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Cauchy and Jensen equations on a
restricted domain almost everywhere

By JOZEF TABOR (Cracow)

Abstract. In the paper we consider the Cauchy equation f(z +y) = f(z)+ f(y),
where the equality is postulated for “almost all” pairs (z,y) in the triangle z € P,
y € P, z + y € P. Under suitable assumptions we obtain an analogue of de Bruijn’s
theorem. In the similar way the Jensen equation is investigated. We prove, under ap-
propriate assumptions, that if f satisfies the equation f (‘—;’-1) = ﬂﬂ%ﬁﬂ for “almost
all” pairs (z,y) T x T, then f is of the form f(z) = h(z) + ¢ for “almost all” z in T,
where h is an additive mapping and c is a constant.

Let X,Y be groups (written additively) and P a subset of X. Un-
der appropriate assumptions on X,Y and P every function f : P = Y
satisfying the condition

(1) flz+y)= f(z)+ f(y) for z,ye P, z+y€P

can be uniquely extended to the homomorphism h: X — Y (cf. [2] V
§1.4; VII §2.2; [3] Theorem 4.3; [4] Theorems 13.5.3, 13.6.2). On the other
hand if f: X — Y satisfies the equation

flz+y) = f(z) + f(y)

“almost everywhere”, then there exists a unique homomorphism

h : X — Y such that f(z) = g(z) “almost everywhere” (cf. [4] XVII
§6). “Almost everywhere” means here everywhere except elements of some
“small” set. We are going to generalize simultanously some results of
these two types. Namely, we shall be considering equation (1) almost
everywhere. In the similar way also the Jensen equation will be considered.

AMS 1980 subject classification: 39 B 50
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1. Introduction

Let (X,+) be a group (not necessarily commutative). A non-empty
family 7 of subset of X is called a proper linearly invariant ideal (shortly
p.li. ideal) iff it satisfies the following conditions (cf. [4] p. 437):

(i) If A€ T and B C A, then B € T;
(i) If ABeZI, then ACBe€I;
(111) X¢7T;

(iv) For every z € X and A € T the set  — A belongs to T.

If condition (ii) is replaced by a stronger condition

(ii") IfA,€Z, neN, then | J 4, €1,

n=1

then 7 is called a proper linearly invariant o-ideal (p.l.i. o ideal).

If we are given a p.li. ideal in X, then we say that a condition is satisfied
T-almost everywhere in X(Z—(a.e)) iff there exists a set A € T such that
the condition in question is satisfied for every z € X'\ A.

Given a p.li. ideal (0-ideal) in X we put

AUI):= {Mc X*: -3 YV  Mlz]:=
U(M)€ET zeX\U(M)

{ye X :(z,y) € M} eI}.
Q7) is a p.li. ideal (0 — ideal) in X x X.

Let us assume that (X, +) is a group in which division by 2 is uniquely
performable. A set A C X is called convex in the Jensen sense (J-convex)
iff it satisfies the following condition (cf. [4] p. 111): If z,y € A, then
rea

2. Cauchy equation

Denote by N, the set of non negative integers and by Z the set of
integers. We shall consider the following hypotheses:
(Hy) (X, +) is an abelian group in which division by 2 is uniquely
performable, T is a ¢ p.li. ideal in X satisfying the following
condition:



(H3)
(H3)

(Hy)
(Hs)
(Hs)

Let AC X (A C X x X ). We shall use the following denotation:
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(v) IfA€Z, then 14, 24€1.
S C X is a subsemigroup of X generating X, S ¢ .
P C X is a subset of X such that

%P cr T — (a.e),

Sc 2P I-(ae),
nENg
={2ze€eP:PN(P-z)N(P-2z)€I} el
MeQUT), M :={(z,y):(y,z) € M} € QT).
(Y,+) is a group.
f:P—Y.
f(z +y) = f(z) + f(y) for (z,y) PP\M, z+y€P

A= | ] 2"A
n€Z

We start our considerations with some auxilliary lemmas.

Lemma 1. If (H,) holds and A € T, then A* € T.
ProoOF. Obvious.
Lemma 2. If (H,) holds and M € Q(T), then M* € SUT).

PROOF. Consider an z € X\[U(M)]*. We have

M'z]={ye X :(z,y) € M} = {yEX:(:z,y)e U 2"M} =

But 5% € X\[U(M)]* since z € X\[U(

nez

={y€"(:n22(21’:‘ ) GM}

={vex: Bamem[g]}= Urm[z].

