The problem of the extension of a parametric family of Diophantine triples

By ANDREJ DUJELLA (Zagreb)

Abstract

It is proven that if $k \geq 2$ is an integer and d is a positive integer such that the product of any two distinct elements of the set $$
\{k-1, k+1,4 k, d\}
$$ increased by 1 is a perfect square, than d has to be $16 k^{3}-4 k$. This is a generalization of the well-known result of Baker and Davenport for $k=2$.

1. Introduction

The Greek mathematician Diophantus of Alexandria noted that the set $\{1 / 16,33 / 16,17 / 4,105 / 16\}$ has the following property: the product of any two of its distinct elements increased by 1 is a square of a rational number (see [5]). A set of positive integers $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is said to have the property of Diophantus if $a_{i} a_{j}+1$ is a perfect square for all $1 \leq i<j \leq m$. Such a set is called a Diophantine m-tuple. Fermat first found an example of a Diophantine quadruple, and it was $\{1,3,8,120\}$. In 1969, Baker and Davenport [2] proved that if d is a positive integer such that $\{1,3,8, d\}$ is a Diophantine quadruple, then d has to be 120 .

There is a well-known generalization of the Fermat set: the set

$$
\left\{k-1, k+1,4 k, 16 k^{3}-4 k\right\}
$$

is a Diophantine quadruple for all integers $k \geq 2$ (see [6, 10]). For $k=2$ we obtain the Fermat set. Thus we come to the following question:

[^0]Let $k \geq 2$ be an integer, and let d be a positive integer such that the set $\{k-1, k+1,4 k, d\}$ has the property of Diophantus. Is then necessarily $d=16 k^{3}-4 k$?

As we said before, for $k=2$ an affirmative answer to the above question was given in [2] and also in [9,12,16], and for $k=3$ in [18].

In the present paper we prove the following theorem which gives an affirmative answer to the above question for all integers $k \geq 2$.

Theorem 1. Let $k \geq 2$ be an integer. If the set $\{k-1, k+1,4 k, d\}$ has the property of Diophantus, then d has to be $16 k^{3}-4 k$.

2. A system of Pellian equations

Assume that the set $\{k-1, k+1,4 k, d\}$ has the property of Diophantus. It implies that there exist positive integers x, y and z such that the following holds:

$$
(k-1) d+1=x^{2}, \quad(k+1) d+1=y^{2}, \quad 4 k d+1=z^{2} .
$$

Eliminating d, we obtain the following system of Pellian equations:

$$
\begin{align*}
(k-1) y^{2}-(k+1) x^{2} & =-2 \tag{1}\\
(k-1) z^{2}-4 k x^{2} & =-3 k-1 . \tag{2}
\end{align*}
$$

Since $k-1<k+1<4(k-1)$ Theorem 8 from [11] implies that all solutions of (1) are given by $x=v_{m}, m \geq 0$, where $\left(v_{m}\right)$ is the following recursive sequence:

$$
\begin{equation*}
v_{0}=1, v_{1}=2 k-1, v_{m+2}=2 k v_{m+1}-v_{m}, \quad m \geq 0 \tag{3}
\end{equation*}
$$

The theory of Pellian equations guarantees that all solutions of (2) are given by $x=w_{n}^{(i)}, n \geq 0$, where

$$
\begin{gather*}
w_{0}^{(i)}=x_{0}^{(i)}, w_{1}^{(i)}=(2 k-1) x_{0}^{(i)}+(k-1) z_{0}^{(i)}, \\
w_{n+2}^{(i)}=(4 k-2) w_{n+1}^{(i)}-w_{n}^{(i)}, \tag{4}
\end{gather*}
$$

and $\sqrt{k-1} z_{0}^{(i)}+2 \sqrt{k} x_{0}^{(i)}, i=1, \ldots, j$, are fundamental solutions of the equation (2) (see [13, 17]).

