a set G together with a set of mappings of another set into G. More precisely, let G and I be non-empty sets. Then a set of mappings $R \subseteq G^I$ is called a relation on G and the ordered pair G = (G, R) is said to be a relational system. The set G is called the carrier of G and the set G is called the domain of G. The relation G of G (i.e. on G) will sometimes be denoted by $\Re(G)$.

Birkhoff's arithmetics of ordered sets discussed in [1] and [2] has been generalized by several mathematicians – see e.g. [3], [4]. Especially, in [4] V. Novák deals with direct operations of addition, multiplication and mainly exponentiation for relational structures, i.e. for sets endowed with n-ary relations (where n is a positive integer). As n-ary relations coincide with relations of finite domains, the presented results can be considered as a generalization and a completion of those of [4].

Definition 1. Let G = (G, R), H = (H, S) be two relational systems of the same domain. Let $\varphi : G \to S$ be a mapping for which the implication $f \in R \Rightarrow \varphi \circ f \in S$ holds. Then φ is called a homomorphism of G into G. The set of all homomorphisms of G into G into G is denoted by G. A bijective homomorphism φ of G onto G onto G is a homomorphism of G onto G is called an isomorphism of G onto G. We write $G \sim G$ and G and G if there exists an isomorphism of G onto G.

Clearly, the class of all relational systems of the same domain together with homomorphisms as morphisms form a category.

Definition 2. Let $\{\mathbf{G}_j \mid j \in J\} = \{(G_j, R_j) \mid j \in J\}$ be a family of relational systems of the same domain I and let $G_{j_1} \cap G_{j_2} = \emptyset$ whenever $j_1, j_2 \in J$, $j_1 \neq j_2$. The direct $sum \sum_{j \in J} \mathbf{G}_j$ of the family $\{\mathbf{G}_j \mid j \in J\}$

is the relational system G = (G, R) of domain I where $G = \bigcup_{j \in J} G_j$ and $R = \bigcup_{j \in J} R_j$.

 $R = \bigcup_{j \in J} R_j.$ If $J = \{j_1, \dots, j_n\}$, then we write $\sum_{j \in J} G_j = G_{j_1} + \dots + G_{j_n}$.

Having a family of sets $\{G_j \mid j \in J\}$, we denote by $\kappa_j \ (j \in J)$ the j-th canonical insertion, i.e. the mapping $\kappa_j : G_j \to \bigcup_{j \in J} G_j$ defined by

 $\kappa_j(x) = x$ whenever $x \in G_j$.

Let G = (G, R), H = (G, S) be two relational systems of the same domain and with the same carrier. Put $G \leq H$ iff $R \subseteq S$. Clearly, \leq is an order on the class of all relational systems of the same domain and with the same carrier.

Proposition 1. Let $\{G_j \mid j \in J\} = \{(G_j, R_j) \mid j \in J\}$ be a family of relational systems of the same domain I. Let $G_{j_1} \cap G_{j_2} = \emptyset$ whenever $j_1, j_2 \in J$, $j_1 \neq j_2$ and let $G = (G, R) = \sum_{j \in J} G_j$. Then G is the least element (with respect to \leq) in the class of all such relational systems H of the same domain I and with the same carrier G for which every canonical insertion $\kappa_j(j \in J)$ is a homomorphism of G_j into H.

PROOF. Clearly, every canonical insertion κ_j $(j \in J)$ is a homomorphism of G_j into G. Let H = (G, S) be such a relational system of domain I and with carrier G for which all canonical insertions κ_j $(j \in J)$ are homomorphisms of G_j into H. Let $f \in R$. Then there exists $j \in J$ such that $f \in R_j$. Consequently, $\kappa_j \circ f \in S$. Since $\kappa_j \circ f = f$, we have $f \in S$. Therefore $G \subseteq H$ and the assertion is proved.

Evidently, there holds:

Theorem 1. Let $\{G_j \mid j \in J\} = \{(G_j, R_j) \mid j \in J\}$ be a family of relational systems of the same domain and let $G_{j_1} \cap G_{j_2} = \emptyset$ whenever $j_1, j_2 \in J$, $j_1 \neq j_2$. Let $\{J_k \mid k \in K\}$ be a decomposition of the set J. Then

$$\sum_{k \in K} \sum_{j \in J_k} \mathbf{G}_j = \sum_{j \in J} \mathbf{G}_j.$$

Definition 3. Let $\{G_j \mid j \in J\} = \{(G_j, R_j) \mid j \in J\}$ be a family of relational systems of the same domain I. The direct product $\prod_{j \in J} G_j$ of the family $\{G_j \mid j \in J\}$ is the relational system G = (G, R) of domain I where $G = \bigvee_{j \in J} G_j$ and R is defined as follows: $f \in (\bigvee_{j \in J} G_j)^I$, $f \in R \Leftrightarrow f \in I$ for all $f \in J$.