221

M)]*. Hence M [%] € T for n € Z.

Makmg use of (v) and of the fact that Z is a ¢ ideal we obtain that
M*[z] € I. Thus M* € Q(I).
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Lemma 3. If (H,),(H,),(H;),(Hy),(Hs) and (Hg) hold, then there
exists a W € T such that

(2) f(2"z) = 2"f(z) for = € (%P) \W, neN,.
PROOF. It follows from (H3) that there exists an A € Z such that
(3) (%P) \ACP.
We put
(4) W:=[UM)UAU P]"

Of course W € I. The proof of (2) runs by induction. Obviously (2) holds
for n = 0. Take n = 1 and consider an z € (3P) \W. Then z ¢ [U(M)]*
and 2z ¢ [U(M)]*. Hence M[z] € T and M[2z] € T. Thus

Mz]UM[2z]U(—z + M[z]) € T.
Since z ¢ P, (as z & [P1]*), we have
(P-z)N(P-2z)NPEI,
and consequently
(P—-z)N(P-2z)NP)\(M[z]UM[2z]U (—z + M[z]) # 0.

Take a y from this set. Then (z,y) € PP\M andz+y€ P (asy€ P —
z), (2z,y) € P*\M and (2z2+y) € P, (z,2+y) € P’\M and c+z+y € P.
These conditions and (Hg) imply the following equalities:

f(z +y) = f(z) + f(y),

f(2z +y) = f(2z) + f(y),

fQ2z +y) = f(z) + f(z +y)

Subtracting the second equality from the third one and substituting the
first equality to the resulting equality we get

f(2z) = 2f(z).

Assume now (2) to hold for an n € N and consider an z € (ﬁP) \W.
Then 2"z € 3 P\W, and hence we have by the first part of the proof and
by the induction hypothesis:

f(22"z) = 2f(2"z) = 2" f(=).

Induction completes the proof.
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The following theorem is the main result of this section.

Theorem 1. If (H;) — (Hg) holds, then there exists a unique homo-
morphism h : X — Y such that

(5) f=h T-={ae)in PNS".
If additionally
E:={zeP\S*:PN(P-z)NS*N(S*-z)e I} e,

then
(6) f=h I-(ae)in P.

PROOF. Since S C |J 2"P ZI-(a.e), there exists a set B € T such
that azh
(7) S\BC: | ] 2R

n€Ny

We put
(8) W, :=[WU BJ",

where W is defined by (4). By Lemma 1 W, € Z. We define now a function
g:S — Y. Consider an = € S\W). Then there exists an n € Ny such that
zE2"Pie. 55 € P. We et

(9) 9(z):=2"f ().

For x € SN W; g(z) is defined arbitrarily. We must prove that g is
“well defined” i.e. that g(z) does not depend on the choice of n. Consider
an ¢ € S\W, and suppose that £ € 2"P and z € 2™P with m,n €
No. Then £ € P and 3% € P, whence 3:5= € P and 375= € ;5P.
Furthermore 7% ¢ W, since ¢ Wy and W C W;. Applying Lemma 3

we obtain % - .
f ('2'"7) 3 f(2“2,,+m) i (2n+m)’
=)=t T5=) = )

f (g) =27 (gwm) =24 (7).

Thus
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which means that g is “well defined”. By the definition of ¢ we have

(10) f(z) = g(z) for z € P\W,.
We shall prove that

(11) g(z+y)=g(z)+9(y, UI)- (ae)in SxS.
Put

C:i=(Wy x X)U(X xW)U{(z,9) EXx X :2+y €W}

and consider an z € X\W,. Then C[z] = W; U(—z + W;) € 7, and hence
C € QI). Put

(12) My:=MuM™ C =CuM;.

By (Hy) M, € Q(T) and so, by Lemma 2, M} € (Z). Therefore C; €
QT). Let us consider a pair (z,y) € (S x S)\C;. Then

(13) I, Yy o y € S\Wl
and
(14) (z,y) € (S x S)\M;.

It follows from (12), taking into account (7) and (8), that there exist
ny,na,n3 € No such that %, 7%, f,—'.'.'} € P, whence by (13)

T y T4y
2n1’ 9n2’  9ns

(15) € P\W; = P\W,.