Thus our problem reduces to solving the equations

$$
\begin{equation*}
v_{m}=w_{n}^{(i)}, \tag{5}
\end{equation*}
$$

$i=1, \ldots, j$. From (3) and (4) it easily follows that $v_{m} \equiv 1(\bmod (k-1))$ for all $m \geq 0$, and $w_{n}^{(i)} \equiv x_{0}^{(i)}(\bmod (k-1))$ for all $n \geq 0$. Hence, if the
equation (5) has a solution in integers m and n, then we must have $x_{0}^{(i)} \equiv 1$ $(\bmod (k-1))$. But from [13, Theorem 108a] we have:

$$
0<x_{0}^{(i)} \leq \frac{1}{\sqrt{2(2 k-2)}} \sqrt{(3 k+1)(k-1)}=\frac{1}{2} \sqrt{3 k+1}<\sqrt{k}
$$

Therefore $x_{0}^{(i)}=1$ and $z_{0}^{(i)}= \pm 1$.
We have thus proved the following lemma.
Lemma 1. Let x, y, z be positive integer solutions of the system of Pellian equations (1) and (2). Then there exist integers $m \geq 0$ and n such that

$$
\begin{equation*}
x=v_{m}=w_{n}, \tag{6}
\end{equation*}
$$

where the sequence $\left(v_{m}\right)$ is given by (3), and the two-sided sequence $\left(w_{n}\right)$ is given by the following recursive formula:

$$
\begin{equation*}
w_{0}=1, w_{1}=3 k-2, w_{n+2}=(4 k-2) w_{n+1}-w_{n}, \quad n \in \mathbb{Z} \tag{7}
\end{equation*}
$$

3. Application of a result of Rickert

In this section we will use a result of Rickert [15] on simultaneous rational approximations to the numbers $\sqrt{(k-1) / k}$ and $\sqrt{(k+1) / k}$ and we will prove the statement of Theorem 1 for $k \geq 29$. For the convenience of the reader, we recall Rickert's result.

Theorem 2. For an integer $k \geq 2$ the numbers

$$
\theta_{1}=\sqrt{(k-1) / k}, \quad \theta_{2}=\sqrt{(k+1) / k}
$$

satisfy

$$
\max \left(\left|\theta_{1}-p_{1} / q\right|,\left|\theta_{2}-p_{2} / q\right|\right)>(271 k)^{-1} q^{-1-\lambda}
$$

for all integers p_{1}, p_{2}, q with $q>0$, where

$$
\lambda=\lambda(k)=\frac{\log (12 k \sqrt{3}+24)}{\log \left[27\left(k^{2}-1\right) / 32\right]} .
$$

From (1) and (2) it follows

$$
\begin{equation*}
(k+1) z^{2}-4 k y^{2}=-3 k+1, \tag{8}
\end{equation*}
$$

and the system of Pellian equations (1) and (2) is equivalent to the system (2) and (8).

Lemma 2. Let $k \geq 2$ and $\theta_{1}=\sqrt{(k-1) / k}, \theta_{2}=\sqrt{(k+1) / k}$. Then all positive integer solutions x, y, z of the simultaneous Pellian equations (2) and (8) satisfy

$$
\max \left(\left|\theta_{1}-\frac{2 x}{z}\right|,\left|\theta_{2}-\frac{2 y}{z}\right|\right)<2.475 z^{-2}
$$

Proof. We have:

$$
\begin{aligned}
& \left|\sqrt{\frac{k-1}{k}}-\frac{2 x}{z}\right|=\left|\frac{k-1}{k}-\frac{4 x^{2}}{z^{2}}\right| \cdot\left|\sqrt{\frac{k-1}{k}}+\frac{2 x}{z}\right|^{-1} \\
& \quad<\frac{1}{k z^{2}}\left|(k-1) z^{2}-4 k x^{2}\right| \cdot \frac{1}{\sqrt{2}}=\frac{3 k+1}{k \sqrt{2}} z^{-2}<2.475 z^{-2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\sqrt{\frac{k+1}{k}}-\frac{2 y}{z}\right|=\left|\frac{k+1}{k}-\frac{4 y^{2}}{z^{2}}\right| \cdot\left|\sqrt{\frac{k+1}{k}}+\frac{2 y}{z}\right|^{-1} \\
& \quad<\frac{1}{k z^{2}}\left|(k+1) z^{2}-4 k y^{2}\right| \cdot \frac{1}{2}=\frac{3 k-1}{2 k} z^{-2} \leq 1.5 z^{-2}
\end{aligned}
$$

Lemma 3. Let m and n be integers such that $v_{m}=w_{n}$. Then $n \equiv 0$ or $-2(\bmod 4 k)$.

