Publ. Math. Debrecen 40 / 1-2 (1992), 91-95

On some arithmetical properties of Stirling numbers

By Á. PINTÉR (Debrecen)

1. Introduction and the theorem

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence of integers, b a non-zero rational integer and p_1, \ldots, p_s ($s \ge 0$) distinct prime numbers. Many numbertheoretical problems can be reduced to equations of the forms

(1)
$$a_n = by^m$$
 in integers $n \ge 0, m \ge 2, y$

and

(2)
$$a_n = b p_1^{z_1} \cdot \ldots \cdot p_s^{z_s}$$
 in integers $n, z_1, \ldots, z_s \ge 0$.

Of particular importance are the cases when, in (1) or (2), a_n is a polynomial in n with rational integer coefficients or a linear recurrence sequence. In these cases, several effective finiteness results have been established for the solutions of (1) and (2); for references see [2], [15] and [13]. These results have been obtained by means of Baker's theory of linear forms in logarithms and its p-adic analogue.

In connection with equation (1), ERDŐS [5] has shown that the equation

(3)
$$\binom{n+a}{a} = y^m$$
 in integers $a > 1, m > 1, n \ge 1, y > 1$

has no solutions provided that $a \ge 4$. For a=m=2, there are infinitely many solutions in n, y. The only other known solution is a = 3, m = 2,n = 47, y = 140 and it is likely that there are no more. In this direction, see the results in [9], [6] and [16]. By the result of TIJDEMAN [16], there are effectively computable upper bounds for the solutions of (3) with a = 2, $m \ge 3$ and a = 3, $m \ge 2$.

In this paper, we consider equations (1) and (2) in the case when the a_n are Stirling numbers of certain special type. We denote by S_k^n the number of partitions of a set of n elements into k non-empty subsets. These numbers S_k^n are called Stirling-numbers of second kind. For properties of Stirling-numbers, see e.g. [10]. By combining some effective results of BAKER [1], SCHINZEL and TIJDEMAN [11] and others on superelliptic equations with some well-known arithmetical properties of the numbers S_k^n , we shall prove the theorem below. We denote by S the set of non-zero integers which are not divisible by primes different from p_1, \ldots, p_s .

Theorem. Let $a \ge 1$ be an integer. If $S_{n-a}^n \in S$ for some n > a then $n < C_1$. Further, if $S_{n-a}^n \in \mathbb{N}^m$ for some n > a, $m \ge 3$ then $n < C_2$. Here C_1 and C_2 are effectively computable positive numbers such that C_1 depends only on a and S, and C_2 only on a.

In other words, for given $a \ge 1$, there are only finitely many integers n > a with $S_{n-a}^n \in S$ or $S_{n-a}^n \in \mathbf{N}^m$, $m \ge 3$, and all these n can be effectively determined. Since $S_{n-1}^n = \binom{n}{2}$, the second assertion of our Theorem implies TIJDEMAN's result [16] mentioned above. Finally, we note that the assumption $m \ge 3$ is necessary in the second assertion of the Theorem. Indeed, the equations $x^2 - 2y^2 = 1$ and $x^2 - 2y^2 = -1$ have infinitely many positive integer solutions, and if (x, y) is a solution then $S_{x^2-1}^{x^2} = (xy)^2$ and $S_{2y^2-1}^{2y^2} = (xy)^2$, respectively.

2. Proof of the Theorem

To prove our Theorem, we shall need several lemmas. Denote by \widetilde{S}_k^n the number of partitions of a set of n elements into k subsets having more than 1 element.

Lemma 1. Let a, n be positive integers such that $n > a \ge 1$. Then we have

(4)
$$S_{n-a}^{n} = \binom{n}{a+1} \widetilde{S}_{1}^{a+1} + \binom{n}{a+2} \widetilde{S}_{2}^{a+2} + \dots + \binom{n}{2a} \widetilde{S}_{a}^{2a}.$$

Proof. See e.g. [10]

In what follows, let f(x) be a polynomial with rational integer coefficients, and let b be a non-zero rational integer. By the height of a polynomial in $\mathbf{Z}[x]$ we mean the maximum absolute value of its coefficients.

Lemma 2. Suppose that f(x) has at least two distinct roots. If $f(x) \in bS$ for some $x \in \mathbb{Z}$ then $|x| \leq C_3$, where C_3 is an effectively computable number depending only on b, S and the degree and height of f.

PROOF. This follows from a combination of the results of [8] and [14]. For more explicit and more general versions, see [12], [13] and [7] and the references given there. \Box

Lemma 3. Suppose that f(x) has at least two distinct roots and that $m \ge 0$, moreover x and y with |y| > 1 are rational integers satisfying

(5)
$$f(x) = by^m \,.$$

Then $m \leq C_4$, where C_4 is an effectively computable number depending only on b and the degree and height of f.

PROOF. This is a theorem of SCHINZEL and TIJDEMAN [11]. For more explicit and more general versions, see [4], [13] and the references mentioned there. \Box

Lemma 4. Let $m \geq 3$ be an integer, and suppose that f(x) has at least two distinct simple roots. If $x, y \in \mathbb{Z}$ satisfy (5) then $\max(|x|, |y|) \leq C_5$ with some effectively computable number C_5 which depends only on b, m and the degree and height of f.

