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On compositions of distributions

By KOU HUAIZHONG (Xixing City) and BRIAN FISHER (Leicester)

Abstract. Using a double neutrix limit, the paper investigates the compositions
of one-dimensional distributions and obtains a universal definition of the compositions
of distributions.

1. Introduction

Since 1950, much investigation has been carried out on the composi-
tions of distributions, see [3], [6] and [7], but only in the case where the
functions involved have been continuous or at most locally summable. No
meaning could be given to expressions of the form H(δ(s)(x)), δ(r)(δ(s)(x)),
[δ(r)(x)]s and the like. The purpose of this paper is to achieve a new univer-
sal definition of the compositions of distributions, where a double neutrix
limit is used. Accordingly, the questions not resolved are worked out.

2. Preliminaries

2.1. Neutrix and Neutrix Limit

The following definition of a neutrix was given by van der Corput
[1]:

Definition 2.1. Let N ′ be a set and let N be a commutative, additive
group of functions mapping N ′ into a commutative, additive group N ′′.
If N has the property that the only constant function in N is the zero
function, then N is said to be a neutrix and the functions in N are said
to be negligible.

Now suppose that N ′ is a subspace of a topological space X having a
limit point y which is not contained in N ′. Let N ′′ be the real (or complex)
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numbers and let N be a commutative, additive group of functions mapping
N ′ into N ′′ with the property that if N contains a function ν(x) which
converges to a finite limit c as x tends to y, then c = 0. N is a neutrix,
since if f is in N and f(x) = c for all x in N ′, then f(x) converges to the
finite limit c as x tends to y and so c = 0.

This leads us to a second definition of van der Corput [1].

Definition 2.2. Let f(x) be a real (or complex) valued function defined
on N ′ and suppose it is possible to find a constant c such that f(x)− c is
negligible in N . Then c is called the neutrix limit of f(x) as x tends to y
and we write

N− lim
x→y

f(x) = c.

Note that if a neutrix limit exists, then it is unique, since if f(x)− c
and f(x)− c′ are in N , then the constant function c− c′ is also in N and
so c = c′.

In the following we let N the neutrix having domain N ′ = {1, 2, . . . ,
n, . . . }, range the real numbers and y = ∞, with negligible functions finite
linear sums of the functions

nλ lnr−1 n, lnr n : λ > 0, r = 1, 2 . . .

and all functions which converge to zero in the normal sense as n tends to
infinity.

We will use n or m to denote a general term in N ′ so that if {an} is a
sequence of real numbers, then N− lim

n→∞
an means exactly the same thing

as N− lim
m→∞

am.

Note that if {an} is a sequence of real numbers which converges to a in
the normal sense as n tends to infinity, then the sequence {an} converges
to a in the neutrix sense as n tends to infinity and

lim
n→∞

an = N− lim
n→∞

an.

2.2. Convolution and regularity

We now let ρ(x) be any infinitely differentiable function having the
following properties:

(i) ρ(x) = 0 for |x| ≥ 1,

(ii) ρ(x) ≥ 0,

(iii) ρ(x) = ρ(−x),
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(iv)
1∫
−1

ρ(x)dx = 1.

Putting δn(x) = nρ(nx) for n = 1, 2 . . . , it follows that {δn(x)} is
a regular sequence of infinitely differentiable functions converging to the
Dirac delta-function δ(x).

Now let D be the space of infinitely differentiable functions with com-
pact support and let D′ be the space of distributions defined on D. Then
if f is an arbitrary distribution in D, we define

fn(x) = (f ∗ δn)(x) = 〈f(t), δn(x− t)〉
for n = 1, 2, . . . . It follows that {fn(x)} is a regular sequence of infinitely
differetiable functions converging to the distribution f(x).

3. Compositions

Since 1983, the second author in [3], [4] and [5] has investigated the
composition of distributions using neutrix limits. The following definition
was given in [5] and is the most general.

Definition 3.1. Let F be a distributiuon in D′ and let f be a locally
summable function. We say that the distribution F (f(x)) exists and is
equal to h(x) on the interval (a, b) if

N− lim
n→∞

∞∫

−∞
Fn(f(x))φ(x) dx = 〈h(x), φ(x)〉

for all test functions φ in D with support contained in the interval (a, b),
where

Fn(x) = (F ∗ δn)(x)

for n = 1, 2, . . . and N is the neutrix given in the previous section.

