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On an application of the Zincenko method to the
approximation of implicit functions

By IOANNIS K. ARGYROS (Lawton)

Abstract. Abstract We use the Zincenko iteration to approximate implicit func-
tions in Banach spaces. The nonlinear equations involved contain a nondifferentiable
term. Our hypotheses are more general than Zabrejko-Nguen’s [10], in this case.

I. Introduction

Let E,∧ be Banach spaces and denote by U(x0, R) the closed ball
with center x0 ∈ E and of radius R in E. We will use the same symbol for
the norm ‖ ‖ in both spaces. Suppose that the nonlinear operators F (x, λ)
and G(x, λ) with values in E defined for x ∈ U(x0, R) and λ ∈ U(λ0, S)
are such that F is Frechet differentiable there, F ′(x0, λ0)−1 exists and

‖ F ′(x0, λ0)−1(F ′(x, λ)− F ′(y, λ)) ‖≤ K1(r, s) ‖ x− y ‖ ,(1)

‖ F ′(x0, λ0)−1(F ′(x0, λ)− F ′(x0, λ0)) ‖≤ K2(s) ‖ λ− λ0 ‖ ,(2)

‖ F ′(x0, λ0)−1(G(x, λ)−G(y, λ)) ‖≤ K3(r, s) ‖ x− y ‖ ,(3)

for all x, y ∈ U(x0, r) ⊂ U(x0, R) and λ ∈ U(λ0, s) ⊂ U(λ0, s). Here
K1,K2, and K3 denote non–decreasing functions on the intervals
[0, R]× [0, S], [0, R] and [0, R]× [0, S] respectively.

We use the Zincenko interation [11]

(4) xn+1(λ) = xn(λ)− F ′(xn(λ), λ)−1(F (xn(λ), λ) + G(xn(λ), λ)), n ≥ 0

to approximate a solution x?(λ) of the equation

(5) F (x, λ) + G(x, λ) = 0.
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By x0 we mean x0(λ). That is x0 depends on the λ used in (4).
Our assumptions (1)–(3) generalize the ones made by Zabrejko–

Nguen [10], Yamamoto [9] and Potra–Ptǎk (in [6] (for G = 0)).
Moreover, several authors have treated the case when G = 0 provided that
K1 and K2 are constants (or not)[1], [2], [4], [5], [6].

We provide sufficient conditions for the convergence of iteration (4)
to a locally unique solution x?(λ) of equation (5) as well as several error
bounds on the distances ‖ xn+1(λ)− xn(λ) ‖ and ‖ xn(λ)− x?(λ) ‖.

We need to define the functions

as = K(s) ‖ F ′(x0, λ0)−1(F (x0, λ) + G(x0, λ)) ‖, (s = 0 if λ = λ0),

ws(r) =
∫ r

0

K1(t, s)dt, K4(s) =
∫ s

0

K2(t)dt, k(s) = (1−K4(s))−1

provided that

K4(S) < 1, ϕs(r) = as + K(s)
∫ r

0

ws(t)dt− r,

ψs(r) = K(s)
∫ r

0

K3(t, s)dt, χs(r) = ϕs(r) + ϕs(r),

and the iteration

(6)
yn+1(λ) = yn(λ)− F ′(x0, λ0)−1(F (yn(λ), λ) + G(yn(λ), λ)),
y0 = x0, n ≥ 0.

II. Convergence results

We can now formulate the following result:

Theorem 1. Suppose that the function χs(r) has a unique zero ρ? =
ρ?

s in [0, R], and χs(R) ≤ 0. Then

(a) equation (5) has a unique solution x?(λ) ∈ U(x0, R) with x?(λ) ∈
U(x0, ρ

?);
(b) the following estimates are true

‖ yn+1(λ)− yn(λ) ‖≤ vn+1 − vn(7)

and

‖ yn(λ)− x?(λ) ‖≤ ρ? − vn(8)
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where the scalar sequence {vn}, n ≥ 0 is monotonically increasing
and convergent to ρ? with

(9)
vn+1 = ds(vn), n ≥ 0, v0 = 0

ds(r) = r + χs(r).

Proof. It is simple calculus to show that the sequence {vn}, n ≥ 0 is
monotonically increasing and convergent to ρ? (see also, [10, v. 675]). We
will show using induction on n that the estimate (7) is true, from which
(8) will follow immediately.

