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Boundedness and stability of solutions of a certain
nonlinear differential equation of the second order

By STEFAN KULCSAR (Kosice)

In this paper we shall discuss the boundedness and stability of solu-
tions of the second order differential equation

(1) a(t)z" +b(t)f(z,z") + g(t,z,z") + (1 + (t))h(t, z)li(z') = e(t, z, '),
which is equivalent to the system

'
z =Y

! 1
W)y = J(ettian) - BOS(,9) = a(t,2,9) = (1 + DAt 2)w))
In the first part of this paper there are introduced some sufficient
conditions for a solution (z(t),y(t)) of the system (1') to be defined and
bounded. Further, in this part there are given some results concerning the
uniform boundedness of solutions and the uniform asymptotic stability of
the trivial solution of the system (1’). These results generalize or complete
some results of [4].

In the second part some necessary conditions are given for a solution
(z(t),y(t)) of the system (1’) to be defined and bounded. Our results of
this part generalize some results of [1].

Definitions and Propositions.

In this paper we shall use the following definitions and propositions
of [2] and [3].
Let ¢(t) = ¢(t;to,z0) denote a solution of the system

(2) <2'=f(t,z), z€Rs tel=|(0,00), f(t,z) € C(Ix Ry)
through zo at t = ¢,.

Definition 1 (see [3]). The solutions of (2) are uniformly bounded if
for any a > 0, there exists f(a) > 0 such that |z¢| < a and t, > 0 imply
|ﬁ.‘?(t;t0,$g)| = ﬁ(a) for t 2 to.
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Proposition 1 (T. YOSHIZAVA [5]). Let there exist continuous func-
tions V(t,z) and Wi(z), i = 1,2 in I x R, such that the following condi-
tions hold:

1. 0 < Wi(z) < V(t,z) < Wy(z), Wi(z) — oo, |z| — o0.
2. ¥ x)—a—1i+a—vf(t z)<0

' R P ey
Then the solutions of (2) are uniformly bounded for t > 0.

Definition 2 (see [2]). A function V(¢,z) is called uniformly small if
there exists a continuous, positive definite function W(z) such that

V(t,z) < W(z)
in I x Ry.

Proposition 2 (see [2]). If there exists a continuous, positive definite
function V(t,z) with a negative semidefinite total derivative with respect
to t, then the trivial solution of (2) is stable (in the sense of Liapunov).

Proposition 3 (see [2]). If there exists a continuous, positive defi-
nite and uniformly small function V(t,xz) with a negatively definite total
derivative with respect to t, then the trivial solution of (2) is uniformly
asymptotically stable.

Let us introduce the following notation:
Rl =(—00,00), R2=R1 XR], D] =I>(R1 and Dg =IXR2.
We assume that for functions in (1) the following holds: a € C'(I),

a(t) #0forteI; be C(I), c€ CI(I), f € C(Ry), he C(Dy), Oh(t, z)

ot
C(Dl), €€ C(Dg), g€ C(Dg) and [ € C(Rl).
Let us define functions H(t,z) in Dy and L(y) in R; in the following
way: .

=

v

H(t,r):/h(t,s)ds, L(y) = I(—i—)ds.
0 0

Further let us introduce the following notation: {u(t)}4+ = max{u(t),0}
and {u(t)}- = max{—u(t),0}. Evidently u(t) = {u(t)}+ — {u(t)} - for any

real function u in R;.

1. The sufficient conditions

In what follows, the following conditions will be required:
(1.1) a(t) >0for t € I;
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2) 1+¢(t)>0forte I,

3) l(y) >0 for y € Ry;

4) L(y) — oo for |y| — oo;

.5) zh(t,z) >0forz #0and t € I;
6) yg(t,z,y) 2 0in Dy;

.7) b(t) 2 0 for every t € I and yf(z,y) > 0 for every z,y € R; or
b(t) <0 for every t € I and yf(z,y) <0 for every =,y € Ry;
(1.8) There exists a positive function p; € C(R,) such that |zp,(z)| <

|h(t,z)| in D, and

r
Pi(z)= /spl(s)ds — 00 for |z| — co.