We get from (3)

(%P) \A*C P for n € N,.

But, by (4) and (8), A* C Wi, hence

(16) (%P) \W), C P for n€ N,.
Taking n > max(n;,n;,n3) and making use of (15) and (16) we obtain

z y z4+y
2n’ 2n’ 9nm

(17) € P\W;.
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We have by (12) and (14)

w G e (EF)en

whence further, by (Hg) and (17), we get
) r ()1 (5) 1 (5)
=)+ (F):

which means that f (%) and f (%) commute. Making use of (9), (17)
and (19) we obtain

gz +y)=2"f (I;y) =2"f (21,,) 7 (2%) -

=21 (52) +2°7 (&) = 9(2) + 9(v).

(19)

Thus (11) is proven. By theorem of GER (cf. [4], p. 491) there exists a
homomorphism A : X — Y such that

hS=g Z - (a.e)in S.
This equality can be rewritten as
(20) h(z) = g(z) for = € S\D,

where D € T.

Obviously W, U D* € I. To prove (5) consider an z € (P NS*)\(W U D*).
Then z € P and, for some n € Ny, 2"z € S, 2"z ¢ W;, and 2"z ¢ D.
Making use of (20) and (9) (with z replaced by 2"z) we get

2"h(z) = h(2"z) = g(2"2) = 2" f(=).
Thus
(21) h(z) = f(z) for z € (PN S*)\(W; UD"),

1.e. (5) holds.

To prove (6) consider an z € P\(S* U E U W;). Then M[z] € T since
r € X\W; C X\U(M). We have further

PN(P-z)NnS*N(S* —z)\(W Uu(W, —z)UD*U(D* —z)U M|[z]) € T,
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and so there exists an element y in this set. Then
ye(PNS)\(W,uD*), z+ye€(PNS*)\(WuUD*),

(z,y) € (X x X)\M.
Applying (21) and (Hg) we get

h(z) + h(y) = h(z +y) = f(z +y) = f(z) + f(y) = f(z) + f(y),
and hence h(z) = f(z). Thus
h(z) = f(z) for z € P\(S*UEUW,).

Since EU W) € I, this equality and (5) imply (6). To prove uniqueness of
h let us observe that, according to (H3), there exists an F' € T such that

S\Fc 1] 2*P. Bt S C 8" %0
neNg

S\F c ( U 2"P) NS = | [PINnS = | | 2{P1LEY,

neENy neNy n€Np

which means that P N S* generates S\ F. Since moreover (S\F) — (S\F)
= X (cf. [4], Lemma 17.5.6), hence P N S* generates X. Taking into
account (5) we obtain that h is unique. This completes the proof.

The assumption that M~! € ((T) was applied in the proof of Theo-
rem 1 only once to prove that f (2%) and f (5";) commute. Therefore if

(Y, +) is abelian, then this assumption may be omitted.
Theorem 1 can be generalized. Condition (2) was used in the proof
of this theorem only for z € §* (to prove that the definition of g is cor-

rect.) Hence it is sufficient to prove (2) for z € (QL,,P\W) N S*. Therefore
assumption (Hj3) can be weakened. Consider the following hypothesis:
(Hy) P C X is a subset of X such that

P:={2z€PNS*:PN(P-z)N(P-2z)¢ T},

sPC P T —(a.e),

SC 1) 2B

n€No
Py:={zeP:P,N(P,—2z)¢TI}.

Modyfying a little bit the proof of theorem 1 one can prove the following
theorem.

Denote
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Theorem 2. If (H,),(H;),(Hy),(Hs),(Hs) and (Hg) hold, then
there exists a unique homomorphism h : X — Y such that

ey 7 - (a.e)in P, UP;.

It is easy to observe that, under our denotations P, = (P N S*)\ P,.
Suppose that (Hj3) holds. Then P, € Z, and hence

ez o

1 1
—P -
= 21— (a.e) 2

(PN S*) = (EP) nsTcPns* = . B

I— (a.e)

Similarly

S=Sns*c(U 2"P)n.5‘*= L) 2*Pnst) =

nENy nE€Ny = (a'e)

= |J 2"@ns\ |J 2°Pic | 2"[(PnS*)\Pi] =

n€ENy n€Ng neNp
= | ] 2°P,.
neEN,

Thus (Hjy ) results from (Hj) (but not conversely). Furthermore, if (H3)
holds, then P, = (P N S*)\P : ? : P N S*, which proves that the
- |a.e

condition

F=h Z- (ae)in P,UP;

is stronger than (5). So the assumptions of Theorem 2 are weaker and the
assertion is stronger than of Theorem 1 respectively.

