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Degree of approximation to functions in a normed space

By TIKAM SINGH (Ujjain)

1. Let {sn} be the sequence of partial sums of * a n- Let JI = (An%*)
be a lower triangular infinite matrix, i.e. An* = 0 for & > n and let
A-transform of the sequence {sn} be given by

7
(1.1) Tn= " "Ank$k? u= 021%2,... .
k=0

Let C2n be the class of all 27r-periodic continuous functions / on
[0,2n/ having Fourier series

®
(1.2) / ~ Q2 + "~(ancosnx + bnsin nx).
n=1
We define the space Hu by
(1.3) Hu = {fe Cln:|/(x)- fiy)I< Ku(\x - y\)}
and the norm |[|.|** by
(1-4) N/1w* = 1/]le + sup{A"*/(x, y)},
=%
where
(1-5) Wiwe = sup |/(x)],
0<x<2n
and
™ A > - e T mEye

and J1°/(s,y) = 0, u(t) and u*(t) being increasing functions of ¢ If
u(lx —yh < A\x —yla and u*(\x —y)) < Kx —y|*, 0< ff<a <1, 4
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and K being positive constants, then the space
(1.7) Ha= {/ e al/(*) - j

is a Banach space ([4]) and the metric induced by the norm ||.|ja on Ha
is said to be a Holder metric. We write

(1.8) i>x(t) = /(¥ + )+ /(% - - 2/(x).

Throughout the paper / will be taken to be periodic and u(#) the modulus
of continuity of f e C2n- {Pn}i and {pn}!$ stands for non-decreasing and
non-increasing sequences, respectively.

The following theorem is proved by CHANDRA ([2]) taking sup norm

I.y on 0 < X < 2Tr.

Theorem. Let A = (An¥) satisfy the following conditions.

n
JO
and
(1.10) Ank < An jt+1 (k =0,1,2,... ,n —
T
Let uj(t) l/ u_2w(u) du = O(H(t)),
(i.ii) 7 u~2uj(u) du = 0(#(t)), H(t) >0,
t
and
t
(1.12)
0
Then
(1.13) ITn(/, X) - /|| = 0(tr/n)) + O(Annfi(rr/rr)).
H, in addition to (1.11), (1-12) be satisfied, then
(1.14) WIn(f,x) —/|| = O(Ann(A(tr/rr)).

2. The object of this paper is to widen the scope of the above theorem
of CHANDRA under more general assumptions and to include a number of
interesting results. For analogous conditions on the function, one may
refer to MoHAPATRA and CHANDRA ([3]) and SINGH ([6]). Precisely, we
prove
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Theorem I. Let A =(An*)
Then for £ Hup< f < g1

2 . UT.(LF) - (. = offai(x - »)}" K (1* - H)T *-
e (/»»-"TA,.(»«"+ >5«'}] + 0(A,,,A(<r/M)),

if w>(atisfies (1.11) and (1.12), and

[|U/,x) - /1U- = 0[M [x - y[)"*{w*(|* VYI)}-1-
(2.2) ((w(*/n))1- A~ + Xnnn
+ O(u(n/n))+ 0(A,,,,A(71/m)),

ifu>(f) satisfies (1.11).

Theorem II. Let A = (An¥) satisfy (1.9)
(2.3) At > Atttk =0,1,2,... , I, =0,1,2,...).
Leta;(t) be such that the g1.11) and (1.12) be

for  p Hup<p < g1
I (/%)= /10 = O[M % -n )} e ([*-n [)> - -
UW U))E""(«"" + 0(1,,,,51(A,,0)).
3. We shall require the following lemma in the proof of the theorems.

Lemma. Let u(t) satisfy (1.11) and (1.12), then
U
(3.1 Jt"*u(t)dt = O(uH(u)), u”0+.
0

For the proof of the lemma see CHANDRA ([2]).

4. Proof of Theorem I. It is to be noted that

(4.1) Ibe(t)-Qy(t)\<4Ku(\t)),
and also
4.2) [0x(O - 0*(i)l < 44u(\x - y|).