0

(1
(1
(1
(1
(1
(1

We have
Theorem 1.1. Suppose that the assumptions (1.1)-(1.6), (1.8) and
the following conditions are satisfied:
(1.9) There exists a continuous function g such that

dH(t,z)
ot

(1.10) a(t){p(t)}+ —a'(t) <0 for every t € I;

(1.11) There exists a positive constant ay such that a(t) < a, for every
tel;

(1.12) There exists a positive constant ¢, such that ¢(t) < ¢, for every
tel;

(1.13) ¢'(t) > 0 for every t € I;

(1.14) ye(t,z,y) < yb(t)f(z,y) in D,.

Then all solutions (z(t),y(t)) of (1’) are defined and bounded on I.

PROOF. Let for some T' > 0 a solution (z(t),y(t)) of (1') be defined
on (0,7) and let |z(t)| + |y(t)] — oo for t — T_. Define the function

< @(t)H(t,z) in Dy;

1 1 ;
Vil 2= EH(LI) + i-_-l-_—{‘mL(y) in Dy

and differentiate V() = V(¢,z(¢),y(t)) with respect to t for any solution
of (1’). Then by (1.1)-(1.3), (1.5), (1.6) and (1.9)-(1.14) we get

, a(t){p(t)}+ —a'(t)
Vi(t) < 1 H

(e(t,z,y) — b(t)f(z,y) —g(t,x,y)) <0

(t,z)+

(3) 1 3 y

BT OO0
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for every t € (0,T).

Integrating (3) from 0 to t, ¢t € (0,T) we obtain V(t) < V(0) = Cp < oc.
From (1.1), (1.2) and (1.5) it follows

L(y) <V(t) forevery te (0,T),
and using the above inequality for every t € (0,T) we get
L(y) < C) < 0. (Cy =(14¢)Ch)

The condition (1.4) gives that y(t) is bounded on (0,7, thus z(t) too is
bounded on (0,7T). We have a contradiction. This means that all solutions
(z(t),y(t)) of (1’) are defined on I.

Further we will prove that all solutions (z(t), y(t)) of (1’) are bounded
on I. It is evident that V(t) < Cy < oo for every t € I. Therefore
analogously as above L(y) < C) < o0 and H(t,z) < C; < 00 (C2 = a,C))
for every t € I and z € Ry, too. In the end by (1.4) and (1.8) the solution
(z(t),y(t)) of (1’) is bounded on I. This completes the proof.

Corollary 1.1. Let the hypotheses of Theorem 1.1. hold. Moreover,
suppose that the following condition is satisfied:
(1.15) f(0,0) =0 and e(t,0,0) =0 for every t € I.
Then the trivial solution of (1’) is stable in the sense of Liapunov.

PROOF. From (1.5), (1.6) and (1.15) it follows that (1’) has the trivial
solution. By (1.5), (1.8), (1.11) and (1.12) for the same function V(¢,z,y)
as in the proof of Theorem 1.1. we have

1 1 .
0 < W(z,y) = a—lPl(x) E mL(y) <V(t,z,y) in D,.

This means that the function V(¢,z,y) is positive definite. From (3) it
follows that the function V(t,z,y) is negative semidefinite. Therefore by
Proposition 2 the trivial solution of (1’) is stable. This completes the proof.

If g(t,z,y) = 0 in D,, then the next Theorem gives sufficient condi-
tions for the uniform boundedness of the solutions of (1°).

Theorem 1.2. Let (1.3)-(1.5), (1.7), (1.8) and (1.11)-(1.13) hold.
Moreover, suppose that the following conditions are satisfied:
(1.16) a'(t) <0 forevery t € I;
(1.17) O0H(t,z)

(1.18) There exists a positive constant a such that a(t) > a; for every
tel;

(1.19) There exists a positive constant ¢, such that c(t) > ¢, for every
tel;



Boundedness and stability of solutions ... 61

(1.20) There exists a function p, € C(R;) such that zp;(z) > 0 for
z # 0 and |h(t,z)| < |p2(2z)| in Dy;
(1.21) ye(t,z,y) < 0in D,.
Then the solutions of (1) are uniformly bounded for t > 0.

PROOF. For any solution (z(t),y(t)) of (1') and a positive K; we
define

V(t!zsy) — H(t,:]:) + 1 "T'(f:zt)L(y) + K; in D,.