Proof. Let us consider the sequences

$$
\begin{aligned}
\left(v_{m} \bmod (2 k-1)\right)_{m \geq 0} & =(1,0,-1,-1,0,1,1,0, \ldots) \text { and } \\
\left(w_{n} \bmod (2 k-1)\right)_{n \geq 0} & =(1,-k,-1, k, 1,-k, \ldots) .
\end{aligned}
$$

We conclude that $v_{m}=w_{n}$ implies that n is even. Set $n=2 l$.
Let us now consider the sequences $\left(v_{m} \bmod 4 k(k-1)\right)$ and $\left(w_{2 l} \bmod 4 k(k-1)\right)$. We have:

$$
\begin{aligned}
\left(v_{m} \bmod 4 k(k-1)\right)_{m \geq 0} & =(1,2 k-1,2 k-1,1,1,2 k-1, \ldots) \\
\left(w_{2 l} \bmod 4 k(k-1)\right)_{l \geq 0} & =(1,-2 k+3,-4 k+5,-6 k+5, \ldots) .
\end{aligned}
$$

It follows easily by induction that $w_{2 l} \equiv-2 l k+(2 l+1)(\bmod 4 k(k-1))$, for all $l \in \mathbb{Z}$. Hence, if $v_{m}=w_{2 l}$, then we have two possibilities:

1) $-2 l k+(2 l+1) \equiv 1(\bmod 4 k(k-1))$

This implies $2 l(k-1) \equiv 0(\bmod 4 k(k-1))$, and $n=2 l \equiv 0(\bmod 4 k)$.
2) $-2 l k+(2 l+1) \equiv 2 k-1(\bmod 4 k(k-1))$

This implies $2(l+1)(k-1) \equiv 0(\bmod 4 k(k-1))$, and $n=2 l \equiv-2$ $(\bmod 4 k)$.

Lemma 4. Let x, y, z be positive integer solutions of the system of Pellian equations (1) and (2) such that $z \notin\left\{1,8 k^{2}-1\right\}$. Then

$$
\log z \geq(4 k-2) \log (4 k-3)
$$

Proof. If z satisfies the conditions of the lemma then from the results of Section 2 it follows that there exists an integer n such that $z=s_{n}$, where

$$
s_{0}=1, s_{1}=6 k-1, s_{n+2}=(4 k-2) s_{n+1}-s_{n}, \quad n \in \mathbb{Z}
$$

Let $\varphi=2 k-1+2 \sqrt{k^{2}-k}$. Now it follows easily by induction that for $n>0$ we have $s_{n} \geq \varphi^{n}$, and for $n<0$ we have $s_{n} \geq \frac{1}{2} \varphi^{|n|}$.

If $n>0$, then Lemma 3 implies $n \geq 4 k-2$, and so $z \geq \varphi^{4 k-2}$. If $n<0$, then Lemma 3 implies $|n| \geq 4 k$, and so $z \geq \frac{1}{2} \varphi^{4 k} \geq \varphi^{4 k-2}$. Hence,

$$
\log z \geq(4 k-2) \log \varphi \geq(4 k-2) \log (4 k-3)
$$

Proposition 1. If $k \geq 29$ and if the set $\{k-1, k+1,4 k, d\}$ has the property of Diophantus, then d has to be $16 k^{3}-4 k$.