3. Jensen equation

Let us assume that hypotheses (H,),(H;) are satisfied and consider
the following further hypetheses:

(H3n) T C X is a J—convex subset of X such that T € T,
T ={(z,y) EXxX:z€Tandy€ %(T-—I) and
(T—z-2y)N(T-z-y)N(T-2)e I} e NT)
and

T, := {a-eT:Xc U 2“(T-x)}&’1.

neNo

(Hy) M e QI).
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(Hs) (Y,+) is an abelian group in which division by 2 is umiquely

performable.
(HG') f T+ X,

f (z+y) - f(x);f(y) for (z,y) € T x T\ M.

2

The following theorem is an analogue of Theorem 1.
Theorem 3. If (H,), (H;;u) (Hy),(Hs') and (He') hold, then there

exist a unique homomorphism h : X — Y and a unique constant ¢ € Y
such that
(22) f(z) = h(z) + T - (a.e)on T.

PROOF. By (H3H) and (H4r) Tg\(U(Tl) U U(M)) ¢ Z. Fix an
zg € To\(U(T,)UU(M)) and consider the set

My :={(z,y) € X x X : 2 € M[zq] or y € M[z¢] or (z,y) € M
= (M[zo] x X) U (X x M|zo]) U M.
This means that M, € Q(T).
Now consider a pair (z,y) € (T x T)\Mjy. Then (z¢,z) € (T x T)\M,
(zo,y) € (T x T)\M, (z,y) € (T x T)\M, whence, by (Hg ), we get

f($0+-‘~') - f(%)*‘f(-"?)’

f (foz*'y) " f(Io)E'f(y),
f (%) & f(-l')-;f(y)'

Subtracting from the last equality the first and the second one we obtain

(5591 (52) -1 (252) -

i.e. we have

1 (50) - (252) -1 (252) -

for (z,y) € (T x T)\ M,
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whence substituting z 4+ z, instead of z and y + z, instead of y we get

@) (T wn)=f(5+m)+f (S +m) - fGao)
for (2,y) € [(T = 20) X (T — z0)]\[Mo + (=20, o).

Put

(24) gl2) =21 (g - xo) —2f(zq) forz € T — xo.

: : y T
Since T is J-convex and =g € T, so, if ¢ € T — z3, then — + o =

2
s Jask € T. This proves that the definition of ¢ is correct. (23) and

(24) imply directly that

9(z+y) = g(z) +9(y)
for (z,y) € [(T — o) x (T — 20)]\[Mo + (=20, —20)]-

Clearly My + (—z9,—2¢) € Z). To be able to apply Theorem 1 we
must check yet that T — z, satisfies (H3). Consider an z € T — z¢. Then

:1:+:c0ETandhence§+a:0=:H_w2&ET,i.e. geT——mo.Thus

we have proved that %(T —x9) C T — z¢. Since zy € T,, we have

Xc |J 2T - ).
neENy

Now consider the set

T3:={22€T—2¢:(T—20)N(T—29—2)N(T — 29 — 22) € T}.

If 2z € T — z, then (zo,2) € Ty, i.e. z € Ty[xzo). Thus 373 C Ty[zo). But
zo € U(T)), hence T [zo] € Z. This implies that T3 € Z. Now we may apply

Theorem 1 (taking $ = X). By this theorem there exist a homomorphism
h:X — Y and a set K € T such that

(25) g(z) = h(z) for z € (T — zp)\K.

Relations (24) and (25) yield

(26) f (% + a:g) = %h(x) + f(zo) for z € (T — 2o )\K.
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We prove that

f (g +a:o) _f(= +I02)+f(xo)
for z € (T — zo)\(M|[zo] — o).

(27)

Consider an z € (T —xo)\(M|[zo] —2¢). Then zo+z € T and (zq, zo+z) ¢
M. By (Hg') we have

Jr(_:;_+I0) =f(~'l?o+l‘o+93) . f(xo)+12’(1'o+1').

2
Thus (27) is proven. We obtain from (26) and (27) that
f(z + 20) = h(z) + f(z0) for z € (T — zo)\(K U (M[zq] — 20))-
Replacing z + zo by z we get
f(z) = h(z) + f(zo) — h(zo) for z € T\((K + z0) U M[zy)).

