On some arithmetical properties of Stirling numbers

By Á. PINTÉR (Debrecen)

1. Introduction and the theorem

Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a sequence of integers, b a non-zero rational integer and $p_{1}, \ldots, p_{s}(s \geq 0)$ distinct prime numbers. Many numbertheoretical problems can be reduced to equations of the forms

$$
\begin{equation*}
a_{n}=b y^{m} \quad \text { in integers } \quad n \geq 0, m \geq 2, y \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{n}=b p_{1}^{z_{1}} \cdot \ldots \cdot p_{s}^{z_{s}} \quad \text { in integers } \quad n, z_{1}, \ldots, z_{s} \geq 0 \tag{2}
\end{equation*}
$$

Of particular importance are the cases when, in (1) or (2), a_{n} is a polynomial in n with rational integer coefficients or a linear recurrence sequence. In these cases, several effective finiteness results have been established for the solutions of (1) and (2); for references see [2], [15] and [13]. These results have been obtained by means of Baker's theory of linear forms in logarithms and its p-adic analogue.

In connection with equation (1), ERDŐs [5] has shown that the equation

$$
\begin{equation*}
\binom{n+a}{a}=y^{m} \quad \text { in integers } \quad a>1, m>1, n \geq 1, y>1 \tag{3}
\end{equation*}
$$

has no solutions provided that $a \geq 4$. For $a=m=2$, there are infinitely many solutions in n, y. The only other known solution is $a=3, m=2$, $n=47, y=140$ and it is likely that there are no more. In this direction, see the results in [9], [6] and [16]. By the result of Tijdeman [16], there
are effectively computable upper bounds for the solutions of (3) with $a=$ $2, m \geq 3$ and $a=3, m \geq 2$.

In this paper, we consider equations (1) and (2) in the case when the a_{n} are Stirling numbers of certain special type. We denote by S_{k}^{n} the number of partitions of a set of n elements into k non-empty subsets. These numbers S_{k}^{n} are called Stirling-numbers of second kind. For properties of Stirling-numbers, see e.g. [10]. By combining some effective results of Baker [1], Schinzel and Tijdeman [11] and others on superelliptic equations with some well-known arithmetical properties of the numbers S_{k}^{n}, we shall prove the theorem below. We denote by S the set of non-zero integers which are not divisible by primes different from p_{1}, \ldots, p_{s}.

Theorem. Let $a \geq 1$ be an integer. If $S_{n-a}^{n} \in S$ for some $n>a$ then $n<C_{1}$. Further, if $S_{n-a}^{n} \in \mathbf{N}^{m}$ for some $n>a, m \geq 3$ then $n<C_{2}$. Here C_{1} and C_{2} are effectively computable positive numbers such that C_{1} depends only on a and S, and C_{2} only on a.

In other words, for given $a \geq 1$, there are only finitely many integers $n>a$ with $S_{n-a}^{n} \in S$ or $S_{n-a}^{n} \in \mathbf{N}^{m}, m \geq 3$, and all these n can be effectively determined. Since $S_{n-1}^{n}=\binom{n}{2}$, the second assertion of our Theorem implies Tijdeman's result [16] mentioned above. Finally, we note that the assumption $m \geq 3$ is necessary in the second assertion of the Theorem. Indeed, the equations $x^{2}-2 y^{2}=1$ and $x^{2}-2 y^{2}=-1$ have infinitely many positive integer solutions, and if (x, y) is a solution then $S_{x^{2}-1}^{x^{2}}=(x y)^{2}$ and $S_{2 y^{2}-1}^{2 y^{2}}=(x y)^{2}$, respectively.

2. Proof of the Theorem

To prove our Theorem, we shall need several lemmas. Denote by \widetilde{S}_{k}^{n} the number of partitions of a set of n elements into k subsets having more than 1 element.

Lemma 1. Let a, n be positive integers such that $n>a \geq 1$. Then we have

$$
\begin{equation*}
S_{n-a}^{n}=\binom{n}{a+1} \widetilde{S}_{1}^{a+1}+\binom{n}{a+2} \widetilde{S}_{2}^{a+2}+\cdots+\binom{n}{2 a} \widetilde{S}_{a}^{2 a} \tag{4}
\end{equation*}
$$

Proof. See e.g. [10]
In what follows, let $f(x)$ be a polynomial with rational integer coefficients, and let b be a non-zero rational integer. By the height of a polynomial in $\mathbf{Z}[x]$ we mean the maximum absolute value of its coefficients.

Lemma 2. Suppose that $f(x)$ has at least two distinct roots. If $f(x) \in b S$ for some $x \in \mathbf{Z}$ then $|x| \leq C_{3}$, where C_{3} is an effectively computable number depending only on b, S and the degree and height of f.

Proof. This follows from a combination of the results of [8] and [14]. For more explicit and more general versions, see [12], [13] and [7] and the references given there.

Lemma 3. Suppose that $f(x)$ has at least two distinct roots and that $m \geq 0$, moreover x and y with $|y|>1$ are rational integers satisfying

$$
\begin{equation*}
f(x)=b y^{m} . \tag{5}
\end{equation*}
$$

Then $m \leq C_{4}$, where C_{4} is an effectively computable number depending only on b and the degree and height of f.