Of course, $pr_j (j \in J)$ means here the j-th projection, i.e. $pr_j : \bigvee_{j \in J} G_j \to G_j$ is the mapping defined by $pr_j(x) = x(j)$ whenever $x \in \bigvee_{j \in J} G_j$. If $J = \{j_1, \ldots, j_n\}$, then we write $\prod_{j \in J} \mathbf{G}_j = \mathbf{G}_{j_1} \cdot \ldots \cdot \mathbf{G}_{j_n}$.

Proposition 2. Let $\{G_j \mid j \in J\} = \{(G_j, R_j) \mid j \in J\}$ be a family of relational systems of the same domain I. Let $G = (G, R) = \prod_{j \in J} G_j$.

Then G is the greatest element (with respect to \leq) in the class of all such relational systems H of the same domain I and with the same carrier G for which every projection $pr_j (j \in J)$ is a homomorphism of H onto G_j .

PROOF. It can easily be seen that every projection $pr_j(j \in J)$ is a homomorphism of G onto G_j . Let H = (G, S) be such a relational system of domain I and with carrier G for which all projections pr_j $(j \in J)$ are homomorphisms of H onto G_j . Let $f \in S$. Then $pr_j \circ f \in R_j$ for all $j \in J$. Consequently, $f \in R$. Hence $H \leq G$ and the proof is complete.

Theorem 2. Let $\{G_j \mid j \in J\}$ be a family of relational systems of the same domain and let $\{J_k \mid k \in K\}$ be a decomposition of the set J. Then

$$\prod_{k \in K} \prod_{j \in J_k} \mathbf{G}_j \sim \prod_{j \in J} \mathbf{G}_j.$$

PROOF. If $j \in J$, let $G_j = (G_j, R_j)$, and let the domain of G_j be I. Let $\varphi: \bigvee_{k \in K} \bigvee_{j \in J_k} G_j \to \bigvee_{j \in J} G_j$ be the mapping defined as follows: for any $x \in \bigvee_{k \in K} \bigvee_{j \in J_k} G_j$ we put $\varphi(x) = y$ where $y: J \to \bigcup_{j \in J} G_j$ is the mapping fulfilling y(j) = x(k)(j) for all $j \in J$ where $k \in K$ is the index with $j \in J_k$. Obviously, φ is a bijection. Clearly, there holds $pr_j(\varphi(x)) = \varphi(x)(j) = x(k)(j) = pr_j(pr_k(x))$ for all $x \in \bigvee_{k \in K} \bigcup_{j \in J_k} G_j$, $k \in K$ and $j \in J_k$. Let $f \in \Re(\prod_{k \in K} \prod_{j \in J_k} G_j)$. Then $pr_j \circ f \in \Re(\prod_{j \in J_k} G_j)$ and so $pr_j \circ pr_k \circ f \in R_j$ for all $k \in K$, $j \in J_k$. Let $i \in I$, $k \in K$ and $j \in J_k$. Then we have $pr_j(\varphi(f(i))) = pr_j(pr_k(f(i)))$ and so $pr_j \circ \varphi \circ f = pr_j \circ pr_k \circ f \in R_j$. Therefore $\varphi \circ f \in \Re(\prod_{j \in J} G_j)$ and φ is a homomorphism. Conversely, let $f \in \Re(\prod_{j \in J} G_j)$. Then $pr_j(pr_k(\varphi^{-1}(f(i)))) = pr_j(f(i))$ and so $pr_j \circ pr_k \circ \varphi^{-1} \circ f = pr_j \circ f \in R_j$. Hence $\varphi^{-1} \circ f \in \Re(\prod_{k \in K} \prod_{j \in J_k} G_j)$. Thus φ^{-1} is a homomorphism.

Consequently, $\prod_{k \in K} \prod_{j \in J_k} \mathbf{G}_j$ and $\prod_{j \in J} \mathbf{G}_j$ are isomorphic. The statement is proved.

