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The problem of the extension
of a parametric family of Diophantine triples

By ANDREJ DUJELLA (Zagreb)

Abstract. It is proven that if k ≥ 2 is an integer and d is a positive integer such
that the product of any two distinct elements of the set

{k − 1, k + 1, 4k, d}
increased by 1 is a perfect square, than d has to be 16k3 − 4k. This is a generalization
of the well-known result of Baker and Davenport for k = 2.

1. Introduction

The Greek mathematician Diophantus of Alexandria noted that the
set {1/16, 33/16, 17/4, 105/16} has the following property: the product of
any two of its distinct elements increased by 1 is a square of a rational
number (see [5]). A set of positive integers {a1, a2, . . . , am} is said to
have the property of Diophantus if aiaj + 1 is a perfect square for all
1 ≤ i < j ≤ m. Such a set is called a Diophantine m-tuple. Fermat first
found an example of a Diophantine quadruple, and it was {1, 3, 8, 120}.
In 1969, Baker and Davenport [2] proved that if d is a positive integer
such that {1, 3, 8, d} is a Diophantine quadruple, then d has to be 120.

There is a well-known generalization of the Fermat set: the set

{k − 1, k + 1, 4k, 16k3 − 4k}
is a Diophantine quadruple for all integers k ≥ 2 (see [6, 10]). For k = 2
we obtain the Fermat set. Thus we come to the following question:
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Let k ≥ 2 be an integer, and let d be a positive integer such that the
set {k−1, k+1, 4k, d} has the property of Diophantus. Is then necessarily
d = 16k3 − 4k?

As we said before, for k = 2 an affirmative answer to the above ques-
tion was given in [2] and also in [9,12,16], and for k = 3 in [18].

In the present paper we prove the following theorem which gives an
affirmative answer to the above question for all integers k ≥ 2.

Theorem 1. Let k ≥ 2 be an integer. If the set {k − 1, k + 1, 4k, d}
has the property of Diophantus, then d has to be 16k3 − 4k.

2. A system of Pellian equations

Assume that the set {k − 1, k + 1, 4k, d} has the property of Dio-
phantus. It implies that there exist positive integers x, y and z such that
the following holds:

(k − 1)d + 1 = x2, (k + 1)d + 1 = y2, 4kd + 1 = z2.

Eliminating d, we obtain the following system of Pellian equations:

(k − 1)y2 − (k + 1)x2 = −2,(1)

(k − 1)z2 − 4kx2 = −3k − 1.(2)

Since k−1 < k+1 < 4(k−1) Theorem 8 from [11] implies that all solutions
of (1) are given by x = vm, m ≥ 0, where (vm) is the following recursive
sequence:

(3) v0 = 1, v1 = 2k − 1, vm+2 = 2kvm+1 − vm, m ≥ 0.

The theory of Pellian equations guarantees that all solutions of (2)
are given by x = w

(i)
n , n ≥ 0, where

(4)
w

(i)
0 = x

(i)
0 , w

(i)
1 = (2k − 1)x(i)

0 + (k − 1)z(i)
0 ,

w
(i)
n+2 = (4k − 2)w(i)

n+1 − w(i)
n ,

and
√

k − 1 z
(i)
0 + 2

√
k x

(i)
0 , i = 1, . . . , j, are fundamental solutions of the

equation (2) (see [13, 17]).
Thus our problem reduces to solving the equations

(5) vm = w(i)
n ,

i = 1, . . . , j. From (3) and (4) it easily follows that vm ≡ 1 (mod (k− 1))
for all m ≥ 0, and w

(i)
n ≡ x

(i)
0 (mod (k − 1)) for all n ≥ 0. Hence, if the
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equation (5) has a solution in integers m and n, then we must have x
(i)
0 ≡ 1

(mod (k − 1)). But from [13, Theorem 108a] we have:

0 < x
(i)
0 ≤ 1√

2(2k − 2)

√
(3k + 1)(k − 1) =

1
2

√
3k + 1 <

√
k.

Therefore x
(i)
0 = 1 and z

(i)
0 = ±1.

We have thus proved the following lemma.

Lemma 1. Let x, y, z be positive integer solutions of the system of
Pellian equations (1) and (2). Then there exist integers m ≥ 0 and n such
that

(6) x = vm = wn,

where the sequence (vm) is given by (3), and the two-sided sequence (wn)
is given by the following recursive formula:

(7) w0 = 1, w1 = 3k − 2, wn+2 = (4k − 2)wn+1 − wn, n ∈ Z.