Obviously (K +zo)U M|z,] € Z. Hence (22) is valid. One can easily prove
uniqueness of h. Then uniqueness of ¢ follows immediately from (22). This
completes the proof.

The assumptions of Theorem 3 can be weakened. It concerns hypoth-
esis (H3» ). Namely, instead of J—convexity of T we may assume Z-(a.e)
J —convexity of T and in the definition of T3 the inclusion

Xc | 2nT-2)
n€ENy

may be replaced by the relation

Xc | 2"T-2) I- (ae)
nEN,

For further considerations we need some auxiliary lemma. Denote by
p n—dimensional Lebesgue measure.

Lemma 4. Let T C R™ be a convex set such that int T # (. Then
p(clT\int T') = 0.

PROOF. Consider an ¢ € int T and put forn € N : K, :== {z € R" :
|z — zo]| £ n}, Sn:={z € R": ||z — z¢|| = n}. The set cl T is convex (cf.
[4] p. 133), hence the set K,N ¢l T is convex and bounded. Furthermore
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int (K,N ¢l T) # 0. Therefore K,N ¢l T is measurable in Jordan sense (cf.
(1] or [5]) and hence u[(K,Ncl T)\int(K,NclT)] =0.Butintcl T =int T
(cf. [4], p. 133), soint (K,Ncl T) = int K, NintclT = int K, Nint T
Thus

(28) u[(Kp N el T)\(int K, Nint T)] = 0.
We have

cdT\int T = (D Kn) N(cl T\intT) =
U (KnN cdT)\(KpNintT) C
fj (Ko N cl T)\(int K, Nint T)|U S, }.

By (28) u{[(K» N clT)\(int K, Nint T)]US,} =0, so u (cl T\int T') = 0.

Denote by I a o p.l.i. ideal of subsets of R" of n-dimensional mea-
sure zero. From Theorem 3 and Lemma 4 we obtain the following

Corollary 1. Let T C R" be a J —convex set such that int T # () and
let f : T — R™ satisfy the equation

f (%“—y) = ﬂﬂ-}-f(—y) QI") - (ace)in T x T.

Then there exists a unique homomorphism h : R® — R™ and an unique
constant ¢ € R™ such that

f(z)=h(z)+c I} — (a.e)inT.

PROOF. To be able to apply Theorem 3 we verify that Ty € Q(ZI})
and T; € I7. Put U(Ty) := T\intT. By Lemma 4 u(T\intT) = 0 i.e.
T\int T € I?. Let us fix an € int T, consider a y € %(T — z) and suppose

that

T—z)N(T-z—-y)N(T—-z-2y) e I.
Then
(29) int(T —z)Nint (T —z —y)Nint (T —z — 2y) = 0.

Since x € intT and z + 2yint T, we have by Lemma 5.1.8 of [4]

T+y= %x+%(.r+2y)€intT,
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whence
OeintT —z—y=int(T —z —y).

Obviously 0 € int (T — z). Therefore, in view of (29), 0 € int (T — z — 2y)
ie. y & 3int (T — z), and hence

y € (%(T - :c)) \ (%(intT - .7:)) = %(T\intT) = %z.

Thus
Ty[z] %(T\intT) 3 %:1: €1,

which proves that T; € Q(Z7).
Consider now an zg € int T. Then 0 € int (T — () and hence
R*"C U 28T - zp). So® # intT C T, and consequently T, ¢ I7.
n€ENp
Applying Theorem 3 we get the conclusion.

Following [4] denote by I} a o p.Li. ideal of subsets of R" of the first

category. It is easy to notice that if T' C R" is convex and int T # 0, then
T\int T € I}. Actually, by Lemma 4, we have for sucha T

int [c] (T'\int T')] C int (cl T\int T') = 0,

ie. T\intT € I}.
The topological analogue of Corollary 1 reads as follows

Corollary 2. Let T C R" be a convex set such that int T # @ and let
f: T — R™ satisfy the equation

f(“;y) = f("");“f(-") QI}) - (ae) in T x T.

Then there exist a unique homomorphism h : R* — R™ and a unique
constant ¢ € R™ such that

f(z)=h(z)+c I¢ —(a.e) in T.