From (6) for n = 0 we get

‖ y1(λ)−y0 ‖=‖ F ′(x0, λ0)−1(F (x0, λ)+G(x0, λ)) ‖≤ as = ds(0) = v1−v0.

That is, the estimate (7) is true for n = 0. Let us assume that (7) is true
for n < k. Then by (6), (1), (3), [10, p. 674] and the induction hypothesis
we get

‖ yk+1(λ)− yk(λ) ‖ ≤ ‖ yk(λ)− yk−1(λ)− F ′(x0, λ0)−1(F (yk(λ), λ)−
− F (yk−1(λ), λ)) ‖ + ‖ F ′(x0, λ0)−1(G(yk(λ), λ)−G(yk−1(λ), λ)) ‖≤

≤
∫ 1

0

‖ F ′(x0, λ0)−1(F ′((1− t)yk−1(λ) + tyk(λ))− F ′(x0, λ0)) ‖ ·

· ‖yk(λ)− yk−1(λ)‖dt + ‖F ′(x0, λ0)−1(G(yk(λ), λ)−G(yk−1(λ), λ))‖ ≤

≤
∫ 1

0

ws((1− t)vk−1 + tvk)(vk − vk−1)dt +
∫ vk

vk−1

K3(t, s)dt ≤

≤K(s)

[∫ vk

vk−1

ws(t)dt +
∫ vk

vk−1

K3(t, s)dt

]
=

= ds(vk)− ds(vk−1) = vk+1 − vk.

That is, the estimate (7) is true for n = k. Hence the sequence {yn(λ)} is
a Cauchy sequence in a Banach spacee and as such it converges to some
x?(λ) ∈ U(x0, ρ

?) ⊂ U(x0, R). By letting n → ∞ in (6) we deduce that
x?(λ) is a solution of equation (5). We will show that x?(λ) is the unique
solution of equation (5) in U(x0, R), by considering the sequences

(10)
zn+1(λ) = zn(λ)− F ′(x0, λ0)−1(F (zn(λ), λ) + G(zn(λ), λ)),

z0 ∈ U(x0, R), n ≥ 0

and

(11) wn+1 = ds(wn), n ≥ 0, w0 = R.
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It is enough to show

(12) ‖ yn(λ)− zn(λ) ‖ ≤ wn − vn, n ≥ 0.

It is simple calculus to show that the scalar sequence given by (11) is
monotonically convergent to ρ?. Hence, if for z0 we choose the second
solution y?(λ) ∈ U(x0, r) of equation (5) then by (12)

‖ x?(λ)− y?(λ) ‖≤ wn − vn.

That is, x?(λ) = y?(λ).
For n = 0, (12) becomes ‖ y − z0 ‖ ≤ R − 0 = R. Hence, (12) is true

for n = 0. Let us assume that (12) holds for n ≤ k then by (6), (10) as
before we get

‖ yk+1(λ)− zk+1(λ) ‖ ≤ ‖ zk(λ)− yk(λ)− F ′(x0, λ0)−1(F (zk(λ), λ)−
− F (yk(λ), λ)) ‖ + ‖ F ′(x0, λ0)−1(G(zk(λ), λ)−G(yk(λ), λ)) ‖≤

≤
∫ 1

0

‖ F ′(x0, λ0)−1(F ′((1− t)yk(λ) + tzk(λ))− F ′(x0, λ0)) ‖ ·

· ‖ zk(λ)− yk(λ) ‖ dt +
∫ wk

vk

K3(t, s)dt ≤
∫ 1

0

ws((1− t)vk + twk)

(wk − vk)dt +
∫ wk

vk

K3(t, s)dt ≤ K(s)
[∫ wk

vk

ws(t)dt +

+
∫ wk

vk

K3(t, s)dt

]
= ds(wk)− ds(vk) = wk+1 − vk+1.

That completes the proof of the theorem.

We can now formulate the main result:

Theorem 2. Suppose that the hypotheses of Theorem 1 are true.
Then

(a) the sequence {ρn}, n ≥ 0 given by

ρn+1 = ρn + us(ρn), n ≥ 0, ρ0 = 0 with us(r) = −χs(r)
ϕ′s(r)

is monotonically increasing and converges to ρ?.
(b) The iterates generated by (4) are well defined for all n ≥ 0 and

remain in U(x0, ρ
?).

(c) Moreover the following estimates are true

(13) ‖ xn+1(λ)− xn(λ) ‖ ≤ ρn+1 − ρn , n ≥ 0
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and

(14) ‖ xn(λ)− x?(λ) ‖ ≤ ρ? − ρn , n ≥ 0.