3. Application of a result of Rickert

In this section we will use a result of Rickert [15] on simultaneous
rational approximations to the numbers

√
(k − 1)/k and

√
(k + 1)/k and

we will prove the statement of Theorem 1 for k ≥ 29. For the convenience
of the reader, we recall Rickert’s result.

Theorem 2. For an integer k ≥ 2 the numbers

θ1 =
√

(k − 1)/k, θ2 =
√

(k + 1)/k

satisfy

max
(|θ1 − p1/q|, |θ2 − p2/q|) > (271k)−1q−1−λ

for all integers p1, p2, q with q > 0, where

λ = λ(k) =
log (12k

√
3 + 24)

log [27(k2 − 1)/32]
.

From (1) and (2) it follows

(8) (k + 1)z2 − 4ky2 = −3k + 1,

and the system of Pellian equations (1) and (2) is equivalent to the system
(2) and (8).
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Lemma 2. Let k ≥ 2 and θ1 =
√

(k − 1)/k, θ2 =
√

(k + 1)/k. Then
all positive integer solutions x, y, z of the simultaneous Pellian equations
(2) and (8) satisfy

max
(∣∣∣θ1 − 2x

z

∣∣∣,
∣∣∣θ2 − 2y

z

∣∣∣
)

< 2.475z−2.

Proof. We have:
∣∣∣
√

k − 1
k

− 2x

z

∣∣∣ =
∣∣∣k − 1

k
− 4x2

z2

∣∣∣ ·
∣∣∣
√

k − 1
k

+
2x

z

∣∣∣
−1

<
1

kz2
|(k − 1)z2 − 4kx2| · 1√

2
=

3k + 1
k
√

2
z−2 < 2.475z−2

and

∣∣∣
√

k + 1
k

− 2y

z

∣∣∣ =
∣∣∣k + 1

k
− 4y2

z2

∣∣∣ ·
∣∣∣
√

k + 1
k

+
2y

z

∣∣∣
−1

<
1

kz2
|(k + 1)z2 − 4ky2| · 1

2
=

3k − 1
2k

z−2 ≤ 1.5z−2.

¤
Lemma 3. Let m and n be integers such that vm = wn. Then n ≡ 0

or −2 (mod 4k).

Proof. Let us consider the sequences

(vm mod (2k − 1))m≥0 = (1, 0,−1,−1, 0, 1, 1, 0, . . . ) and

(wn mod (2k − 1))n≥0 = (1,−k,−1, k, 1,−k, . . . ) .

We conclude that vm = wn implies that n is even. Set n = 2l.
Let us now consider the sequences (vm mod 4k(k − 1)) and

(w2l mod 4k(k − 1)). We have:

(vm mod 4k(k − 1))m≥0 = (1, 2k − 1, 2k − 1, 1, 1, 2k − 1, . . . ) ,

(w2l mod 4k(k − 1))l≥0 = (1,−2k + 3,−4k + 5,−6k + 5, . . . ) .

It follows easily by induction that w2l ≡ −2lk + (2l + 1) (mod 4k(k − 1)),
for all l ∈ Z. Hence, if vm = w2l, then we have two possibilities:

1) −2lk + (2l + 1) ≡ 1 (mod 4k(k − 1))
This implies 2l(k − 1) ≡ 0 (mod 4k(k − 1)), and n = 2l ≡ 0 (mod 4k).
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2) −2lk + (2l + 1) ≡ 2k − 1 (mod 4k(k − 1))
This implies 2(l + 1)(k − 1) ≡ 0 (mod 4k(k − 1)), and n = 2l ≡ −2
(mod 4k). ¤

Lemma 4. Let x, y, z be positive integer solutions of the system of
Pellian equations (1) and (2) such that z /∈ {1, 8k2 − 1}. Then

log z ≥ (4k − 2) log (4k − 3).

Proof. If z satisfies the conditions of the lemma then from the results
of Section 2 it follows that there exists an integer n such that z = sn, where

s0 = 1, s1 = 6k − 1, sn+2 = (4k − 2)sn+1 − sn, n ∈ Z.

Let ϕ = 2k − 1 + 2
√

k2 − k. Now it follows easily by induction that for
n > 0 we have sn ≥ ϕn, and for n < 0 we have sn ≥ 1

2ϕ|n|.