We now give an alternative definition for the distribution F (f).

Definition 3.2. Let F and f be distributions in D′. We say that the
distribution F (f(x)) exists and is equal to h(x) on the interval (a, b) if

N− lim
n→∞

[
N− lim

m→∞

∞∫

−∞
Fn(fm(x))φ(x) dx

]
= 〈h(x), φ(x)〉
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for all φ in D with support contained in the interval (a, b), where

Fn(x) = (F ∗ δn)(x), fm(x) = (f ∗ δm)(x)

for m, n = 1, 2, . . . .

In the following theorem, we show that Definition 3.2 generalizes De-
finition 3.1 for bounded, locally summable functions f .

Theorem 3.1. Let F be a distribution in D and let f be a bounded,

locally summable function. If the distribution F (f(x)) exists and equals

h(x) under Definition 3.1 on the interval (a, b), then F (f(x)) also exists

under Definition 3.2 on the interval (a, b) and is equal to h(x).

Proof. Suppose that F (f(x)) exists and equals h(x) under Defini-
tion 3.1 on the interval (a, b). Then

N− lim
n→∞

〈Fn(f(x)), φ(x)〉 = 〈h(x), φ(x)〉

for all φ in D(a, b). Now

lim
m→∞

∫

I

|fm(x)− f(x)| dx = 0,

for any bounded interval I, since f is a bounded, summable function.
Further, since Fn is a continuously differentiable function and f, fn are
bounded, it follows that

|Fn(fm(x))− Fn(f(x))| ≤ Kn|fm(x)− f(x)|,
for some Kn. We therefore have

∣∣∣∣∣∣

b∫

a

[Fn(fm(x))− Fn(f(x))]φ(x) dx

∣∣∣∣∣∣
≤ MKn

d∫

c

|fm(x)− f(x)| dx,

where
M = sup{|φ(x)|}

and [c, d] is a bounded interval containing the support of φ and so

lim
m→∞

b∫

a

Fn(fm(x))φ(x) dx =

b∫

a

Fn(f(x)) dx,
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or equivalently

N− lim
m→∞

〈Fn(fm(x)), φ(x)〉 = 〈Fn(f(x)), φ(x)〉.

Thus

N− lim
n→∞

[
N− lim

m→∞
〈Fn(fm(x)), φ(x)〉

]
= N− lim

n→∞
〈Fn(f(x)), φ(x)〉

= 〈F (f(x)), φ(x)〉
= 〈h(x), φ(x)〉,

and it follows that F (f(x)) exists and equals h(x) by Definition 3.2.

It is an open question as to whether Definition 3.2 is a generalization
of Definition 3.1 for all locally summable functions.

From now on, the compositions that we will consider will be using
Definition 3.2.

Theorem 3.2. Let F be a bounded, continuous, summable function
on the real line. Then the distribution F (δ(s)(x)) exists on the real line
and

F (δ(s)(x)) = F (0),

for s = 0, 1, 2, . . . .

Proof. We put

Fn(x) = (F ∗ δn)(x), δ(s)
m (x) = (δ(s) ∗ δm)(x)

for m, n = 1, 2, . . . .
Choosing an arbitrary ε > 0, there exists an M such that mε > 1 for

m > M . Then with m > M , we have

δ(s)
m (x) = ms+1ρ(mx) = 0

for |x| > ε and so
Fn(δ(s)

m (x)) = Fn(0)

for |x| > ε. Thus, for arbitrary φ in D with support contained in the
interval (a, b), which we may suppose contains the origin,

〈Fn(δ(s)
m (x), φ(x)〉 =

b∫

a

Fn(δ(s)
m (x))φ(x) dx

= Fn(0)

−ε∫

a

φ(x) dx + Fn(0)

b∫

ε

φ(x) dx +

ε∫

−ε

Fn(δ(s)
m (x))φ(x) dx,
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for m > M . Thus

