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Normal locally conformal almost cosymplectic manifolds

By ZBIGNIEW OLSZAK (Wroclaw) and RADU ROSCA’ (Paris)

Summary. By an f-Kenmotsu manifold we mean an almost contact metric mani-
fold which is normal and locally conformal almost cosymplectic. The local structure of
such manifolds is described explicitly, and a geometric interpretation is given. Next,
after deriving auxiliary curvature properties, we study f-Kenmotsu manifolds being
C(A)-manifolds (in particular, of constant curvature) or locally symmetric or Ricci-
symmetric.

81. Preliminary definitions

Let M be an almost contact metric manifold, i.e. M is a connected
(2n + 1)-dimensional differentiable manifold endowed with an almost con-
tact metric structure (¢, £, 1, g) (cf.[4]). As usually, denote by @ the second
fundamental form of M, ®(X,Y) = g(¢X,Y), X,Y € X(M). X(M) is
the Lie algebra of differentiable vector fields on M.

For futher use, we recall the following definitions (cf. [14], [6], or [4]).
The manifold M (and its structure (¢,£,n,g)) is said to be:

1) normal if the almost complex structure defined on the product
manifold M x R is integrable (equivalently, [¢, @] + 2dn @ € = 0),

2) almost cosymplectic if dp = 0 and d® = 0,

3) cosymplectic if it is normal and almost cosymplectic (equivalently,
Ve = 0, V being the covariant differentiation with respect to the Levi-
Civita connection).

We also need the following definition (cf. [10], [15]): The manifold
M is called locally conformal, l.c. in short, cosymplectic (resp., almost
cosymplectic) if M has an open covering {U,} endowed with differentiable
functions o; : Uy — R such that over each U; the almost contact metric
structure (¢, &, M1, g¢) defined by

(1.1) pe=¢p, & =e%¢, nf:e-g"?s ge=e ‘g,

is cosymplectic (resp., almost cosymplectic).
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An almost contact metric manifold M is l.c. almost cosymplectic if
and only if there exists a 1-form w on M such that dw =0, dnp = w A7,
d® = 2w A ®. If the form w verifying the above conditions exists, then it
is unique. So, this is a characteristic form of a l.c. almost cosymplectic
manifold. On such a manifold the form w is given locally by w|U; = do,

(ef. (11))

§2. f-Kenmotsu manifolds

In [10] one of the present authors has proved the following theorem:

Theorem 2.1. For an almost contact metric manifold M, the follo-
wing conditions are mutually equivalent:

a) the manifold is normal l.c. almost cosymplectic,

b) the manifold is l.c. cosymplectic with the characteristic form w =
fn, f being a function on M,

c) the covariant derivative of the tensor field ¢ is of the form

(2.1) (Vxe)Y = f{g(¢X,Y)E —n(Y)pX}

for X,Y € X(M), where f is a function on M such that df An = 0.

The class of normal l.c. almost cosymplectic manifolds contains the
all a-Kenmotsu manifolds, for which the characterizing analytic condition
is just (2.1) with f = a = const # 0 (cf. [7]). A 1-Kenmotsu manifold
is Kenmotsu ([7],[8]). Considering this and simplifying the terminology a
normal l.c. almost cosymplectic manifold, i.e. an almost contact metric
manifold fulfilling the condition (2.1) with a function f such that df An = 0,
will be called an f-Kenmotsu manifold.

Note that for an f-Kenmotsu manifold, from (2.1) it follows that

(2.2) Vx€ = f{X —n(X)¢}.

Here and in the sequel X Y, Z,... denote arbitrary differentiable vector
fields on the manifold unless otherwise stated.

The condition df A n = 0, occurring in (2.1) and (2.2), follows in
fact from (2.1) if dim M > 5. This does not hold in general if dim M =
3. Indeed, by (2.1) and (2.2) we have dp = 0 and d® = 2fn A ®, and
consequently 0 = d*® = 2df A n A ®, which gives the assertion. As a
consequence of df An = 0, we get df = f'n and X(f) = f'n(X), where
f' = &(f). Wealsohave df' = f"nand X(f') = f"n(X), where f" = £(f").