Let G = (G, R) be a relational system of domain I. The system G is called

(1) discrete iff for every mapping $f \in G^I$ there holds $f \in R \Leftrightarrow \exists x \in G: f(i) = x$ for all $i \in I$,

(2) reflexive iff for the discrete relational system **H** of domain I and with carrier G there holds $\mathbf{H} \leq \mathbf{G}$,

(3) complete iff $R = G^I$.

Theorem 3. Let G = (G, R) be a relational system of domain I and let $\{G_j \mid j \in J\} = \{(G_j, R_j) \mid j \in J\}$ be a family of relational systems of the same domain I. Let $G_{j_1} \cap G_{j_2} = \emptyset$ whenever $j_1, j_2 \in J$, $j_1 \neq j_2$. Let $G_j \sim G$ for every $j \in J$ and let J be a reflexive relational system of domain I and with carrier J. Then there exists a bijective homomorphism of $\sum_{j \in J} G_j$ onto $J \cdot G$. If J is even discrete, then

$$\sum_{j \in J} \mathbf{G}_j \sim \mathbf{J} \cdot \mathbf{G}.$$

PROOF. Let φ_j be an isomorphism of \mathbf{G}_j onto \mathbf{G} for every $j \in J$. For any element $x \in \bigcup_{j \in J} G_j$ put $\varphi(x) = (j, \varphi_j(x))$ where $j \in J$ is the index with $x \in G_j$. Clearly, $\varphi : \bigcup_{j \in J} G_j \to J \times G$ is a bijection. Let $f \in \Re(\sum_{j \in J} \mathbf{G}_j)$. Then there exists $j \in J$ such that $f \in R_j$. Let $i \in I$. Then $\varphi(f(i)) = (j, \varphi_j(f(i)))$. Since \mathbf{J} is reflexive and since $\varphi_j \circ f \in R$, we have $\varphi \circ f \in \Re(\mathbf{J} \cdot \mathbf{G})$. So φ is a homomorphism of $\sum_{j \in J} \mathbf{G}_j$ onto $\mathbf{J} \cdot \mathbf{G}$. Let even \mathbf{J} be discrete and let $f \in \Re(\mathbf{J} \cdot \mathbf{G})$. Then there exist $j \in J$ and $g \in R$ such that f(i) = (j, g(i)) for all $i \in I$. Consequently, for any $i \in I$ we have $\varphi^{-1}(f(i)) = \varphi^{-1}((j, g(i))) = \varphi^{-1}((j, \varphi_j(\varphi_j(g(i))))) = \varphi_j^{-1}(g(i))$ because $\varphi_j^{-1}(g(i)) \in G_j$. Thus $\varphi^{-1} \circ f = \varphi_j^{-1} \circ g$. As φ_j^{-1} is a homomorphism of \mathbf{G} onto \mathbf{G}_j , there is $\varphi_j^{-1} \circ g \in R_j$. Hence $\varphi^{-1} \circ f \in R_j \subseteq \Re(\sum_{j \in J} \mathbf{G}_j)$. Therefore φ^{-1} is a homomorphism of $\mathbf{J} \cdot \mathbf{G}$ onto $\sum_{j \in J} \mathbf{G}_j$. This proves the statement.

Theorem 4. Let $\{G_j \mid j \in J\} = \{(G_j, R_j) \mid j \in J\}$ be a family of relational systems of the same domain and let $\{J_k \mid k \in K\}$ be a decomposition of the set J. Let $G_{j_1} \cap G_{j_2} = \emptyset$ whenever there exists $k \in K$

such that $j_1, j_2 \in J_k$ and $j_1 \neq j_2$. Denote $P = \bigvee_{k \in K} J_k$. Then

$$\prod_{k \in K} \sum_{j \in J_k} \mathbf{G}_j = \sum_{p \in P} \prod_{k \in K} \mathbf{G}_p(k).$$