Proof. Let z be a positive integer such that $4 k d+1=z^{2}$. Suppose that $d \neq 16 k^{3}-4 k$. Then Lemma 4 implies

$$
\begin{equation*}
\log z \geq(4 k-2) \log (4 k-3) \tag{9}
\end{equation*}
$$

On the other hand, Theorem 2 and Lemma 2 imply

$$
(271 k)^{-1} z^{-1-\lambda}<2.475 z^{-2}
$$

It follows that

$$
z^{1-\lambda}<671 k
$$

and

$$
\begin{equation*}
\log z<\frac{\log (671 k)}{1-\lambda} \tag{10}
\end{equation*}
$$

Since $k \geq 29$, we have

$$
\frac{1}{1-\lambda}=\frac{\log \left[27\left(k^{2}-1\right) / 32\right]}{\log \left[\frac{27\left(k^{2}-1\right)}{32(12 k \sqrt{3}+24)}\right]}<\frac{2 \log (0.9186 k)}{\log (0.03899 k)}
$$

Combining (9) and (10) we obtain

$$
\begin{equation*}
4 k-2<\frac{2 \log (671 k) \log (0.9186 k)}{\log (4 k-3) \log (0.03899 k)} . \tag{11}
\end{equation*}
$$

Since the function on the right side of (11) is decreasing, it follows that $4 k-2<112$. This contradicts our assumption that $k \geq 29$.

4. Linear forms in three logarithms and the Grinstead method

In the proof of the statement of Theorem 1 for $k \leq 28$ we will use the Grinstead method (see [9, 4, 14]). In this section we assume that $2 \leq k \leq 28$.

Let $x=v_{m}=w_{n}$, where $m, n \geq 0$. Then

$$
\begin{align*}
2 \sqrt{k+1} x= & (\sqrt{k-1}+\sqrt{k+1})\left(k+\sqrt{k^{2}-1}\right)^{m} \tag{12}\\
& -(\sqrt{k-1}-\sqrt{k+1})\left(k-\sqrt{k^{2}-1}\right)^{m}
\end{align*}
$$

and

$$
\begin{align*}
4 \sqrt{k} x= & (\sqrt{k-1}+2 \sqrt{k})\left(2 k-1+2 \sqrt{k^{2}-k}\right)^{n} \tag{13}\\
& -(\sqrt{k-1}-2 \sqrt{k})\left(2 k-1-2 \sqrt{k^{2}-k}\right)^{n}
\end{align*}
$$

If we put

$$
\begin{align*}
& P=\frac{\sqrt{k-1}+\sqrt{k+1}}{\sqrt{k+1}}\left(k+\sqrt{k^{2}-1}\right)^{m} \tag{14}\\
& Q=\frac{\sqrt{k-1}+2 \sqrt{k}}{2 \sqrt{k}}\left(2 k-1+2 \sqrt{k^{2}-k}\right)^{n} \tag{15}
\end{align*}
$$

the relations (12) and (13) give

$$
\begin{equation*}
P+\frac{2}{k+1} P^{-1}=Q+\frac{3 k+1}{4 k} Q^{-1} . \tag{16}
\end{equation*}
$$

It is clear that $P>1$ and $Q>1$, and from

$$
P-Q>\frac{2}{k+1} Q^{-1}-\frac{2}{k+1} P^{-1}=\frac{2}{k+1}(P-Q) P^{-1} Q^{-1}
$$

we see that $Q<P$. As we may assume that $m \geq 1$, we have

$$
P \geq \frac{(2 k+1) \sqrt{k-1}+(2 k-1) \sqrt{k+1}}{\sqrt{k+1}}>\sqrt{k^{2}-1}+(2 k-1)>2 k
$$

Furthermore, (16) implies

$$
Q>P-\frac{3 k+1}{4 k} Q^{-1}>P-\frac{3 k+1}{4 k} .
$$

Hence,

$$
\begin{aligned}
P-Q & =\frac{3 k+1}{4 k} Q^{-1}-\frac{2}{k+1} P^{-1} \\
& <\frac{3 k+1}{4 k}\left(P-\frac{3 k+1}{4 k}\right)^{-1}-\frac{2}{k+1} P^{-1}<\frac{3}{4} P^{-1}
\end{aligned}
$$

and finally

$$
0<\log \frac{P}{Q}=-\log \left(1-\frac{P-Q}{P}\right)<\frac{3}{4} P^{-2}+\left(\frac{3}{4} P^{-2}\right)^{2}<\frac{4}{5} P^{-2}
$$