If n > 0, then Lemma 3 implies n ≥ 4k − 2, and so z ≥ ϕ4k−2. If
n < 0, then Lemma 3 implies |n| ≥ 4k, and so z ≥ 1

2ϕ4k ≥ ϕ4k−2. Hence,

log z ≥ (4k − 2) log ϕ ≥ (4k − 2) log (4k − 3). ¤

Proposition 1. If k ≥ 29 and if the set {k − 1, k + 1, 4k, d} has the
property of Diophantus, then d has to be 16k3 − 4k.

Proof. Let z be a positive integer such that 4kd + 1 = z2. Suppose
that d 6= 16k3 − 4k. Then Lemma 4 implies

(9) log z ≥ (4k − 2) log(4k − 3).

On the other hand, Theorem 2 and Lemma 2 imply

(271k)−1z−1−λ < 2.475z−2.

It follows that
z1−λ < 671k

and

(10) log z <
log(671k)

1− λ
.

Since k ≥ 29, we have

1
1− λ

=
log[27(k2 − 1)/32]

log
[

27(k2−1)

32(12k
√

3+24)

] <
2 log (0.9186k)
log(0.03899k)

.
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Combining (9) and (10) we obtain

(11) 4k − 2 <
2 log(671k) log(0.9186k)
log(4k − 3) log(0.03899k)

.

Since the function on the right side of (11) is decreasing, it follows that
4k − 2 < 112. This contradicts our assumption that k ≥ 29. ¤

4. Linear forms in three logarithms and
the Grinstead method

In the proof of the statement of Theorem 1 for k ≤ 28 we will use
the Grinstead method (see [9, 4, 14]). In this section we assume that
2 ≤ k ≤ 28.

Let x = vm = wn, where m,n ≥ 0. Then

2
√

k + 1x =
(√

k − 1 +
√

k + 1
)(

k +
√

k2 − 1
)m

(12)

−
(√

k − 1−
√

k + 1
)(

k −
√

k2 − 1
)m

,

and

4
√

kx =
(√

k − 1 + 2
√

k
)(

2k − 1 + 2
√

k2 − k
)n

(13)

−
(√

k − 1− 2
√

k
)(

2k − 1− 2
√

k2 − k
)n

.

If we put

P =
√

k − 1 +
√

k + 1√
k + 1

(
k +

√
k2 − 1

)m

,(14)

Q =
√

k − 1 + 2
√

k

2
√

k

(
2k − 1 + 2

√
k2 − k

)n

,(15)

the relations (12) and (13) give

(16) P +
2

k + 1
P−1 = Q +

3k + 1
4k

Q−1.

It is clear that P > 1 and Q > 1, and from

P −Q >
2

k + 1
Q−1 − 2

k + 1
P−1 =

2
k + 1

(P −Q)P−1Q−1
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we see that Q < P . As we may assume that m ≥ 1, we have

P ≥ (2k + 1)
√

k − 1 + (2k − 1)
√

k + 1√
k + 1

>
√

k2 − 1 + (2k − 1) > 2k.

Furthermore, (16) implies

Q > P − 3k + 1
4k

Q−1 > P − 3k + 1
4k

.

Hence,

P −Q =
3k + 1

4k
Q−1 − 2

k + 1
P−1

<
3k + 1

4k

(
P − 3k + 1

4k

)−1

− 2
k + 1

P−1 <
3
4
P−1

and finally

0 < log
P

Q
= − log

(
1− P −Q

P

)
<

3
4
P−2 +

(
3
4
P−2

)2

<
4
5
P−2

(since − log(1− x) < x + x2, for x ∈ 〈
0, 1

2

〉
). Now from (14) and (15) we

obtain the following inequality:

(17)

0 < m log
(
k +

√
k2 − 1

)
− n log

(
2k − 1 + 2

√
k2 − k

)

+ log
2
(√

k − 1 +
√

k + 1
)√

k
(√

k − 1 + 2
√

k
)√

k + 1

<
0.8(

k +
√

k2 − 1
)2m < e−2m log (2k−1).

Now we will apply the following theorem of Baker and Wüst-
holz [3]:

Theorem 3. For a linear form Λ 6= 0 in logarithms of l algebraic
numbers α1, . . . , αl with rational integer coefficients b1, . . . , bl we have

log |Λ| ≥ −18(l + 1)! ll+1(32d)l+2h′(α1) · · ·h′(αl) log(2nd) log B,

where B = max (|b1|, . . . , |bl|), and where d is the degree of the number
field generated by α1, . . . , αl.