By (1.3), (1.5), (1.8), (1.11)—(1.12) and (1.18)—(1.20) we get
0 < Wi(z,y) = Pi(z) + li—ﬁqL(y) + K, < V(t,z,y) <

a
< Py(z) + ﬁL(y) + K, = Wy(z,y)

in D, (where Py(z) = [pi(s)ds). From (1.4) and (1.8) it follows that
0

Wi(z,y) — oo for |z| — oo and |y| — co.
Differentiating the function V(t) = V(¢,z(¢),y(t)) with respect to t,
by (1.3), (1.7), (1.13), (1.16)-(1.19) and (1.21) we obtain

. BH(t,z)  a'(t)(1+ (1) - ¢()a(t)
Vs 0+ )

(4)
1 y

- e(t,z,y) — b(t)f(z, <0in D,.
This means that all conditions of Proposition 1 are fulfilled, therefore the
solutions of (1’) are uniformly bounded for ¢ > 0. This completes the
proof.

Corollary 1.2. Let the hypotheses of Theorem 1.2. hold with the
exception of (1.7). Moreover, suppose that the following condition is sat-
isfied:

(1.22) There exists a positive constant by such that b(t) > b, for every
t € I and yf(z,y) > 0 for every z,y € R; or there exists a
negative constant b, such that b(t) < b, for every t € I and
yf(z,y) <0 for every z,y € R;.

Then the trivial solution of (1') is uniformly asymptotically stable.
PROOF. From (1.5), (1.21) and (1.22) it follows that h(t,0) =0,

e(t,z,0) = 0 and f(z,0) =0 for every t € I and z € R;. This means that
(1’) has the trivial solution. For any solution (z(t),y(t)) of (1’) we define

L(y)+

V(t,2,9) = H(t,2) + 3 s LAv) in Da.
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By (1.3), (1.5), (1.8), (1.11), (1.12) and (1.18)-(1.20) we get

as : a,
l(m:y) l(x) 1 ! ¢ (y) — (t,I, y) — 2(:'!:) 14 cs

= Va(z,y) in Dy,

where V;(0,0) = 0 and V;(z,y) > 0 for every (z,y) € R2\{(0,0)} and
¢ = 1,2. This means that the function V(¢,z,y) is positive definite and
by Definition 2 it is uniformly small. Differentiating the function V(t) =
V(t,z(t),y(t)) with respect to t, using (1.3), (1.12), (1.13), (1.17)-(1.19),
(1.21), (1.22) and system (1’) we obtain

L(y) =

. o
I+e U(y)

This means that the function V'(t,z,y) is negative definite, therefore by
Proposition 3 the proof is finished.

If we use the function V(t,z,y) from Corollary 1.2., then the next
Theorem and Corollary can be proved analogously as Theorem 1.1. and
Corollary 1.1., respectively.

Theorem 1.8. Let (1.2)-(1.6), (1.8), (1.13), (1.14), (1.16) and (1.17)
hold. Moreover, suppose that the following conditions are satisfied:

(1.23) There exists a positive constant az such that a(t) — a3 fort — oo;
(1.24) There exists a positive constant c3 such that ¢(t) — c3 fort — oo;

Then all solutions (z(t),y(t)) of (1’) are defined and bounded on I.

Corollary 1.3. Let the hypotheses of Theorem 1.3 and (1.15) be ful-
filled. Then the trivial solution of (1°) is stable in the sense of Liapunov.

V'(t) < f(z,y) = =Wj(z,y) <0 for i =1,2in D;.

The following example is illustrative.

The equation
" — 27322 + 21+ e z(z? + 1)+ &' Vi2 + €2t =

=z'(22% + V? + 22 + 2¢' + 3)

has a solution z(t) = e*. It is easy to verify that all conditions of Theorem
1.3., except (1.14), are satisfied and z(t) = ¢' and z'(¢) = €' are unbounded
on I. This means that the condition (1.14) in Theorem 1.3 is substantial.
Forg(t,z,y) = 0 in D, we have a further boundedness theorem.

Theorem 1.4. Let (1.3)-(1.5), (1.7), (1.8), (1.11), (1.12) and (1.16)-
(1.21) hold. Moreover, suppose that the following condition is satisfied:

(1.25) c'(t) <0 forevery t € I.
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Then the solutions of (1’) are uniformly bounded for t > 0.
PROOF. For any solution (z(t),y(t)) of (1’) and a positive K, we

define
V(t,z,y) = a(t)L(y) + (1 + c(t))H(t,z) + K2 in D,.
By (1.3), (1.5), (1.8), (1.11), (1.12) and (1.18)—(1.20) we get

0 < Wi(z,y) = azL(y) + (1 + e2)Pi(z) + K2 < V(t,z,y) <
<aL(y)+ (14 c¢1)P(z) + Ky = Wa(z,y)

in D,. From (1.4) and (1.8) it follows Wj(z,y) — oo for |z| — oo and
ly| — oo.