Proof. Part (a) can be shown exactly as in Proposition 3 in [10, p.
677]. We will only show (13), since (14) will follow then from it immedi-
ately. For n = 0 we get ‖ x1(λ)−x0 ‖ ≤ as = ρ1−ρ0. That is, (13) is true
for n = 0. Let us assume that (13) is true for n < k. By the induction
hypothesis

‖ xk(λ)− x0 ‖ ≤
k∑

j=1

‖ xj(λ)− xj(λ) ‖ ≤
k∑

j=1

(ρj − ρj−1) = ρk,

the Banach lemma on invertible operators, (2) and the estimate

‖ F ′(x0,λ0)−1(F ′(xk(λ), λ)− F ′(x0, λ0)) ‖≤
≤ K(s)ws(ρk) < K(s)ws(ρ?) = ρ′s(ρ

?) + 1 ≤ 1,

it follows that F ′(x, λ) is invertible for all λ ∈ U(λ0, S), x ∈ U(x0, R) and

‖ F ′(xk(λ), λ)−1F ′(x0, λ0) ‖≤
≤ ‖ [I + F ′(x0, λ)−1(F ′(x, λ)− F ′(x0, λ0)))]−1 ‖ ·

· ‖ F ′(x0, λ)−1F ′(x0, λ0) ‖≤ − K(s)
ϕ′s(ρk)

.

Then by (4), (1)–(3), (15) and the induction hypothesis we get

‖ xk+1(λ)− xk(λ) ‖=‖ F ′(xk(λ), λ)−1(F (xk(λ), λ) + G(xk(λ), λ)) ‖=
= ‖ F ′(xk(λ), λ)−1(F (xk(λ), λ)− F (xk−1(λ), λ)− F ′(xk−1(λ), λ)(xk(λ)−
− xk−1(λ) + G(xk(λ), λ)−G(xk−1(λ), λ))) ‖≤

≤F ′(xk(λ), λ)−1F ′(x0, λ0) ‖
[∫ 1

0

‖ F ′(x0, λ0)−1(F ′((1− t)xk−1(λ) +

+ txk(λ))− F ′(xk−1(λ)) ‖ · ‖ xk(λ)− xk−1(λ) ‖ dt+

+ ‖ F ′(x0, λ0)−1(G(xk(λ), λ))−G(xk−1(λ)λ)) ‖] ≤

≤ − K(s)
ϕ′s(ρk)

∫ 1

0

(ws((1− t)ρk−1 + tρk)− ws(ρk−1))(ρk − ρk−1)dt−

− 1
ϕ′s(ρk)

(ψs(ρk)− ψs(ρk−1)) ≤
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≤ − ϕs(ρk)− ϕs(ρk−1)− ϕ′s(ρk−1)(ρk − ρk−1) + ψs(ρk−1)− ψs(ρk−1)
ϕ′s(ρk)

=

= ρk+1 − ρk.

Hence (13) is true for n = k. That completes the proof of the theorem.

We will now derive some a posteriori error bounds for iteration (4).
Let rn,s = rn =‖ xn(λ)− x0 ‖,

qn,s(r) = qn(r) = K1(rn + r, s), fn,s(r) = fn(r) = K3(rn + r, s)

for r ∈ [0, R− rn] and set

an,s = an =‖ xn+1(λ)− xn(λ) ‖, bn,s = bn = K(s)(1−K(s)ws(rn))−1.

Without loss of generality we assume than an > 0.
Then exactly as in Theorem 2 in [9, p. 989] we can show

Theorem 3. Suppose that the hypotheses of Theorem 1 are satisfied.
Then

(a) the equation

r = an + bn

∫ r

0

(r − t)qn(t) + fn(t)]dt

has a unique positive zero ρ?
n,s = ρ?

n in the interval [0, R− rn],
n ≥ 0 and ρ?

0 = ρ?.
(b) The following estimates are true:

(16)

‖ xn(λ)− x?(λ) ‖ ≤ ρ?
n

≤ (ρ? − ρn)an/∆ρn, n ≥ 0,

≤ (ρ? − ρn)an−1/∆ρn−1, n ≥ 1,

≤ ρ? − ρn, n ≥ 0,

where ∆ρn = ρn+1 − ρn.

That is, our bound (16) is sharper then Miel–type bounds [3], [7] and
more general than the corresponding one in [9, p. 989].
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