Now consider the following
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Ezample. Let R be the real line with coordinate s. Fix a function
o on R, and consider the Riemannian metric e 2°ds @ ds on R. Let N
be a Kahler manifold, J its almost complex structure and G its Kiihler

metric. Define a cosymplectic structure (t,é, £, 1, §) on R x N by 2 3s = 0,

@X = JX if X is a vector tangent to N, £ = e” a.* 7 = e ?ds and let § be

the product of the Riemannian metrics e~2°ds @ ds and G. Now, consider
the conformal deformation of the structure (¢,£,7,g) given by

p=¢, E=€e7E n=e%j, g=¢€"3.
The structure (p,&,7,9) is (globally) conformal cosymplectic, its charac-
teristic form w = do has the property w = fn, where f = o', and it can
be written in the following matrix form:

28 =l a=(E), e, = [T )

So, (v,§,n, ) is an f-Kenmotsu structure on R x N. Clearly, if the func-
tion o occurring in the above is a periodic function, then the structure
(¢,€,1m,9) can be projected on S' x N.

Our next results characterizes locally an f-Kenmotsu manifold.

Proposition 2.2. Let M be an f-Kenmotsu manifold. Then an arbi-
trary point of M has a neighborhood U = (a,b) x V, where (a,b) is an
open interval, V is a Kahler manifold and the structure (@, €,n,g) is given
on U as in (2.3), s being the coordinate on (a,b), o a function on (a,b)
and (J,G) the Kahler structure on V.

PRroOF. This follows indeed from the following two facts: a) M is
l.c. cosymplectic with the characteristic form w(= doy) = fn, and b) a
cosymplectic manifold is locally a product of an open interval and a Kahler

manifold. Q.E.D.

The following theorem provides a geometric interpretation of an f-
Kenmotsu structure.

Theorem 2.3. Let M be an almost contact metric manifold. Then
M is f-Kenmotsu if and only if it satisfies the conditions:

a) any integral curve of the vector field £ is a geodesic, and the tensor
field ¢ is invariant by any local 1-parameter group of local transformations
generated by £ (analytically, V¢ = 0 and Le¢p = 0, where L is the Lie
derivative),

b) the distribution D = ker is integrable, and any leaf of the foliation
F corresponding to the distribution D is a totally umbilical hypersurface
with constant mean curvature,

¢) the almost Hermitian structure (J,G), induced on an arbitrary leaf

MeFbyJX =¢X,GX,Y)=g(X,Y), X,Y € X(M), is Kéhler.

PROOF. Assume that M is an almost contact metric manifold, for
which the conditions a)-c) hold. We shall show that the identity (2.1)
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is fulfilled on M. Indeed note that § is unit and orthogonal to any leaf
M € F. Thus, the shape operator A of M is given by AX = -V ¢,
XeXx (M ). Since a leaf is totally umbilical and its mean curvature is
constant, we get Vi€ = )\MJI' for X € X(M), where Ay is a constant
depending, maybe, on the choice of the leaf. Hence and from V¢ = 0
we see that the relation (2.2) holds on M, if f : M — R is defined by
f(p) == Ay, forp e M. From this definition it is clear that df A n = 0.

Now, using VJ = 0 and the Gauss equation
V¥ =ViY - 2,G(X,Y),

V being the covariant differentiation with respect to the Levi-Civita con-
nection on M, we obtain

(Vi)Y = Apg(pX,Y)E

for X,Y € X(M). Consequently, we see that (2.1) is satisfied for X,Y €
AM)fX LEY LE ForY =€ (2.1) follows from (2.2). Finally,
applying (2.2) and L¢p = 0, we derive

(Vep)V = VeV — V¥ = [£,0Y] - ¢l6,Y] = (Lep)Y =0,

i.e. (2.1) for X = €. Thus, (2.1) holds for any X,Y € X' (M).
The converse statement follows by applying Proposition 2.2. Q.E.D.

Remarks. 1. In [11] one of the present authors has proved that a
3-dimensional almost contact metric manifold satisfies the identity

(Vxe)Y = g(¢Vx€,Y)E —n(Y)eVxE.