PROOF. At first, it can easily be seen that the carriers of the systems $\prod\limits_{k\in K}\mathbf{G}_{p_1(k)}$ and $\prod\limits_{k\in K}\mathbf{G}_{p_2(k)}$ are disjoint whenever $p_1,p_2\in P,\ p_1\neq p_2$. Hence, the direct sum $\sum\limits_{p\in P}\prod\limits_{k\in K}\mathbf{G}_{p(k)}$ is defined. Next, the carriers of the systems $\prod\limits_{k\in K}\sum\limits_{j\in J_k}\mathbf{G}_j$ and $\sum\limits_{p\in P}\prod\limits_{k\in K}\mathbf{G}_{p(k)}$ are clearly equal. We shall prove that also the relations of these systems are equal. On that account, let $f\in\Re(\prod\limits_{k\in K}\sum\limits_{j\in J_k}\mathbf{G}_j)$. Then for every $k\in K$ there exists $j\in J_k$ such that $pr_k\circ f\in R_j$. In other words, there exists $p\in P$ such that for every $k\in K$ we have $pr_k\circ f\in\Re(\mathbf{G}_{p(k)})$. Therefore $f\in\Re(\prod\limits_{k\in K}\mathbf{G}_{p(k)})\subseteq\Re(\sum\limits_{p\in P}\prod\limits_{k\in K}\mathbf{G}_{p(k)})$. We have proved the inclusion $\prod\limits_{k\in K}\sum\limits_{j\in J_k}\mathbf{G}_j\subseteq\sum\limits_{p\in P}\prod\limits_{k\in K}\mathbf{G}_{p(k)}$. Reversing the arguments we can easily prove the inverse inclusion.

Definition 4. Let G = (G, R), H = (H, S) be a relational systems of the same domain I. The direct power G^H is the relational system K = (K, T) of domain I where K = Hom(H, G) and T is defined as follows: $f \in K^I$, $f \in T \Leftrightarrow {}^x f \in R$ for all $x \in H$. By ${}^x f$ we understand the mapping ${}^x f : I \to G$ defined by ${}^x f(i) = f(i)(x)$ whenever $i \in I$.

Theorem 5. Let G be a relational system of domain I and let $\{G_j \mid j \in J\}$ be a family of relational systems of the same domain I. Let $G \sim G_j$ for every $j \in J$ and let J be a relational system of domain I and with carrier J. Then there exists an isomorphic embedding of G^J into $\prod_{j \in J} G_j$. If G is complete or if G is reflexive and J is discrete, then

$$G^{J} \sim \prod_{j \in J} G_{j}$$
.

PROOF. Let $\mathbf{G} = (G, R)$ and $\mathbf{G}_j = (G_j, R_j)$ for all $j \in J$. Let φ_j be an isomorphism of \mathbf{G} onto \mathbf{G}_j for every $j \in J$. For any $x \in \text{Hom}(\mathbf{J}, \mathbf{G})$ put $\varphi(x) = y$ where $y : J \to \bigcup_{j \in J} G_j$ is the mapping defined by $y(j) = \varphi_j(x(j))$

whenever $j \in J$. Clearly, $\varphi: \operatorname{Hom}(\mathbf{J}, \mathbf{G}) \to \bigvee_{j \in J} G_j$ is an injection. Let $f \in \Re(\mathbf{G}^{\mathbf{J}})$. Then we have $pr_j(\varphi(f(i))) = \varphi(f(i))(j) = \varphi_j(f(i)(j)) = \varphi_j(^jf(i))$ for any $i \in I$ and $j \in J$. Hence $pr_j \circ \varphi \circ f = \varphi_j \circ ^jf$ for every $j \in J$. As $^jf \in R$ for all $j \in J$, there holds $\varphi_j \circ ^jf \in R$, i.e. $pr_j \circ \varphi \circ f \in R_j$ for all $j \in J$. From this $\varphi \circ f \in \Re(\prod_{j \in J} G_j)$ and therefore φ is a homomorphism of $\mathbf{G}^{\mathbf{J}}$ into $\prod_{j \in J} G_j$. Conversely, let $f \in (\operatorname{Hom}(\mathbf{J}, \mathbf{G}))^I$ be a mapping with $\varphi \circ f \in \Re(\prod_{j \in J} G_j)$, i.e. with $pr_j \circ \varphi \circ f \in R_j$ for all $j \in J$. Then $^jf(i) = f(i)(j) = \varphi_j^{-1}(\varphi_j(f(i)(j))) = \varphi_j^{-1}(\varphi(f(i)(j))) = \varphi_j^{-1}(pr_j(\varphi(f(i))))$ for any $i \in I$ and $j \in J$. Hence $^jf = \varphi_j^{-1} \circ pr_j \circ \varphi \circ f \in R$ for all $j \in J$ so that $f \in \Re(\mathbf{G}^{\mathbf{J}})$. Thus φ is an isomorphic embedding of $\mathbf{G}^{\mathbf{J}}$ into $\prod_{j \in J} G_j$. Now suppose that \mathbf{G} is complete or that \mathbf{G} is reflexive and \mathbf{J} is discrete. Then clearly $\operatorname{Hom}(\mathbf{J}, \mathbf{G}) = \mathbf{G}^{\mathbf{J}}$ and hence φ is a bijection. Therefore φ is an isomorphism of $\mathbf{G}^{\mathbf{J}}$ onto $\prod_{j \in J} G_j$. The assertion is proved.