Differentiating the function V(t) = V/(¢,z(t),y(t)) with respect to t,
using (1.3), (1.5)-(1.7), (1.17), (1.21) and (1.25) we obtain

V(t) = a'(t)L(y) + 7~ (e(t, 2,y) — b(t)f(z,¥)) + ¢ () H (¢, 2)+

I(y)
—BHgt’x) <0in D,.

This means that all conditions of Proposition 1 are fulfilled, therefore the
solutions of (1') are uniformly bounded for ¢ > 0. This completes the
proof.

Corollary 1.4. Let the hypotheses of Theorem 1.4. hold with the
exception of (1.7). Moreover, suppose that (1.22) holds. Then the trivial

solution of (1’) is uniformly asymptotically stable.

PRrROOF. From (1.5), (1.21) and (1.22) it follows that A(¢,0) =0,
e(t,z,0) = 0 and f(z,0) =0 for every t € I and ¢ € R;. This means that
(1°) has the trivial solution. For any solution (z(t),y(t)) of (1’) we define

(5) V(t,z,y) = a(t)L(y) + (1 + ¢(t))H(t,z) in D,.
By (1.3), (1.5), (1.8), (1.11), (1.12) and (1.18)—(1.20) we get

%(I, y) = aQL(y) 5 (1 + C'Z)PI(I) -<- V(t,I, y) <
<a1L(y) + (1 4 ¢;)Pa(z) = Va(z,y) in D,

where V;(0,0) = 0 and V;(z,y) > 0 for every (z,y) € Rz \ {(0,0)} and
¢ = 1,2. This means that the function V(t,z,y) is positive definite and
by Definition 2 it is uniformly small. Differentiating the function V(¢) =
V(t,z(t),y(t)) with respect to t, using (1.3), (1.5), (1.16), (1.17), (1.21),
(1.22), (1.25) and (1’) we obtain

V'(t) < —b,-%f(x,y) = -Wi(z,y) <0 for i=1,2in D,.
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This means that the function V'(¢,z,y) is negative definite, therefore by
Proposition 3 the proof is finished.

Using the function (5) we can prove the following boundedness The-
orem and its Corollary analogously as Theorem 1.1. and Corollary 1.1.

Theorem 1.5. Let (1.3)-(1.6), (1.8), (1.14), (1.16)—(1.18), (1.24) and
(1.25) hold.
Then all solutions (z(t),y(t)) of (1’) are defined and bounded on I.

Corollary 1.5. Let the hypotheses of Theorems 1.5. and (1.15) hold.
Then the trivial solution of (1) is stable in the sense of Liapunov.

Remark 1.1. If we put in (1) a(t) = 1, b(t) =0, ¢g(t,z,z2') =0, 1+
c(t) = a(t), h(t,z) = f(z), I(z') = g(z') and e(t,z,2z') = 0, then we get
Theorem 1 and Theorem 2 and Theorem 3 of [4] from Theorem 1.5 and
Theorem 1.3 and Corollary 1.5, respectively.

We are now ready to prove a boundedness and stability theorem for
solutions of the equation (1) in the case that a(t) = 1 and ¢(t) = 0 in I.
Note that in this case the equation (1) is equivalent to the system

g’ =y,
y’ = B(t, T, y) i b(t)f(:ra y) =t g(t!x! y) = h(ta :L‘)f(y)

Theorem 1.6. Let (1.3)-(1.8), (1.17) and (1.20) hold. Moreover, sup-
pose that the following conditions are satisfied:

(1.26) There exists a nonnegative functionr € C(I) such that |e(t, z,y)|
< 1ly|r(¢) and _‘!r(t)dt =M < oo;

(1.27) 1 € CY(R,) and I'(y)sgny > 0 for every y € R;.
Then the solutions of (6) are uniformly bounded for t > 0.