Therefore, for such a manifold, the relations (2.1) and (2.2) are equivalent.

2. The Riemannian manifold appearing in the Example is locally a
warped product space in the sense of BISHOP and O’NEILL [3], or a semi-
reducible space in the sense of KRUCKOVIC [9].

3. The terminology used in the present paper is the same as in the
paper [10]. It should be added that structures defined by certain stronger
conditions than (2.1) (but under another name) were studied in [13].

4. Recently, almost contact metric manifolds whose structure ten-
sors satisfy the condition (2.1) have been treated in relation with contact
conformal transformations by ALEXIEV and GANCHEV [1], [2]. These man-
ifolds are trans-Sasakian in the sense of OUBINA [5], [12].
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§3. Three auxiliary propositions

In this section we collect the main curvature identities fulfilled by an
arbitrary normal l.c. almost cosymplectic manifold. For such a manifold,
let R denote the usual curvature operator by R(X,Y) := [Vx,Vy] -
Vix,y], and let X AY be the linear operator defined by (X AY)Z =

(Y, 2)X - ¢(X, 2)Y.

Proposition 3.1. The curvature operator of an f-Kenmotsu manifold
satisfies the relations

(3.1) R(X,Y) =—(f2+ f')NX AY)E,
(3.2) R(¢X,pY)-R(X,Y)=—f{(pX)A(¢Y) - X AY}+
+H{(X)EAY) +n(Y)(X A £}

PROOF. (3.1) follows, by direct calculations, from (2.2). To prove
(3.2) note that we have in general

¢R(Z,W)pX + R(Z,W)X = o(ViweX — oViw X)—
—o(Vivz90X — oViyzX) — 9(R(Z, W), X)E,

where szw = VzVw = Vy,w is the second covariant derivative. On the
other hand, rewriting (2.1) in the form

VweX — oVwX = fg(eW, X)§ — fn(X)eW,
differentiating this covariantly and using again (2.1) and (2.2), we find
VoweX —oViwX = —f(VwX)pZ — fo(VzX)pW+
(3.4) + (X ){n(2)pW +0(W)pZ} — f{g(W,0X)Z+
+9(Z, X)W} = f'o(X)n(Z)eW + (- )E,

where ( - ) denotes an expression depending on Z, W, X but playing no role
whatever in what follows. In virtue of (3.4) and (3.1), the equality (3.3)
takes the form

¢R(Z,W)pX + R(Z,W)X = - f{g(eX,W)pZ — g(¢ X, Z)pW+
(3.5)  +9(X,W)Z — g(X,Z)W} + f'o(X){n(Z)W —n(W)Z}+
+f {n(W)g(X,Z) —n(Z)g(X,W)}E.

(3.3)

Finally, from
9((R(pX,9Y) — R(X,Y))Z,W) = —g(¢R(Z,W)pX + R(Z, W)X,Y),

after using (3.5), we can deduce (3.2). Q.E.D.

Consider the Ricci curvature tensor g given by o(X,Y ) = trace {Z —
R(Z,X)Y'}, and the Ricci operator g defined by ¢(4X,Y) = o(X,Y).
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Proposition 3.2. The Ricci operator § of an f-Kenmotsu manifold
satisfies the identities

(3.6) o€ = =2n(f* + f')E,
(3.7) pog=pop.

PROOF. (3.6) easily follows from (3.1). To prove (3.7) we introduce
the auxiliary (0,2)-tensor p* by

p*'(X,Y) = trace {Z — —pR(Z,X)pY }.
One verifies that we also have

p'(X,Y) = trace{Z — ¢pR(Z,pY)X}.
With the help of the above formulas and (3.1), we find
(3.8) p* (9 X, oY) = p*(Y, X).

On the other hand, the following expression of the tensor p* is a conse-
quence of (3.5)

pr=eo+{Cn -1+ flg+{2n-1)f' + P Inen.
Using this in (3.8) we get
o(X,9Y) = o(X,Y) + 2n(f* + f'I(X)n(Y),
whence the relation (3.7) follows. Q.E.D.