PROOF. This result is due BAKER [1] who gave C_5 in an explicit form. For generalizations, see [3] and [13]. We note that Lemmas 2,3 and 4 were proved by means of the theory of linear forms in logarithms and its p-adic analogue. \Box

PROOF OF THE THEOREM. For fixed $a \geq 1$, we consider S_{n-a}^n as a polynomial in n. By Lemma 1, it is a polynomial of degree $2a \geq 2$ with rational coefficients. Hence, putting $f_a(n) = (2a)!S_{n-a}^n$, $f_a(n)$ is a polynomial in n with degree 2a and with rational integer coefficients. Further, it follows from (4) that $f_a(n)$ can be written in the form

(6)
$$f_a(n) = n(n-1)\dots(n-a)g(n)$$

Á. Pintér

where g(n) is a polynomial of degree a-1 with rational integer coefficients, and by (4), the height of f_a can be bounded above by an explicit expression of a. Then (6) implies that at least two of the roots $0, 1, \ldots, a$ of $f_a(n)$ are simple.

First suppose that $S_{n-a}^n \in S$ for some positive integer n > a. Then

 $f_a(n) \in bS$ for b = (2a)!.

By Lemma 2, we get $n < C_6$ where C_6 is effectively computable and it depends only on a and S.

Next suppose that $S_{n-a}^n \in \mathbf{N}^m$ for some integer $m \geq 3$. Then we get

$$f_a(n) = by^m$$
 for $b = (2a)!$ and for some $y \in \mathbf{Z}$.

In what follows, C_7 , C_8 and C_9 will denote effectively computable numbers depending only on a. In view of n > a, $S_{n-a}^n \neq 0$ and hence $y \neq 0$. If now |y| = 1 then, by Lemma 2, $n < C_7$. Further, if |y| > 1, then, by Lemma 3, it follows again that $m < C_8$. Finally, by Lemma 4, we get $n < C_9$. \Box

Acknowledgements. The author is grateful to Prof. K. GYŐRY, who read the original draft of this paper, for his helpful criticism.

References

- A. BAKER, Bounds for the solutions of the hyperelliptic equation, Proc. Camb. Phil. Soc. 65 (1969), 439–444.
- [2] A. BAKER, Transcendental Number Theory, Cambridge, (2nd ed.), 1979.
- [3] B. BRINDZA, On S-integral solutions of the equation $y^m = f(x)$, Acta Math. Hung. 44 (1984), 133–139.
- [4] B. BRINDZA, K. GYŐRY and R. TIJDEMAN, The Fermat equation with polynomial values as base variables, *Invent. Math.* 80 (1985), 139–151.
- [5] P. ERDŐS, On a diophantine equation, J. London Math. Soc. 26 (1951), 176–178.
- [6] K. GYŐRY, On the diophantine equations $\binom{n}{2} = a^{\ell}$ and $\binom{n}{3} = a^{\ell}$, Matematikai Lapok 14 (1963), 322–329, (in Hungarian).
- [7] K. GYŐRY, Explicit upper bounds for the solutions of some diophantine equations, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 5 (1980), 3–12.
- [8] S. V. KOTOV, The Thue–Mahler equation in relative fields (in Russian), Acta Arith.
 27 (1975), 293–315.
- [9] R. OBLÁTH, Note on the binomial coefficients, J. London Math. Soc. 23 (1948), 252–253.
- [10] G. PÓLYA G. SZEGŐ, Aufgaben und Lehrsätze aus der Analysis, Band I., Springer Verlag, Berlin, 1925.
- [11] A. SCHINZEL and R. TIJDEMAN, On the equation $y^m = P(x)$, Acta Arith. **31** (1976), 199–204.
- [12] T. N. SHOREY, A. J. VAN DER POORTEN, R. TIJDEMAN and A. SCHINZEL, Applications of the Gelfond-Baker method to diophantine equations, Transcendence Theory: Advences and Applications, *Academic Press, London-New York*, 1977, pp. 59–77.

- [13] T. N. SHOREY and R. TIJDEMAN, Exponential Diophantine Equations, Cambridge University Press, 1986.
- [14] V. G. SPRINDŽUK, The greatest prime divisor of a binary form, *Dokl. Akad. Nauk.* BSSR 15 (1971), 389–391, (in Russian).
- [15] V. G. SPRINDŽUK, Classical Diophantine Equations in Two Unknows, Nauka, Moskva, 1982, (in Russian).
- [16] R. TIJDEMAN, Applications of the Gelfond-Baker method to rational number theory, Topics in Number Theory, Colloq. Math. Soc. J. Bolyai, 13, North Holland, Amsterdam, 1976, pp. 399–416.

Á. PINTÉR KOSSUTH LAJOS UNIVERSITY MATHEMATICAL INSTITUTE H-4010 DEBRECEN HUNGARY

(Received November 29, 1989)