PROOF. For any solution (z(t),y(t)) of (6) and a positive K3 we define
V(t,z,y) = e FO(H(t,z) + L(y) + K3) in Ds,

(6)

where E(t) = jr(s) ds. By (1.3)-(1.5), (1.8), (1.20) and (1.26) we get
0
0 < e M(Pi(z) + L(y) + K3) = Wy(z,y) S V(t,2,y) <

< Py(z)+ L(y) + K3 = Wa(z,y) in D,

and Wj(z,y) — oo for |z|] = oo and |y| — oo. Differentiating V(t) =
V(t,z(t),y(t)) with respect to t, using (1.6), (1.17) and (1.26) we obtain

V'(t) < —r(t)V(t) + e EO (—y?—-r(t) - b(t)l—y—

21(y) W’ )) '
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y

, s AR R Tl .
Since L(y) = 3 lz(J_y) + Ef Iz(i)) ds for every y € Ry, by (1.5), (1.7),
0

(1.27) and the last inequality we get

] -E@) Y .
(7) V'(t) < —b(t)e"B® ;ij(x,y) <0in[I.

We have proved that all conditions of Proposition 1 are fulfilled, therefore
the solutions of (6) are uniformly bounded for ¢ > 0. This completes the
proof.

Corollary 1.8. Let the conditions of Theorem 1.6. be fulfilled with
the exception of (1.7), which is replaced by (1.22). Then the trivial

solution of (6) is uniformly asymptotically stable.

PROOF. From (1.5), (1.6), (1.22) and (1.26) it follows that h(t,0) =
0, 9(t,z,0) =0, e(t,z,0) =0 and f(¢,0) =0 for every t € I and z € R,.
This means that (6) has the trivial solution. For an arbitrary solution
(z(t),y(t)) of (6) we define

V(t,z,y) = e" PO (H(t,z) + L(y)) in Dy, where E(t) = /r(s)ds.
0

By (1.3), (1.5), (1.8), (1.20) and (1.26) we get

Vi(z,y) = e M(Py(z) + L(y)) £ V(t,2,y) < Pa(z) + L(y) = Va(z,y)

in D,, where V;(0,0) = 0 and V;(z,y) > 0 for every (z,y) € R2\{(0,0)}
and : = 1,2, Form (7) by (1.22) we obtain

Vr(t) = —b,l(y—)f(:r,y) = —-W:;(I,y) < 01 i = 112 in I.
y

With respect to Proposition 2 the proof is complete.

2. The necessary conditions

Let the assumptions of the previous section hold in DY = I x Ry,
resp. Dg = Ip X R, where Iy = (to,00) for to € R;.
We have

Theorem 2.1. Suppose that the assumptions (1.3), (1.5), (1.6), (1.12)
and (1.18) hold. Moreover, suppose that the following conditions are sat-

isfied:
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(2.1) b(t) > 0 for every t € I and yf(z,y) < 0 for every z,y € Ry or
b(t) <0 for every t € Iy and yf(z,y) 2 0 for every z,y € Ry;
(2.2) 1+ ¢(t) 2 0 for every t € I;
(2.3) There exist nonnegative functions ¢,,e; € C(Iy) such that
|e(t z,y)| < ei(t), ze(t,z,y) 2 0 lg(t,z,y)| < g1(t) in DY where
fel(t)dt E; < 400 and fg;(t )dt = G; < +00;
to
(2.4) There exists a positive constant aq such that |f(z,y)| < a4 for
every z,y € Ry;
o0
(2.5) [|b(t)|dt = By < +oo;
to
(2.6) h(t,z) is a nonincreasing function in the variable t for every z > 0
and a nondecreasing function in the variable t for every z < 0.
If all solutions of (1') are bounded in Iy, then
oo
/ |h(to, z)|dz = Loo.
0
PROOF. Suppose that all solutions (z(t),y(t)) of (1’) are bounded in
Io and
(8) / Bihblde =By & o

We are going to show that there exists a solution of (1’), which is un-
bounded in Iy. For I € C(R,) there exists a positive constant

By

(9)

1
M, = max{l(y); y € (0, 2 + (261 + E; +a4B,))}.
(8) there exists ¢ > 0 so large that

14+

+oo
M, ]h(tg,s)ds i

We will prove that the solution (z(t),y(t)) of (1) with

Gy

(10) z(to) = o, y(to) =2+ —

az

1s unbounded for t — oo.



Boundedness and stability of solutions . .. 67

For t > t, there is y(¢t) > 1. Suppose that this is not the case.

Define
ty = inf{t; t > to, y(t) < 1}.

Now, from the continuity of y(t) and from (10) we obtain
t1 > to and y(t) > 1 for t € (to,t;) and y(t,) = 1.