Proposition 3.3. The curvature operator R and the Ricci operator p
of a 3-dimensional f-Kenmotsu manifold are given by

(3.9) R(X,Y)= (% +2f2 +2f' )X AY)-

— (5 +3f2 +3f ) (X)EAY) + (Y )X A§)},

(3.10) o= (5 + 1+~ (5+3f +3f M B,

where T = trace g is the scalar curvature.

PROOF. As is known, in any 3-dimensional Riemannian manifold the
curvature operator R(X,Y) can be given by

(3.11) R(X,Y)=(3X)AY + X A(5Y) - %(XAY).

For X 1 £, using (3.1) we find R(¢,X )¢ = (f? + f')X, and using (3.11)
and (3.6) we get R({, X)E = (F +2f% +2f')X — 4X. Comparing the
equalities obtained we see that X = (§ + f2 + f')X for X L €. This and
(3.6) imply (3.10). (3.9) follows from (3.11) in view of (3.10). Q.E.D.
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84. Curvature properties

In this section various curvature conditions on f-Kenmotsu manifolds

are studied.
In [7) JANSSENS and VANHECKE introduced the notion of almost C())-

manifolds, A being a real number. An almost contact metric manifold M
is said to be an almost C(A)-manifold if its Riemann curvature tensor has
the following property

(4.1) R(eX,9Y) = R(X,Y) + M(pX) A (¢Y) - X AY}.

A normal almost C(A)-manifold is called a C(A)-manifold. It is known
that an a-Kenmotsu manifold is a C(—a?)-manifold and a cosymplectic
manifold is a C'(0)-manifold. JANSSENS and VANHECKE (7] proved a theo-
rem concerning an orthogonal decomposition of the space of the curvature
tensors satisfying the condition (4.1), into irreducible components with re-
spect to the action of the group U(n) x 1. One of the components contains
so-called Bochner curvature tensors.

Theorem 4.1. Let M be an f-Kenmotsu manifold and A a real num-

ber. Then we have:
a) If dim M = 3, then M is a C()\)-manifold if and only if the function

f satisfies the equation f? + f' = —\.

b) If dimM > 5 and M is additionally a C(\)-manifold, then M is
a-Kenmotsu and A = —a? (a = const # 0), or M is cosymplectic and
A=1.

PROOF. a) Let (Ey = €, Ey, E; = ¢E,) be an orthonormal ¢-basis.
Then (4.1) is satisfied trivially and independently of A for X = E; and
Y = E,;. In view of (3.1), the condition (4.1) holds for X = £ and an
arbitrary Y if and only if f2+ f' = —)\. b) Comparing (3.2) vith (4. 1) and
taking dim M > 5 into account, we get the assertion. Q.E.D.

The following corollary is an immediate consequence of Theorem 4.1
and Proposition 3.3.

Corollary 4.2. Let M be an f-Kenmotsu manifold and K a real num-

ber. Then we have:
a) If dmM = 3, then M is of constant curvature K if and only

if the function f and the scalar curvature v of M fulfil the equations
K=%=~(f+)

b) Ifdim M > 5 and M is moreover of constant curvature K, then M
is a-Kenmotsu and K = —a?, or M is cosymplectic and flat.

Theorem 4.3. Let M be an f-Kenmotsu manifold. If M is locally
symmetric and non-cosymplectic, then it is of constant curvature.

PROOF. Differentiating (3.1) covariantly and using the relations
VR =0, (2.2) and (3.1), we have

(42) fR(X,Y)Z = —&(f* + f'MZ)X AY)E = f(f* + f)UX AY)Z.
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Putting Z = £ into (4.2) and applying (3.1) we find £&(f%2 + f') = 0.
Consequently, using also Schur’s theorem, we deduce from (4.2) that the
Riemannian metric g is of constant curvature on the open and non-empty
subset of M, on which f # 0. By the parallelity of R, the metric is of
constant curvature on the whole of M. Q.E.D.

Theorem 4.4. Let M be an f-Kenmotsu manifold. If M is Ricci-
symmetric (i.e. Vp =0 ) and non-cosymplectic, then it is Einstein.

PROOF. The scheme of this proof is the same as that of Theorem 4.3.
But instead of the formula (3.1) one needs (3.6). Q.E.D.
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