Corollary. Let G, J, K be relational systems of the same domain I. Let G be complete or let G be reflexive and both J and K be discrete. Then

 $(G^J)^K \sim G^{J \cdot K}.$

PROOF. If **G** is complete, then clearly $\mathbf{G}^{\mathbf{J}}$ is complete, too. If **G** is reflexive and both **J** and **K** are discrete, then it can easily be seen that $\mathbf{G}^{\mathbf{J}}$ is reflexive and $\mathbf{J} \cdot \mathbf{K}$ is discrete. Therefore, putting $\mathbf{G}_{jk} = \mathbf{G}$ for all $j \in J$ and all $k \in K$, in consequence of Theorems 2 and 5 we obtain $(\mathbf{G}^{\mathbf{J}})^{\mathbf{K}} \sim \prod_{k \in K} \prod_{j \in J} \mathbf{G}_{jk} \sim \prod_{(j,k) \in J \times K} \mathbf{G}^{\mathbf{J} \cdot \mathbf{K}}$ whenever **G** is complete

or G is reflexive and both J and K are discrete. Obviously, the law $(G^J)^K \sim G^{J \cdot K}$ does not hold generally, i.e. for arbitrary relational systems G, J, K of the same domain. At the end of the article we give other sufficient conditions for the validity of this law.

The following statement is evident:

Theorem 6. Let G, J be relational systems of the same domain and let J be reflexive. Then there exists an isomorphic embedding of J into J^G . If moreover J is a singleton, then

$J \sim J^G$.

Theorem 7. Let $\{G_j / j \in J\} = \{(G_j, R_j) / j \in J\}$ be a family of relational systems of the same domain I. Let $\mathbf{H} = (H, S)$ be a relational

system of domain I. Then

$$(\prod_{j\in J}\mathbf{G}_j)^{\mathbf{H}}\sim\prod_{j\in J}\mathbf{G}_j^{\mathbf{H}}.$$

PROOF. For any $f \in \operatorname{Hom}(\mathbf{H}, \prod_{j \in J} \mathbf{G}_j)$ and any $j \in J$ denote $f_j = pr_j \circ f$. Then $f_j \in \operatorname{Hom}(\mathbf{H}, \mathbf{G}_j)$ for any $j \in J$. Let $\varphi : \operatorname{Hom}(\mathbf{H}, \prod_{j \in J} \mathbf{G}_j) \to \emptyset$ $\mathbb{C}[\mathbf{Hom}(\mathbf{H}, \mathbf{G}_j)]$ be the mapping defined as follows: $f \in \operatorname{Hom}(\mathbf{H}, \prod_{j \in J} \mathbf{G}_j), \varphi(f) = g \text{ where } g : J \to \bigcup_{j \in J} \operatorname{Hom}(\mathbf{H}, \mathbf{G}_j) \text{ is the mapping with } g(j) = f_j \text{ whenever } j \in J. \text{ It can easily be seen that } \varphi \text{ is a bijection. Let } h \in \mathbb{R}((\prod_{j \in J} \mathbf{G}_j)^{\mathbf{H}}. \text{ Then } ^xh \in \mathbb{R}(\prod_{j \in J} \mathbf{G}_j) \text{ for all } x \in H. \text{ Thus } pr_j \circ ^xh \in R_j \text{ for all } j \in J \text{ and } x \in H. \text{ We have } \varphi \circ h \in \mathbb{R}(\prod_{j \in J} \mathbf{G}_j^{\mathbf{H}}) \Leftrightarrow pr_j \circ \varphi \circ h \in \mathbb{R}(\mathbf{G}_j^{\mathbf{H}}) \text{ for all } j \in J \Leftrightarrow ^x(pr_j \circ \varphi \circ h) \in R_j \text{ for all } x \in H, j \in J. \text{ There holds } ^x(pr_j \circ \varphi \circ h)(i) = (pr_j \circ \varphi \circ h)(i)(x) = pr_j(\varphi(h(i)))(x) = \varphi(h(i))(j)(x) = (h(i))_j(x) = (pr_j \circ h(i))(x) = (pr_j \circ ^xh)(i) \text{ for every } i \in I, j \in J, x \in H. \text{ Thus } ^x(pr_j \circ \varphi \circ h) = pr_j \circ ^xh \in R_j \text{ for all } x \in H, j \in J. \text{ Therefore } \varphi \circ h \in \mathbb{R}(\prod_{j \in J} \mathbf{G}_j^{\mathbf{H}}). \text{ Consequently, } \varphi \text{ is a homomorphism of } \bigcap_{j \in J} \mathbf{G}_j^{\mathbf{H}} \text{ into } \prod_{j \in J} \mathbf{G}_j^{\mathbf{H}}. \text{ By the reverse considerations we can easily show that } \varphi^{-1} \text{ is a homomorphism of } \prod_{j \in J} \mathbf{G}_j^{\mathbf{H}} \text{ into } (\prod_{j \in J} \mathbf{G}_j)^{\mathbf{H}} \text{ and the proof is complete.}$