We have
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Tn(/,*) = £ A nt SF(*).

|59
Setting
n
En(x) = Tn(/, x) - f(x)= ~ JM b £ JI'*
) fc0
and
n(*>y) = En(x) En{y) =
= h/ Asta(</*7 0 & JI" »to(t+ 1/2)<a,
O ské¢ O
we get
w/n T
4.3) \En(x,y)\< J +J =/i+/2>
say, where
1>*<*_ka
~NLLc Eom o117 I_Ik
and

& / ~ ~ 1 g ~ + H *
rm

Now using (1.9), (4.1) and the lemma and taking sin(fc + 1/2)t = 0(1), we
get

T U

(4.4) 11=0(1)J  r'u(t) dt =0 (£#(»/n)) = 0(AnmsI(tr/m)),

since by (1.10), Ant < K,A+i and, therefore, (n + 1)Ann > £ Anfc = 1
*=0
gives n“ 1= O(Ann). Further, by (1.11) and (1.12) and integration by parts



(4.5)

(4.6)
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n/n n n/n
I'= 0(1) J(t o(t)"2 1/2
o k~° 0
w w/n n
=0(n) ~t u~2u(u)du™ 2
=0 [n 1H(Trfn)]= 0[J1,,,,A(7r/m)].

But from (4.5) and (1.12)

(4.7)

265

= 0(n)

Ii =0(n)u(>—= O(w(ff/n)).

By (1.10) BUid Abel’s lemma, we see that

(4.8)

n

A2 Jle* sin(fc+ V 2)* = °(nmm<-1)
f=o

and, therefore, by (1.11)

4.9)

12 =0O(Ann)

n/n

Again by (1.9) and (4.2)

(4.10)

n/n
Ii= O[w(jx —yQ] 1i-1 *2 Anjfcjsin(fc + 1/2)t]
0 JFO
»/» n
= O[w(x —y))] /
0

= 0w ([*-yD],

and by (4.2) and (4.8)

(4.11)

n

12= Olv>(x —y|)|/J2Ann = O[w(]x —y|) n Ann].

n/n

Now noting that

(4.12)

Ir=1Td-"p[") - 1,2,

J

=0(AnoA (T
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we have, from (4.4) or (4.6) and (4.10)

(413) h =le<d"»A ("/")>1," /" [ ("d* - *1)>"4
SO(M |.-» )« {AA(»/m))*-'"U

and from (4.9) and (4.11)

(4.14) 12= O[{w(X-y\) ¥V Ann

On the other hand, from (4.7) and (4.10)

(4.15) 1E 0f{u(\x- y|))H" {

Thus from (4.13) and (4.14)

a,p AW Bl (TAM, )jen #7pCHA 2 ()L

(4.16) =0[K(|x - YD}-1MI* -
1-p/r,
(12 0) 'x. {x; !/« ],

and from (4.14) and (4.15)
=0[{er (I*-y[)}-THT* -y )}/,
4.17) {(I[n
(H

It is to be noted that

#n(* = Tn(/, X) - /
#n(Dlle = mae [Tn( ) - /|

_ fOUIITEA(7T/n)), from (4.6) and (4.9)

(4.18) 1 0(oj(n/n))-|0(0(nn}1(7r/Tr)), from (4.7) and (4.9).

Combining (4.16) with the first part of (4.18) and (4.17) with the
second part of (4.18), the required results are established.
5. ProofofTheorem II. From the proof of Theorem I, we have

Ao T
(5.1) \En(x,y)\<J +J=JI1+J2
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By the lemma

JB° n
(5.2) 1< / Fu () A" Tsin(* + V2)i 0(ArOSI(A 10)),
o *=0

and by (1.9), Abel’s lemma and (2.3), we have
n
(5.3) J2 = O(An0) 7 t~2u{t) =0(An0s(Ano)).
MO
Again, using (4.2) and (1.9), we get

5.4) J1=0(n w(x —yD* A,t / cft= 0(n w(x —y|)An0),
k=o
and
n
(5.5) J2=0(u>(|x-y]) JH0 = O(w(jx —y.
MO
Proceeding as in the proof of theorem I, we have
(5.6a) J1=0 AnO{n® (|x-y[}*"{A(An0)}1- »
and
(5.6b) J12=0 [{(w(x - y}/IIA(An0O)An0}1-~"] .
Thus
Sup [A"*5.,(x.y)[ = 0 [{w(x - X-yhy ™
(5.7) oY