Hence for t € (to,t;) the solution (z(t),y(t)) lies in the first quadrant. By
(17), (1.3), (1.5), (1.6), (1.12), (1.18), (2.1)—(2.3) and (2.6) we get

(1) OE —lgl(z) g ”—‘h(to, ().

Integrating the second equation of (1°) from g to ¢ (¢ > tg), by (1.3), (1.5),
(1.6), (1.12), (1.18) and (2.1)-(2.3) we have

1
(12) y(t) <2+ 5(201 +Ei+a1 B )

Now, integrating (11) from t, to ¢;, by the Mean Value Theorem and (12)
we get

z(t) z(ty)

1

y(t) > 2 - +‘"‘i(y tl))/h (o, $) ds>2—1+clMl / h(to,s)ds >
a

To ; Io

1+¢ i

> 2 - M] h(tg,S)dS
a;

Io

Therefore by (9) we obtain y(t;) > 1. We have a contradiction. This
means that z'(t) = y(t) > 1 and z(t) > z¢ + (t — tp) for every t > t,.
Therefore z(t) — 400 for t — +00.

A similar argument may be given in the third quadrant in case

f lh(to, z)|dz = —K4 > —o0

and that completes the proof.

Remark 2.1. Theorem 2.1 and Theorem 1 in [1] are similar. The
authors deal with the system

+ﬂ —a(t)f(z)g ( z))

in Theorem 1.
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Theorem 2.2. Suppose that the assumptions (1.1), (1.3), (1.5), (1.11)
and (2.1) hold. Moreover, suppose that the following conditions are satis-
ed:

(2.7) There exists a positive constant ¢4 such that 1 + ¢(t) > ¢4 for
every t € Iy;
(2.8) yg(t,z,y) <0 in DY;
(2.9) ye(t,z,y) 2 0 in DY;
(2.10) h(t,z) is a nonincreasing function in the variable t for every z < 0
and a nondecreasing function in the variable t for every z > 0;

+oo
(2.11) [ h(to,z)dz = +00.
0
If all solutions of (1’) are defined in I, then

+oo

f l(s;s)ds=+m.

PROOF. Suppose that all solutions (z(t),y(t)) of (1’) are defined in
Io and

+oo

(13) f ﬁ ds = K5 < +oo.

0
Let (z(t),y(t)) be a solution of (1’) with
z(tg) =79 <0 and y(tp) =1,

where for zo we have
zo

(14) :‘l’i h(to, s)ds > 2K.
1
0

Since zg < 0 and yo = y(to) > 0, a part of the solution (z(t), y(t)) remains
in the second quadrant. Integrating the second equation of (1) from ¢; to
t (t > ty), for this part of the solution (z(t),y(t)), by (1.1), (1.3), (1.5),
(1.11), (2.1) and (2.7)-(2.9), we have y(t) > 1. This means by (1’) that

z(t) 2 zo + (t — tg). Therefore for zo < 0 there exists ¢ € Iy such that
z(t) = 0. Further for t > ¢, we define

(1)
S
V(t)—'_- / mds.

Vo
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Differentiating the last function, by (1.1), (1.3), (1.5), (1.11), (2.1), (2.7)-
(2.9) and (2.11), for the part of the solution (z(t),y(¢)) remaining in the
second quadrant we get

(15) V'(t) 2 ~ 4 y() h(to, 2(2)).

Integrating (15) from ¢o to t (¢ > t9), we have
z(t)
(16) V(t) 2 & / h(to,s)ds
1

We prove that z(t) # 0 for every t > ;. If z(t) = 0 for some t > t;, then
by (16) for z(t) = 0 we get

0
V(t)> -2 [ h(to,s)ds = —-/ (to, s)
:o

Therefore by (14) we obtain V(t) > 2Ks. We have a contradiction with
(13), because

y(1) +o0
s
e s = o fis
V(t) f ) ds < / i) ds=Ks fort2>t
1
Therefore for all solutions (z(t),y(t)) of (1), which are defined in I
+ oo

s
J/. iz:;j (iS = 4-CK).
0

A similar argument may be given in the fourth quadrant in case

=00

]mds<+m

and the proof is complete.
Remark 2.2. Theorem 2.2 and Theorem 3 in [1] are similar. The
authors deal with the system
' f) a(t)
d=y ="y MWy
T L

in Theorem 3.
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