∣∣〈Fn(δ(s)
m (x)− Fn(0), φ(x)〉∣∣ =

∣∣∣∣∣∣

ε∫

−ε

[
Fn(δ(s)

m (x))− Fn(0)
]
φ(x) dx

∣∣∣∣∣∣
≤ 2εK

for m > M , where

K = sup
{∣∣[Fn(δ(s)

m (x))− Fn(0)
]
φ(x)

∣∣ : m,n = 1, 2, . . . ; x ∈ R
}

< ∞,

since Fn and φ are bounded functions. It follows that

lim
m→∞

〈Fn(δ(s)
m (x)), φ(x)〉 = 〈Fn(0), φ(x)〉

and so

N− lim
n→∞

[
N− lim

m→∞
〈Fn(δ(s)

m (x)), φ(x)〉
]

= lim
n→∞

〈Fn(0), φ(x)〉
= 〈F (0), φ(x)〉.

This proves that F (δ(s)(x)) exists and is equal to F (0) for s = 0, 1, 2, . . . .

Theorem 3.3. The distribution H(δ(s)(x)) exists on the real line and

H(δ(s)(x)) =
1
2

,

for s = 0, 1, 2, . . . , where H denotes Heaviside’s function.

Proof. We put
Hn(x) = (H ∗ δn)(x)

for n = 1, 2, . . . , so that

Hn(x) =





1, x > 1/n,
x∫

−1/n

δn(x) dt, |x| ≤ 1/n,

0, x < −1/n,

0 ≤ Hn(x) ≤ 1, Hn(0) =
1
2
,

for n = 1, 2, . . . .
Choosing arbitrary ε > 0, there exists M such that mε > 1 for m >

M . It then follows as above that

Hn(δ(s)
m (x)) = Hn(0) =

1
2
,



On compositions of distributions 285

for |x| > ε and m > M and so

∣∣∣
〈
Hn(δ(s)

m (x))− 1
2
, φ(x)

〉∣∣∣ =
∣∣∣

ε∫

−ε

[
Hn(δ(s)

m (x))− 1
2

]
φ(x) dx

∣∣∣ ≤
ε∫

−ε

|φ(x)| dx

for m > M and arbitrary φ in D. The result of the theorem follows as
above.

Theorem 3.4. Let F be a bounded, summable function on the real
line which is continuous everywhere except for a simple discontinuity at
the origin. Then the distribution F (δ(s)(x)) exists on the real line and

F (δ(s)(x)) =
1
2
[F (0+) + F (0−)]

for s = 0, 1, 2, . . . .

Proof. Let F (0+)− F (0−) = c. Then the function G defined by

G(x) = F (x)− cH(x)

satisfies the conditions of Theorem 3.2. Thus

G(δ(s)(x)) = G(0) = F (0−),

and so

G(δ(s)(x)) + cH(δ(s)(x)) = F (0−) +
1
2
[F (0+)− F (0−)]

=
1
2
[F (0+) + F (0−)]

for s = 0, 1, 2, . . . . The result of the theorem follows.

Theorem 3.5. The distribution δ(r)(δ(s)(x)) exists on the real line
and

δ(r)(δ(s)(x)) = 0

for r, s = 0, 1, 2, . . . .

Proof. Choosing arbitrary ε > 0, there exists M such that mε > 1
for m > M . Then mε > 1 and |x| > ε implies that ρ(s)(mx) = 0 and so

δ(r)
n (δ(s)

m (x)) = nr+1ρ(r)(nms+1ρ(s)(mx))

= nr+1ρ(r)(0)

for |x| > ε and m > M .
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Thus, for m > M and all φ in D, we have

〈δ(r)
n (δ(s)

m (x)), φ(x)〉 = nr+1ρ(r)(0)
∫

|x|>1/m

φ(x) dx+

+ nr+1

∫

|x|<1/m

ρ(r)(nms+1(mx))φ(x) dx → nr+1ρ(r)(0)

∞∫

−∞
φ(x) dx

as m tends to infinity. It follows that

lim
m→∞

〈δ(r)
n (δ(s)

m (x)), φ(x)〉 = nr+1〈ρ(r)(0), φ(x)〉

and so

N− lim
n→∞

[
N− lim

m→∞
〈δ(r)

n (δ(s)
m (x)), φ(x)〉

]
= N− lim

n→∞
nr+1〈ρ(r)(0), φ(x)〉

= 0.