Theorem 8. Let G = (G, R) be a relational system of domain I. Let $\{H_j \mid j \in J\} = \{(H_j, S_j) \mid j \in J\}$ be a family of relational systems of the same domain I and let $H_{j_1} \cap H_{j_2} = \emptyset$ whenever $j_1, j_2 \in J$, $j_1 \neq j_2$. Then

$$\mathbf{G}^{\sum\limits_{j\in J}\mathbf{H}_{j}}\sim\prod_{j\in J}\mathbf{G}^{\mathbf{H}_{j}}.$$

PROOF. For any $f \in \operatorname{Hom}(\sum_{j \in J} \mathbf{H}_j, \mathbf{G})$ and any $j \in J$ denote by f_j the restriction f/H_j . Then $f_j \in \operatorname{Hom}(\mathbf{H}_j, \mathbf{G})$ for any $j \in J$. Let $\varphi : \operatorname{Hom}(\sum_{j \in J} \mathbf{H}_j, \mathbf{G}) \to \bigvee_{j \in J} \operatorname{Hom}(\mathbf{H}_j, \mathbf{G})$ be the mapping defined as follows: $f \in \operatorname{Hom}(\sum_{j \in J} \mathbf{H}_j, \mathbf{G})$, $\varphi(f) = g$ where $g : J \to \bigcup_{j \in J} \operatorname{Hom}(\mathbf{H}_j, \mathbf{G})$ is

the mapping fulfilling $g(j) = f_j$ whenever $j \in J$. It can easily be seen that φ is a bijection. Let $h \in \Re(\mathbf{G}^{j \in J})$. Then $f \in R$ for all $f \in J$ for all $f \in J$. We have $\varphi \circ h \in \Re(\prod_{j \in J} \mathbf{G}^{\mathbf{H}}) \Leftrightarrow pr_j \circ \varphi \circ h \in \Re(\mathbf{G}^{\mathbf{H}_j})$ for all $f \in J$ for all $f \in J$, $f \in J$. There holds $f \in J$ for all $f \in J$, $f \in J$. There holds $f \in J$ for all $f \in J$ for $f \in J$. Therefore $f \in J$ for every $f \in J$. Therefore $f \in J$ for all $f \in J$ for all $f \in J$. Therefore $f \in J$ for all $f \in J$ for all $f \in J$. Therefore $f \in J$ for all $f \in J$ for all $f \in J$. Therefore $f \in J$ for all $f \in J$. Therefore $f \in J$ for all $f \in J$. Consequently, $f \in J$ is a

homomorphism of $G^{j \in J}$ into $\prod_{j \in J} G^{H_j}$. Reversing the arguments we can $\prod H_i$

easily show that φ^{-1} is a homomorphism of $\prod_{j \in J} \mathbf{G}^{\mathbf{H}_j}$ into $\mathbf{G}^{j \in J}$. The theorem is proved.