(since $-\log (1-x)<x+x^{2}$, for $\left.x \in\left\langle 0, \frac{1}{2}\right\rangle\right)$. Now from (14) and (15) we obtain the following inequality:

$$
\begin{align*}
0< & m \log \left(k+\sqrt{k^{2}-1}\right)-n \log \left(2 k-1+2 \sqrt{k^{2}-k}\right) \\
& +\log \frac{2(\sqrt{k-1}+\sqrt{k+1}) \sqrt{k}}{(\sqrt{k-1}+2 \sqrt{k}) \sqrt{k+1}} \tag{17}\\
< & \frac{0.8}{\left(k+\sqrt{k^{2}-1}\right)^{2 m}}<e^{-2 m \log (2 k-1)} .
\end{align*}
$$

Now we will apply the following theorem of BAKER and WüSTholz [3]:

Theorem 3. For a linear form $\Lambda \neq 0$ in logarithms of l algebraic numbers $\alpha_{1}, \ldots, \alpha_{l}$ with rational integer coefficients b_{1}, \ldots, b_{l} we have

$$
\log |\Lambda| \geq-18(l+1)!l^{l+1}(32 d)^{l+2} h^{\prime}\left(\alpha_{1}\right) \cdots h^{\prime}\left(\alpha_{l}\right) \log (2 n d) \log B
$$

where $B=\max \left(\left|b_{1}\right|, \ldots,\left|b_{l}\right|\right)$, and where d is the degree of the number field generated by $\alpha_{1}, \ldots, \alpha_{l}$.

Here

$$
h^{\prime}(\alpha)=\frac{1}{d} \max (h(\alpha),|\log \alpha|, 1),
$$

and $h(\alpha)$ denotes the standard logarithmic Weil height of α.
In the present situation we have $l=3, d=4, B=m$, and

$$
\begin{gathered}
\alpha_{1}=k+\sqrt{k^{2}-1}, \quad \alpha_{2}=2 k-1+2 \sqrt{k^{2}-k}, \\
\alpha_{3}=\frac{2(\sqrt{k-1}+\sqrt{k+1}) \sqrt{k}}{(\sqrt{k-1}+2 \sqrt{k}) \sqrt{k+1}}
\end{gathered}
$$

with corresponding minimal polynomials

$$
\begin{gathered}
\alpha_{1}^{2}-2 k \alpha_{1}+1=0, \quad \alpha_{2}^{2}-2(2 k-1) \alpha_{2}+1=0, \\
\left(9 k^{4}+24 k^{3}+22 k^{2}+8 k+1\right) \alpha_{3}^{4}-16 k\left(3 k^{3}+7 k^{2}+5 k+1\right) \alpha_{3}^{3} \\
+48 k^{2}\left(k^{2}+4 k+3\right) \alpha_{3}^{2}-128 k^{2}(k+1) \alpha_{3}+64 k^{2}=0 .
\end{gathered}
$$

If $x=v_{m}=w_{n}, m \geq 0$ and $n \leq 0$, then we obtain an identical result, since

$$
\alpha_{3}^{\prime}=\frac{2(\sqrt{k-1}+\sqrt{k+1}) \sqrt{k}}{(-\sqrt{k-1}+2 \sqrt{k}) \sqrt{k+1}}
$$

has the same minimal polynomial as α_{3}.
We get
$h^{\prime}\left(\alpha_{1}\right)=\frac{1}{2} \log \alpha_{1}<\frac{1}{2} \log (2 k)$,
$h^{\prime}\left(\alpha_{2}\right)=\frac{1}{2} \log \alpha_{2}<\frac{1}{2} \log (4 k-2)$,
$h^{\prime}\left(\alpha_{3}\right)=h^{\prime}\left(\alpha_{3}^{\prime}\right)=\frac{1}{4}\left[2 \log \left(3 k^{2}+4 k+1\right)+\log \alpha_{3}+\log \alpha_{3}^{\prime}\right]<\frac{1}{4} \log \left(147 k^{4}\right)$.
From (17) and Theorem 3 we obtain

$$
\begin{equation*}
\frac{m}{\log m}<1.1941 \cdot 10^{14} \cdot \log (4 k-2) \log \left(147 k^{4}\right) . \tag{18}
\end{equation*}
$$