Proof. This is a theorem of Schinzel and Tijdeman [11]. For more explicit and more general versions, see [4], [13] and the references mentioned there.

Lemma 4. Let $m \geq 3$ be an integer, and suppose that $f(x)$ has at least two distinct simple roots. If $x, y \in \mathbf{Z}$ satisfy (5) then $\max (|x|,|y|) \leq$ C_{5} with some effectively computable number C_{5} which depends only on b, m and the degree and height of f.

Proof. This result is due Baker [1] who gave C_{5} in an explicit form. For generalizations, see [3] and [13]. We note that Lemmas 2,3 and 4 were proved by means of the theory of linear forms in logarithms and its p-adic analogue.

Proof of the Theorem. For fixed $a \geq 1$, we consider S_{n-a}^{n} as a polynomial in n. By Lemma 1 , it is a polynomial of degree $2 a \geq 2$ with rational coefficients. Hence, putting $f_{a}(n)=(2 a)!S_{n-a}^{n}, f_{a}(n)$ is a polynomial in n with degree $2 a$ and with rational integer coefficients. Further, it follows from (4) that $f_{a}(n)$ can be written in the form

$$
\begin{equation*}
f_{a}(n)=n(n-1) \ldots(n-a) g(n) \tag{6}
\end{equation*}
$$

where $g(n)$ is a polynomial of degree $a-1$ with rational integer coefficients, and by (4), the height of f_{a} can be bounded above by an explicit expression of a. Then (6) implies that at least two of the roots $0,1, \ldots, a$ of $f_{a}(n)$ are simple.

First suppose that $S_{n-a}^{n} \in S$ for some positive integer $n>a$. Then

$$
f_{a}(n) \in b S \quad \text { for } \quad b=(2 a)!
$$

By Lemma 2, we get $n<C_{6}$ where C_{6} is effectively computable and it depends only on a and S.

Next suppose that $S_{n-a}^{n} \in \mathbf{N}^{m}$ for some integer $m \geq 3$. Then we get

$$
f_{a}(n)=b y^{m} \quad \text { for } \quad b=(2 a)!\quad \text { and for some } y \in \mathbf{Z} .
$$

In what follows, C_{7}, C_{8} and C_{9} will denote effectively computable numbers depending only on a. In view of $n>a, S_{n-a}^{n} \neq 0$ and hence $y \neq 0$. If now $|y|=1$ then, by Lemma $2, n<C_{7}$. Further, if $|y|>1$, then, by Lemma 3, it follows again that $m<C_{8}$. Finally, by Lemma 4, we get $n<C_{9}$.

Acknowledgements. The author is grateful to Prof. K. GyŐRy, who read the original draft of this paper, for his helpful criticism.

References

[1] A. Baker, Bounds for the solutions of the hyperelliptic equation, Proc. Camb. Phil. Soc. 65 (1969), 439-444.
[2] A. Baker, Transcendental Number Theory, Cambridge, (2nd ed.), 1979.
[3] B. Brindza, On S-integral solutions of the equation $y^{m}=f(x)$, Acta Math. Hung. 44 (1984), 133-139.
[4] B. Brindza, K. Győry and R. Tijdeman, The Fermat equation with polynomial values as base variables, Invent. Math. 80 (1985), 139-151.
[5] P. Erdős, On a diophantine equation, J. London Math. Soc. 26 (1951), 176-178.
[6] K. GYŐRy, On the diophantine equations $\binom{n}{2}=a^{\ell}$ and $\binom{n}{3}=a^{\ell}$, Matematikai Lapok 14 (1963), 322-329, (in Hungarian).
[7] K. GYŐRY, Explicit upper bounds for the solutions of some diophantine equations, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 5 (1980), 3-12.
[8] S. V. Kotov, The Thue-Mahler equation in relative fields (in Russian), Acta Arith. 27 (1975), 293-315.
[9] R. Obláth, Note on the binomial coefficients, J. London Math. Soc. 23 (1948), 252-253.
[10] G. Pólya - G. Szegő, Aufgaben und Lehrsätze aus der Analysis, Band I., Springer Verlag, Berlin, 1925.
[11] A. Schinzel and R. Tijdeman, On the equation $y^{m}=P(x)$, Acta Arith. 31 (1976), 199-204.
[12] T. N. Shorey, A. J. van der Poorten, R. Tijdeman and A. Schinzel, Applications of the Gelfond-Baker method to diophantine equations, Transcendence Theory: Advences and Applications, Academic Press, London-New York, 1977, pp. 59-77.
[13] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge University Press, 1986.
[14] V. G. Sprindžuk, The greatest prime divisor of a binary form, Dokl. Akad. Nauk. BSSR 15 (1971), 389-391, (in Russian).
[15] V. G. Sprindžuk, Classical Diophantine Equations in Two Unknows, Nauka, Moskva, 1982, (in Russian).
[16] R. Tijdeman, Applications of the Gelfond-Baker method to rational number theory, Topics in Number Theory, Colloq. Math. Soc. J. Bolyai, 13, North Holland, Amsterdam, 1976, pp. 399-416.

[^0]
[^0]: Á. Pintér
 KOSSUTH LAJOS UNIVERSITY
 mathematical institute
 H-4010 DEBRECEN
 hUNGARY