Let G = (G, R) be a relational system of domain I. The system G is called *diagonal* iff the following is valid:

Let $\{f_i \mid i \in I\}$ be a family of elements of G^I such that $f_i \in R$ for all $i \in I$. Let $\{g_j \mid j \in I\}$ be the family of elements of G^I where $g_j(i) = f_i(j)$ for all $i, j \in I$. If $g_j \in R$ for all $j \in I$, then putting $h(i) = f_i(i)$ for every $i \in I$ we get $h \in R$.

Let us note that for a relational system G = (G, R) of finite domain the diagonality of G coincides with the diagonal property of R defined in [4]. If R is even a binary relation on G, then G is diagonal iff R is transitive.

Theorem 9. Let G, H, K be relational systems of the same domain and let H and K be reflexive. Then there exists an isomorphic embedding of $G^{H\cdot K}$ into $(G^H)^K$. If moreover G is diagonal, then

$$\mathbf{G^{H \cdot K}} \sim (\mathbf{G^H})^{\mathbf{K}}.$$

PROOF. Let G = (G, R), H = (H, S), K = (K, T) and let I be their domain. Let $f \in \text{Hom}(\mathbf{H} \cdot \mathbf{K}, \mathbf{G})$ and $y \in K$. By f_y we denote the mapping $f_y : H \to G$ defined by $f_y(x) = f(x, y)$ whenever $x \in H$. Let $g \in S$. Putting $g^*(i) = (g(i), y)$ for all $i \in I$, we have $g^* \in \Re(\mathbf{H} \cdot \mathbf{K})$. Hence $f \circ g^* \in R$. But $f \circ g^* = f_y \circ g$ and thus $f_y \circ g \in R$. Therefore $f_y \in \text{Hom}(\mathbf{H}, \mathbf{G})$. Let $x \in H$ and $h \in T$. Put $\bar{h}(i) = (x, h(i))$ for every $i \in I$. Then $\bar{h} \in \Re(\mathbf{H} \cdot \mathbf{K})$. Consequently, $f \circ \bar{h} \in R$. Let $f' : K \to \text{Hom}(\mathbf{H}, \mathbf{G})$ be the mapping defined by $f'(y) = f_y$ for any $y \in K$. There holds $f'(y) = f'(h(i))(x) = f'(h(i))(x) = f(x, h(i)) = f(\bar{h}(i))$ for every

 $x \in H$ and $i \in I$. This yields $x(f' \circ h) = f \circ h$ so that $x(f' \circ h) \in R$ for all $x \in H$. Therefore $f' \circ h \in \Re(\mathbf{G^H})$ and thus $f' \in \mathrm{Hom}(\mathbf{K}, \mathbf{G^H})$. Let $\varphi: \operatorname{Hom}(\mathbf{H} \cdot \mathbf{K}, \mathbf{G}) \to \operatorname{Hom}(\mathbf{K}, \mathbf{G}^{\mathbf{H}})$ be the mapping defined by $\varphi(f) = f'$ for every $f \in \text{Hom}(\mathbf{H} \cdot \mathbf{K}, \mathbf{G})$. Let $f, g \in \text{Hom}(\mathbf{H} \cdot \mathbf{K}, \mathbf{G}), f \neq g$. Then there exists $(x,y) \in H \times K$ with $f(x,y) \neq g(x,y)$. Hence $f_y(x) \neq g_y(x)$ for some $x \in H$ and $y \in K$. Thus $f'(y) = f_y \neq g_y = g'(y)$ for some $y \in K$. We have $\varphi(f) = f' \neq g' = \varphi(g)$ which implies that φ is an injection. Let $p \in \Re(\mathbf{G}^{\mathbf{H} \cdot \mathbf{K}})$. Then $(x,y) \in R$ for all $(x,y) \in H \times K$. For any $y \in K$, by \hat{y} we denote the mapping $\hat{y}: \text{Hom}(\mathbf{H} \cdot \mathbf{K}, \mathbf{G}) \to \text{Hom}(\mathbf{H}, \mathbf{G})$ defined by $\hat{y}(f) = f_y$ whenever $f \in \text{Hom}(\mathbf{H} \cdot \mathbf{K}, \mathbf{G})$. There holds $\hat{x}(\hat{y} \circ p)(i) = f_y$ $\hat{y}(p(i))(x) = (p(i))_y(x) = p(i)(x,y) = {}^{(x,y)}p(i)$ for every $i \in I, x \in H$, $y \in K$. Consequently, $\hat{x}(\hat{y} \circ p) = (x,y)p$ for all $x \in H, y \in K$, so that $x(\hat{y} \circ p) \in R$ for all $x \in H, y \in K$. Therefore $\hat{y} \circ p \in \Re(\mathbf{G}^{\mathbf{H}})$ for all $y \in K$. There holds $^y(\varphi \circ p)(i) = \varphi(p(i))(y) = (p(i))'(y) = (p(i))_y = \hat{y}(p(i))$ for all $i \in I$, $y \in K$. This yields $y(\varphi \circ p) = \hat{y} \circ p$ for all $y \in K$, so that $y(\varphi \circ p) \in \Re(\mathbf{G}^{\mathbf{H}})$ for all $y \in K$. From this $\varphi \circ p \in \Re((\mathbf{G}^{\mathbf{H}})^{\mathbf{K}})$. Hence φ is a homomorphism of $\mathbf{G}^{\mathbf{H}\cdot\mathbf{K}}$ into $(\mathbf{G}^{\mathbf{H}})^{\mathbf{K}}$. Conversely, let $p \in$ $(\operatorname{Hom}(\mathbf{H} \cdot \mathbf{K}, \mathbf{G}))^I$ and suppose that $\varphi \circ p \in \Re((\mathbf{G}^{\mathbf{H}})^{\mathbf{K}})$. Reversing the previous considerations we can easily show that $p \in \Re(\mathbf{G}^{\mathbf{H} \cdot \mathbf{K}})$. Thus φ is an isomorphic embedding of GH·K into (GH)K.