AnO{SA(Am0)}1-~ { ~ /a+ A -~} .
It is obvious from (5.2) and (5.3) that

(5.8) WEn(x,y)\\c = 0(JInOS (JInO)).
Combine (5.7) and (5.8) for the proof of the Theorem II.
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6. Corollaries. The following are the corollaries based on Theorem I

Put w*(jx - y[) < Kix  -yBw(x - y]) < yl"
for a = 1 and ff(f) = t°-1 for 0 < al and rej

Corollary 1. tA = (An*)s(.9) and (1.10) and G
Ha, 0 < B < a <1, then

O(Annlogn) 4 0 Jn*Ann(logn)l + (Annlogn)l
a=1

0 [n1-0+*Ann] +0 [(Annn1-")1-~ “], 0<a < I,

and
i A1)+ 0(A A =1,
12n(/.x) — _ 0(n”-1) (Ann n* (logn)1 1
“ N 0(nM~")+ 0(A,,,,n 1- “+7M), O<ax<l.
The later result is the theorem 2 due to MoHAPATRA and CHANDRA
(3D-

If we put f = 0, so that u*(\x ~ yj) < K and the norm ||.| stands
for the sup norm on C:2n in Theorem I, then it reduces to the CHANDRA’s
Theorem (loc. cit.).

Ifp=0and / GLipa, 0< a < 1, so that u>@# = 0(ta) and

(6.1)

we have from Corollary 1

Corollary 2. Let JI1 = (JIo*) satisfy (1.9), (1.10) and / E Lipa, 0 <
a <1, then

Ta-</.-)-/m-% @ - add, &4 %<1,

and
0O(n ~ + O(Ann Iogn), =1,

T2 gy + (ni=Am),  0<o<I.

If we put w*(jx —y|) < K\x —y|
T by a in Theorem II, we have by (6.1).
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Corollary 3. Let A= (A)
Ha,0 < B < a <1, then

i-f3
0 [(JI"™10S A*)] + 0 [n"A«o (log n ")

o = - +o[(am Togh-) j, a= 1,

y 0(m30)+ o(yo/“C -w /")t o(a3/), o<« <

If we put £ =0 in the above corollary, then
Corollary 4. LetA= (A,*)
0< a<, then

0 (JI'ol°6A ~)” a= 1>
0(A“0), 0<a<l

WTn(M-fWw

Now we specialize the matrix JI = (An*). If we put An* = ~t and
Anik = *7>~ in the transform Tn(/, x), we have, respectively

and

Nn(f,x) = "- "pn_*S8*(x),
<ﬂ;)ik=0
transforms, where

Pn="Pk,
k=0
If we put cj*(|x-y|) < X|x-y|", u>(|x-y|) < A|x—y]a, and replace #/
by ain Theorems I and II, and if we put Ann = Pn/Pn, {Pn)t in Theorem
I and AnO= Pn/Pn, {Pn)$i in Theorem II, then the following coroUaries
are obtained, respectively, keeping in view (6.1)

Corollary 6. Forf GHct, 0< f <a < 1, {pu}l, we have

e(ftn'-"*)+e(n'-ft)1*"*, 0< 1,

Il
—_

0O(n*(logn)1™) , a
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and

0»*"™y + 0 {pini~athp  0<a <L
WNn{f,x)-fh =
0(n ") + o(*u”log*"~n), a = l.

Corollary 7. ForfGJTa, 0 < <1, {pn}i> we

"ea VY Em) O Thpn R

a=1
' \a-ﬁ\ UO—ﬁ+ﬁ/ot
,P ]

0<a<l

Putting £ = 0 in the CoroUary 6, we have special results for N n(f,x)
transformations and from Corollary 7, we have the following theorem due
to SINGH ([5]).

Corollary 8. Iff ELipa, 0< a < 1 and {pn}1i, then

S °%[Mles M)’ a=

:lI]:JQQ 0<a<l

If we put w*(|x-y[) < Kix- ypw(x - y]) -
and replace 7 by a in the second part of Theorem I, we have

Corollary 9. Forf EHa, 0<f <a <1

Wn(M-fWw

> 0(n*"e), 0<ac<l,

W}’l(f,X)'foi O[HA *(l + logn)l P], a=1.

This is result of PROSSDORF ([4]), where an(f, x) is the Fejer operator.
Put 5 = 0 in the above corollary to get one of the results of ALEXITS ([1]).
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