Here
h′(α) =

1
d

max(h(α), | log α|, 1),
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and h(α) denotes the standard logarithmic Weil height of α.
In the present situation we have l = 3, d = 4, B = m, and

α1 = k +
√

k2 − 1, α2 = 2k − 1 + 2
√

k2 − k,

α3 =
2
(√

k − 1 +
√

k + 1
)√

k
(√

k − 1 + 2
√

k
)√

k + 1
,

with corresponding minimal polynomials

α2
1 − 2kα1 + 1 = 0, α2

2 − 2(2k − 1)α2 + 1 = 0,

(9k4 + 24k3 + 22k2 + 8k + 1)α4
3 − 16k(3k3 + 7k2 + 5k + 1)α3

3

+48k2(k2 + 4k + 3)α2
3 − 128k2(k + 1)α3 + 64k2 = 0.

If x = vm = wn, m ≥ 0 and n ≤ 0, then we obtain an identical result,
since

α′3 =
2
(√

k − 1 +
√

k + 1
)√

k
(
−√k − 1 + 2

√
k
)√

k + 1

has the same minimal polynomial as α3.
We get

h′(α1) =
1
2

log α1 <
1
2

log(2k),

h′(α2) =
1
2

log α2 <
1
2

log(4k − 2),

h′(α3) = h′(α′3)=
1
4

[
2 log(3k2 + 4k + 1)+ log α3 + log α′3

]
<

1
4

log(147k4).

From (17) and Theorem 3 we obtain

(18)
m

log m
< 1.1941 · 1014 · log(4k − 2) log (147k4).

Since k ≤ 28 we have
m

log m
< 1.044 · 1016,

and so

m < 5 · 1017.
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Now we adopt Grinstead’s strategy [9] in order to show that v0 =
w0 = 1 and v2 = w−2 = 4k2−2k−1 are the only solutions of the equation
vm = wn, m ≥ 0 for 2 ≤ k ≤ 28 . These solutions correspond to d = 0 and
d = 16k3 − 4k.

We will prove that from vm = w4l (resp. vm = w4l−2) it follows that
l = 0. Since |n| < m < 5 · 1017, it is sufficient to show that

l ≡ 0 (mod 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 31 · 37 · 41 · 43 · 47).

Let bl = w4l, resp. bl = w4l−2. We define L(q) to be the length of the
period of the sequence (bl mod q). Let p be a prime. If p = 2, we choose
an integer q such that L(q) is even and the sequences (b2l+1 mod q) and
(vm mod q) have empty intersection. Thus we conclude that l ≡ 0(mod 2).
In the same manner we prove l ≡ 0 (mod 3) and l ≡ 0 (mod 5). Let
5 < p ≤ 47 and assume that for all primes r < p, it has been shown
that l ≡ 0 (mod r). We follow [9] in proving that l ≡ 0 (mod p) by
considering (vm mod q) and (bl mod q), where q is a prime with the
property that L(q) is divisible only by primes not exceeding p, is power-
free and is divisible by p (see [9, 4] for details). It is useful to observe that
if

(
k(k−1)

q

)
= 1 then L(q)|q − 1, and if

(
k(k−1)

q

)
= −1 then L(q)|q + 1.

We will illustrate this method with an example. We will show that
l ≡ 0 (mod 19) in the case k = 4 and bl = w4l. The two values of q we
will use are q = 113 and q = 151. We have L(113) = 57 and L(151) = 19.
First, let q = 113. We have:

(w4l mod 113)l≥0 =

(1, 71, 15, 4, 5, 21, 100, 27, 35, 35, 27, 100, 21, 5, 4, 15, 71, 1, 47, 8, 106,

70, 18, 20, 82, 51, 60, 23, 55, 26, 75, 10, 88, 91, 28, 49, 104, 19, 104, 49,

28, 91, 88, 10, 75, 26, 55, 23, 60, 51, 82, 20, 18, 70, 106, 8, 47, 1, 71, . . . ),

(vm mod 113)m≥0 =

(1, 7, 55, 94, 19, 58, 106, 112, 112, 106, 58, 19, 94, 55, 7, 1, 1, 7, . . . ).