Since $k \leq 28$ we have

$$
\frac{m}{\log m}<1.044 \cdot 10^{16}
$$

and so

$$
m<5 \cdot 10^{17}
$$

Now we adopt Grinstead's strategy [9] in order to show that $v_{0}=$ $w_{0}=1$ and $v_{2}=w_{-2}=4 k^{2}-2 k-1$ are the only solutions of the equation $v_{m}=w_{n}, m \geq 0$ for $2 \leq k \leq 28$. These solutions correspond to $d=0$ and $d=16 k^{3}-4 k$.

We will prove that from $v_{m}=w_{4 l}$ (resp. $v_{m}=w_{4 l-2}$) it follows that $l=0$. Since $|n|<m<5 \cdot 10^{17}$, it is sufficient to show that

$$
l \equiv 0 \quad(\bmod 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 31 \cdot 37 \cdot 41 \cdot 43 \cdot 47)
$$

Let $b_{l}=w_{4 l}$, resp. $b_{l}=w_{4 l-2}$. We define $L(q)$ to be the length of the period of the sequence $\left(b_{l} \bmod q\right)$. Let p be a prime. If $p=2$, we choose an integer q such that $L(q)$ is even and the sequences $\left(b_{2 l+1} \bmod q\right)$ and $\left(v_{m} \bmod q\right)$ have empty intersection. Thus we conclude that $l \equiv 0(\bmod 2)$. In the same manner we prove $l \equiv 0(\bmod 3)$ and $l \equiv 0(\bmod 5)$. Let $5<p \leq 47$ and assume that for all primes $r<p$, it has been shown that $l \equiv 0(\bmod r)$. We follow $[9]$ in proving that $l \equiv 0(\bmod p)$ by considering $\left(v_{m} \bmod q\right)$ and $\left(b_{l} \bmod q\right)$, where q is a prime with the property that $L(q)$ is divisible only by primes not exceeding p, is powerfree and is divisible by p (see $[9,4]$ for details). It is useful to observe that if $\left(\frac{k(k-1)}{q}\right)=1$ then $L(q) \mid q-1$, and if $\left(\frac{k(k-1)}{q}\right)=-1$ then $L(q) \mid q+1$.

We will illustrate this method with an example. We will show that $l \equiv 0(\bmod 19)$ in the case $k=4$ and $b_{l}=w_{4 l}$. The two values of q we will use are $q=113$ and $q=151$. We have $L(113)=57$ and $L(151)=19$. First, let $q=113$. We have:

$$
\begin{gathered}
\left(w_{4 l} \quad \bmod 113\right)_{l \geq 0}= \\
\quad(1,71,15,4,5,21,100,27,35,35,27,100,21,5,4,15,71,1,47,8,106 \\
\quad 70,18,20,82,51,60,23,55,26,75,10,88,91,28,49,104,19,104,49 \\
\quad 28,91,88,10,75,26,55,23,60,51,82,20,18,70,106,8,47,1,71, \ldots) \\
\left(v_{m} \quad \bmod 113\right)_{m \geq 0}= \\
\quad(1,7,55,94,19,58,106,112,112,106,58,19,94,55,7,1,1,7, \ldots)
\end{gathered}
$$

We assume that $l \equiv 0(\bmod 3)$, which can be proved by considering $\left(w_{4 l} \bmod 68\right)$ and ($v_{m} \bmod 68$). By comparing sequences, we see that $w_{4 l} \equiv 1$ or $106(\bmod 113)$ and $l \equiv 0$ or $16(\bmod 19)$.