PROOF. The proof is analogous to the proof of Corollary 1 (it is only
necessary to replace I by I7).
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4. Remarks and examples

We are going to show that Theorem 1 generalizes (in abelian case)
algebraic part of Proposition 2 of [2], VII §2,2. Let (X,+) = (R",+) and

P= {b+zu.-a,-:—15u,-51, i=1:. ,n},
i=1

where b € R" and a,,...,a, € R" are linearly independent (i.e. P is
a parallelepiped with the centre at b spanned on a;,...,a,). We assume

that 0 € P. It is easy to observe that then P C P. Let S := |J 2"P.

n€Ny
Clearly S is a subsemigroup of X and S generates X. Since 0 € P there
exist —1 <ul <1, i =1,...,n such that

n
b=— Zu?a;.
i=1

Now suppose that 2z € P i.e. 2z is of the form

n
(30) 2r:b+2u}a,—, -1<ul <l for i=1,...,n.

1=1

Then by simple computation, we obtain
PNn(P-z)N(P-2z)=
n
(31) ={b+Zu;a;:max(—l,—1+u?—u})$u.»5
=1

<min(l,14uf -u}), i=1,... ,n)}.

Let T be the trivial ideal consisting only of empty set. Then also
Q(T) = {0}. Suppose that PN(P —z)N(P-2z)e I,ie. PN(P —2z)N
(P — 2z) = (. Then there exists an 79 € 1,... ,n such that

max (—1,-1+u{, —uj ) > min (1,14 u) —u} ).

If u) —uj >0, then we get from the last inequality

—1+u',-]_ —u}. >1,
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whence
-1<u], < -2+u] <-1,
which is impossible. Similarly, if uf, — u} <0, then

-1>1+4u) —uj,

whence
1<2+4u) <uj, <1,

which again is impossible. Thus P, = 0 i.e. P, € T and hence (H,),(H:)
and (H3) are valid. Furthermore (Hy4) and (Hg ) can be rewritten as follows

f:P=Y, f(z+y)=f(x)+f(y) for z,y,z+y€P.

Ezample 1. Let (X,+), P, S have the meaning specified above and
let 7 = I7 be the o p.l.i. ideal of subsets of n-dimensional measure zero.

Suppose that for given element of form (30) PN(P—-z)N(P-2z) € 1.
Then int (PN (P —z) N (P — 2z)) = 0, and hence, by (31), there exists
i, € {1,... ,n} such that

max (—1,-1+u) —u} ) >min(1,1+u] —u}).

This inequality implies that u = —1 or u! =1, which means that

L)

n
2z € A;, :={bta;, + ) uig;, -1<u; Slfori=1,...,n, i#i,

s=1

i#io

Thus we have proved that P, C |J A;,. But obviously A;, € Z, hence
1o=1

P, € I. This means that (H;),(H;) and (H;) hold.

Ezample 2. Let (X,+)=(R",+), S=R", T be a p.li. ideal in R"
and let P C R" be an open non-empty set such that 0 € P and %P c P

Obviously |J 2"P = R". Consider an element 2z € P and suppose that
n€Ng

PN(P-z)N(P—-2z) € I. Then 0 € PN(P —z) N (P — 2z). But

PN (P —z)N(P - 2z) is open. This contradicts to the fact that a o p.li.

ideal in R" does not, contain an open non-empty set. So P; = ). We have

shown that (H;),(H;) and (H3) are satisfied.
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Ezample 3. Let (X,+) = (R,+), P = (-1,1) U (4,6), S = (1,00)
and let 7 be the o p.Li. ideal of subsets of R of measure zero. Then

1 y
P05l Fasl=g, 5l eeill oty
and, of course, hypotheses (H, ), (H:) and (Hj/) are satisfied.

We show now that Theorem 3 generalizes Theorem 13.2.1 of [4]. It is
sufficient to prove that, in the case where (X,+) = (R",+), T = {0}, if T
is a convex subset of X and int T # 0, then T} = @ and T, # 0. So fix an
z € T and consider a y € %(T-—:::). Then0 €T -2z, 0€e T -z -2
and 0 e T —z —y (sincez+y = %:c+-%(:c+2y) € T). Thus (T — z)N
(T—z—-y)N(T—2—-2y) # 0i.e. T} = 0. Further, there exists an zy € int T
Then 0 € int (T — zy) and hence R" C |J 2"(T — z), which means that

n€Ny
T, # 0.
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