We assume that l ≡ 0 (mod 3), which can be proved by considering
(w4l mod 68) and (vm mod 68). By comparing sequences, we see that
w4l ≡ 1 or 106 (mod 113) and l ≡ 0 or 16 (mod 19).
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Next, let q = 151. We have:

(w4l mod 151)l≥0 =

(1, 87, 24, 149, 57, 34, 76, 59, 26, 96, 12, 22, 3, 83, 33, 15, 39, 142, 99,

1, 87, . . . ),

(vm mod 151)m≥0 =

(1, 7, 55, 131, 87, 112, 54, 18, 90, 98, 90, 18, 54, 112, 87, 131, 55, 7, 1,

1, 7, . . . ).

Since the number 39 is in the position 16 (mod 19) in the first sequence,
and it does not occur in the second sequence, we have l ≡ 0 (mod 19).

We list the values of q used in the proof of Theorem 1 for k = 4 and
k = 5:

p q for k = 4 q for k = 5

2 8 23
3 68∗, 380∗∗ 51
5 29∗∗, 55∗ 35
7 41, 71, 139, 337∗∗, 421∗∗ 13, 29, 71

11 23, 43, 307, 439∗ 43, 89, 197, 199, 263, 307∗∗,
331∗∗, 661∗∗

13 103, 131 79, 103, 131
17 67, 101, 239, 271∗∗ 67, 239, 373
19 113, 151 37, 113, 191, 227∗
23 47, 137, 277, 367, 599∗ 137, 139, 461, 599, 643, 691∗∗,

827∗∗
29 59, 173, 349, 463 59, 173, 347
31 311, 373, 619, 683 311, 433, 557∗∗, 743∗∗
37 739, 1109, 1259 73, 149, 443, 887
41 83, 163, 1229 163, 739, 821, 983∗
43 257, 431, 859∗∗, 947∗∗, 1033∗∗ 257, 431, 773, 1117
47 281, 659, 751, 1129∗ 563, 659

The numbers with ∗, resp. ∗∗, are used in the case bl = w4l, resp. bl =
w4l−2 only. In the actual running of this algorithm for all cases 2 ≤ k ≤ 28,
no prime p required more than eight values of q, and the greatest value
of q which appeared was 3011. The computer program was developed in
FORTRAN and the computation time was about 50 seconds on a HP 9000
workstation.
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5. Final remarks

We can prove Theorem 1 for k ≤ 28 using the reduction method
based on the Baker–Davenport lemma ([2], see also [8, Lemma 2]).
Let κ = log

(
k +

√
k2 − 1

)
/ log

(
2k − 1 + 2

√
k2 − k

)
and

µ1,2 = log
2(
√

k−1+
√

k+1)
√

k

(±
√

k−1+2
√

k)
√

k+1

/
log

(
2k − 1 + 2

√
k2 − k

)
. Assume that

m < M . Let p/q be the convergent of the continued fraction expansion of
κ such that q > 3M and let ε = ‖µq‖ −M · ‖κq‖, where ‖ · ‖ denotes the
distance from the nearest integer. If ε > 0, then

m <
1

2 log(2k − 1)
log

q

ε log
(
2k − 1 + 2

√
k2 − k

) .

Starting with M = 5 · 1017 we obtain after reduction that m ≤ 14 (for all
3 ≤ k ≤ 28), and the next step of the reduction gives m ≤ 0 for µ1 and
m ≤ 2 for µ2, which completes the proof.

We can combine Lemma 3 and inequality (18) to prove the statement
of Theorem 1 for k sufficiently large, without using Rickert’s result. The
bound obtained in this way (k ≤ 2 · 1019) can be slightly improved by
considering the sequences (vm) and (wn) mod (2k−1)2, but it will be still
much weaker than the bound (k ≤ 28) obtained in Proposition 1.

From Theorem 1 it follows that for k ≥ 2 the Diophantine quadruple
{k−1, k+1, 4k, 16k3−4k} cannot be extended to a Diophantine quintuple.
However, the rational number

4k(2k − 1)(2k + 1)(4k2 − 2k − 1)(4k2 + 2k − 1)(8k2 − 1)
(64k6 − 80k4 + 16k2 − 1)2

has the property that its product with any of the elements of the above
set increased by 1 is the square of a rational number (see [1, 7]). This is a
special case of the more general fact that for every Diophantine quadruple
{a1, a2, a3, a4} there exists a positive rational number a5 such that aia5+1
is the square of a rational number for i = 1, 2, 3, 4 (see [7, Corollary 1]).
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of the manuscript.
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