Next, let $q=151$. We have:

```
( w4l mod 151) (\geq0 =
    (1, 87, 24, 149, 57, 34, 76, 59, 26, 96, 12, 22, 3, 83, 33, 15, 39, 142, 99,
    1,87,\ldots.),
(vm mod 151) m\geq0
    (1,7,55, 131, 87, 112, 54, 18, 90, 98, 90, 18, 54, 112, 87, 131, 55, 7, 1,
    1,7,\ldots.).
```

Since the number 39 is in the position $16(\bmod 19)$ in the first sequence, and it does not occur in the second sequence, we have $l \equiv 0(\bmod 19)$.

We list the values of q used in the proof of Theorem 1 for $k=4$ and $k=5:$

p	q for $k=4$	q for $k=5$
2	8	23
3	$68^{*}, 380^{* *}$	51
5	$29^{* *}, 55^{*}$	35
7	$41,71,139,337^{* *}, 421^{* *}$	$13,29,71$
11	$23,43,307,439^{*}$	$43,89,197,199,263,307^{* *}$,
		$331^{* *}, 661^{* *}$
13	103,131	$79,103,131$
17	$67,101,239,271^{* *}$	$67,239,373$
19	113,151	$37,113,191,227^{*}$
23	$47,137,277,367,599^{*}$	$137,139,461,599,643,691^{* *}$,
		$827^{* *}$
29	$59,173,349,463$	$59,173,347$
31	$311,373,619,683$	$311,433,557^{* *}, 743^{* *}$
37	$739,1109,1259$	$73,149,443,887$
41	$83,163,1229$	$163,739,821,983^{*}$
43	$257,431,859^{* *}, 947^{* *}, 1033^{* *}$	$257,431,773,1117$
47	$281,659,751,1129^{*}$	563,659

The numbers with ${ }^{*}$, resp. ${ }^{* *}$, are used in the case $b_{l}=w_{4 l}$, resp. $b_{l}=$ $w_{4 l-2}$ only. In the actual running of this algorithm for all cases $2 \leq k \leq 28$, no prime p required more than eight values of q, and the greatest value of q which appeared was 3011 . The computer program was developed in FORTRAN and the computation time was about 50 seconds on a HP 9000 workstation.

5. Final remarks

We can prove Theorem 1 for $k \leq 28$ using the reduction method based on the Baker-Davenport lemma ([2], see also [8, Lemma 2]). Let $\kappa=\log \left(k+\sqrt{k^{2}-1}\right) / \log \left(2 k-1+2 \sqrt{k^{2}-k}\right)$ and
$\mu_{1,2}=\log \frac{2(\sqrt{k-1}+\sqrt{k+1}) \sqrt{k}}{(\pm \sqrt{k-1}+2 \sqrt{k}) \sqrt{k+1}} / \log \left(2 k-1+2 \sqrt{k^{2}-k}\right)$. Assume that $m<M$. Let p / q be the convergent of the continued fraction expansion of κ such that $q>3 M$ and let $\varepsilon=\|\mu q\|-M \cdot\|\kappa q\|$, where $\|\cdot\|$ denotes the distance from the nearest integer. If $\varepsilon>0$, then

$$
m<\frac{1}{2 \log (2 k-1)} \log \frac{q}{\varepsilon \log \left(2 k-1+2 \sqrt{k^{2}-k}\right)} .
$$

Starting with $M=5 \cdot 10^{17}$ we obtain after reduction that $m \leq 14$ (for all $3 \leq k \leq 28$), and the next step of the reduction gives $m \leq 0$ for μ_{1} and $m \leq 2$ for μ_{2}, which completes the proof.

We can combine Lemma 3 and inequality (18) to prove the statement of Theorem 1 for k sufficiently large, without using Rickert's result. The bound obtained in this way ($k \leq 2 \cdot 10^{19}$) can be slightly improved by considering the sequences $\left(v_{m}\right)$ and $\left(w_{n}\right) \bmod (2 k-1)^{2}$, but it will be still much weaker than the bound $(k \leq 28)$ obtained in Proposition 1.