Suppose moreover that G is diagonal. Let $p \in \text{Hom}(\mathbf{K}, \mathbf{G}^{\mathbf{H}})$ and put f(x,y) = p(y)(x) for any $x \in H$, $y \in K$. Let $h \in \Re(\mathbf{H} \cdot \mathbf{K})$. Then there exist $h_1 \in S$ and $h_2 \in T$ such that $h(i) = (h_1(i), h_2(i))$ for all $i \in I$. From $p \circ h_2 \in \Re(\mathbf{G}^{\mathbf{H}})$ it follows that ${}^x(p \circ h_2) \in R$ for all $x \in H$. Thus, putting $f_i = {}^{h_1(i)}(p \circ h_2)$ we have $f_i \in R$ for all $i \in I$. Next, as $p(y) \in \text{Hom}(\mathbf{H}, \mathbf{G})$ for all $y \in K$, there is $p(h_2(j)) \in \text{Hom}(\mathbf{H}, \mathbf{G})$ for all $j \in I$. Therefore, putting $g_j = p(h_2(j)) \circ h_1$ we obtain $g_j \in R$ for all $j \in I$. There holds $f_i(j) = {}^{h_1(i)}(p \circ h_2)(j) = p(h_2(j))(h_1(i)) = f(h_1(i), h_2(j))$ and $g_j(i) = (p(h_2(j))) \circ h_1(i) = p(h_2(j))(h_1(i)) = f(h_1(i), h_2(j))$ for all $i, j \in I$. So $f_i(j) = g_j(i)$ for every pair $i, j \in I$. Since $f_i(i) = f(h(i))$ for all $i \in I$ and since G is diagonal, we have $f \circ h \in R$. Consequently, $f \in \text{Hom}(\mathbf{H} \cdot \mathbf{K}, \mathbf{G})$. Now, according to the first part of the proof, there holds $p(y)(x) = f(x,y) = f_y(x) = f'(y)(x) = \varphi(f)(y)(x)$ for all $x \in H$, $y \in K$. Hence $p = \varphi(f)$. Therefore φ is a surjection and the proof is complete.

References

^[1] G. Birkhoff, An extended arithmetics, Duke Math. J. 3 (1937), 311-316.

^[2] G. BIRKHOFF, Generalized arithmetics, Duke Math. J. 9 (1942), 283-302.

^[3] M. M. DAY, Arithmetics of ordered systems, Trans. Am. Math. Soc. 58 (1945), 1-43.

[4] V. NOVÁK, On a power of relational structures, Czech. Math. J. 35 (1985), 167-172.

DEPARTMENT OF MATHEMATICS, TECHNICAL UNIVERSITY OF BRNO, 616 69 BRNO, CZECHOSLOVAKIA

(Received August 28, 1987)