From Theorem 1 it follows that for $k \geq 2$ the Diophantine quadruple $\left\{k-1, k+1,4 k, 16 k^{3}-4 k\right\}$ cannot be extended to a Diophantine quintuple. However, the rational number

$$
\frac{4 k(2 k-1)(2 k+1)\left(4 k^{2}-2 k-1\right)\left(4 k^{2}+2 k-1\right)\left(8 k^{2}-1\right)}{\left(64 k^{6}-80 k^{4}+16 k^{2}-1\right)^{2}}
$$

has the property that its product with any of the elements of the above set increased by 1 is the square of a rational number (see $[1,7]$). This is a special case of the more general fact that for every Diophantine quadruple $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ there exists a positive rational number a_{5} such that $a_{i} a_{5}+1$ is the square of a rational number for $i=1,2,3,4$ (see [7, Corollary 1]).

Acknowledgements. The author would like to thank Professor Attila Ретно̋ for many helpful comments and improvements on an earlier draft of the manuscript.

References

[1] J. Arkin and G. E. Bergum, More on the problem of Diophantus, Application of Fibonacci Numbers (A. N. Philippou, A. F. Horadam, G. E. Bergum, eds.), vol. 2, Kluwer, Dordrecht, 1988, pp. 177-181.
[2] A. Baker and H. Davenport, The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
[3] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62.
[4] E. Brown, Sets in which $x y+k$ is always a square, Math. Comp. 45 (1985), 613-620.
[5] Diofant AleksandriĭskiĬ, Arifmetika i kniga o mnogougol'nyh chislakh, Nauka, Moscow, 1974.
[6] A. Dujella, Generalization of a problem of Diophantus, Acta Arith. 65 (1993), 15-27.
[7] A. Dujella, On Diophantine quintuples, Acta Arith. (to appear).
[8] I. GaÁL, On the resolution of inhomogeneous norm form equations in two dominating variables, Math. Comp. 51 (1988), 359-373.
[9] C. M. Grinstead, On a method of solving a class of Diophantine equations, Math. Comp. 32 (1978), 936-940.
[10] B. W. Jones, A variation on a problem of Davenport and Diophantus, Quart. J. Math. Oxford Ser. 27 (1976), 349-353.
[11] B. W. Jones, A second variation on a problem of Diophantus and Davenport, Fibonacci Quart. 16 (1978), 155-165.
[12] P. Kanagasabapathy and T. Ponnudurai, The simultaneous Diophantine equations $y^{2}-3 x^{2}=-2$ and $z^{2}-8 x^{2}=-7$, Quart. J. Math. Oxford Ser. (2) 26 (1975), 275-278.
[13] T. Nagell, Introduction to Number Theory, Almqvist, Stockholm, Wiley, New York, 1951.
[14] R. G. E. Pinch, Simultaneous Pellian equations, Math. Proc. Cambridge Philos. Soc. 103 (1988), 35-46.
[15] J. H. Rickert, Simultaneous rational approximations and related diophantine equations, Math. Proc. Cambridge Philos. Soc. 113 (1993), 461-472.
[16] G. Sansone, Il sistema diofanteo $N+1=x^{2}, 3 N+1=y^{2}, 8 N+1=z^{2}$, Ann. Mat. Pura Appl. (4) 111 (1976), 125-151.
[17] P. G. Tsangaris, Fermat-Pell equation and the numbers of the form $w^{2}+(w+1)^{2}$, Publ. Math. Debrecen 47 (1995), 127-138.
[18] M. Veluppillai, The equations $z^{2}-3 y^{2}=-2$ and $z^{2}-6 x^{2}=-5$, A Collection of Manuscripts Related to the Fibonacci sequence (V. E. Hoggatt, M. Bick-nell-Johnson, eds.), The Fibonacci Association, Santa Clara, 1980, pp. 71-75.

```
ANDREJ DUJELLA
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ZAGREB
BIJENIČKA CESTA 30
10000 ZAGREB
CROATIA
E-MAIL: duje@math.hr
```

(Received January 17, 1997, revised March 17, 1997)

[^0]: Mathematics Subject Classification: Primary 11D09, 11D25; Secondary 11B37, 11J68, 11J86, 11Y50.