The result of the theorem follows. This completes the proof of the theorem.

Theorem 3.6. The distribution
[
δ(r)(x)

]s
exists on the real line and

(1)
[
δ(r)(x)

]s =
(−1)rs+s−1c(ρ, r, s)

(rs + s− 1)!
δ(rs+s−1)(x)

for r = 0, 1, 2, . . . and s = 2, 3, . . . , where

c(ρ, r, s) =

1∫

−1

[ρ(r)(y)]syrs+s−1 dy.

In particular

(2)
[
δ(r)(x)

]s = 0

for even s.

Proof. Put

(xs)n = xs ∗ δn(x) =

1/n∫

−1/n

(x− t)sδn(t) dt

=
s∑

i=0

(−1)s−i

(
s

i

)
xi

1/n∫

−1/n

ts−iδn(t) dt
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for n = 1, 2, . . . , where
(

s

i

)
=

s!
i!(s− i)!

.

Then

(3)
[
(δ(r)

m (x))s
]
n

=
s∑

i=0

(−1)s−i

(
s

i

)[
δ(r)
m (x)

]i

1/n∫

−1/n

ts−iδn(t) dt,

where

δ(r)
m (x) = mr+1ρ(r)(mx),

the support of δ
(r)
m being contained in the interval [−1/m, 1/m]. Making

the substitution y = mx we have

1/m∫

−1/m

[
δ(r)
m (x)

]i
xj dx = mri+i−j−1

1∫

−1

[
ρ(r)(y)

]i
yj dy.

It follows that

(4) N− lim
m→∞

1/m∫

−1/m

[
δ(r)
m (x)

]i
xj dx = 0,

for i = 0, 1, . . . , s, j = 0, 1, 2, . . . and j 6= ri + i− 1.

In the particular case j = ri + i− 1 we have

(5)

∞∫

−∞

[
δ(r)
m (x)

]i
xri+i−1 dx =

1∫

−1

[
ρ(r)(y)

]i
yri+i−1 dy = c(ρ, r, i).

Now let φ be an arbitrary function in D. Then by Taylor’s theorem we

have

φ(x) =
rs+s−1∑

j=0

φ(j)(0)
j!

xj +
φ(rs+s)(ξx)
(rs + s)!

xrs+s,
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where 0 ≤ ξ ≤ 1. Thus

1/m∫

−1/m

[
(δ(r)

m (x)i
]
n
φ(x) dx =

rs+s−1∑

j=0

φ(j)(0)
j!

1/m∫

−1/m

[
δ(r)
m (x)

]i
xj dx

+

1/m∫

−1/m

φ(rs+s)(ξx)
(rs + s)!

[
δ(r)
m (x)

]i
xrs+s dx,

where
∣∣∣∣∣

1/m∫

−1/m

φ(rs+s)(ξx)
(rs + s)!

[
δ(r)
m (x)

]i
xrs+s dx

∣∣∣∣∣ ≤

≤ 2m(r+1)(i−s)−1

(rs + s)!
sup{|φ(rs+s)(x)|} · sup{|ρ(r)(x)|}

→ 0

as m tends to infinity for i = 0, 1, . . . , s.
Using equations (4) and (5), it follows that

N− lim
m→∞

1/m∫

−1/m

[
(δ(r)

m )i
]
n
φ(x) dx =





0, i = 0,

c(ρ, r, i)φ(ri+i−1)(0)
(ri + i− 1)!

, i = 1, . . . , s.

It now follows from equation (3) that
〈[

(δ(r)
m (x))s

]
n
, φ(x)

〉
=

=
s∑

i=0

(−1)i

(
s

i

) 1/m∫

−1/m

[
(δ(r)

m (x))s−i
]
n
φ(x) dx.

1/n∫

−1/n

ts−iδn(t) dt

and it follows from what we have just proved that

N− lim
m→∞

〈[
(δ(r)

m (x))s
]
n
, φ(x)

〉
=

=
s∑

i=1

(−1)s−i

(
s

i

)
c(ρ, r, i)φ(ri+i−1)(0)

(ri + i− 1)!

1/n∫

−1/n

ts−iδn(t) dt,
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where∫ 1/n

−1/n

ts−iδn(t) dt =
{

ni−s
∫ 1

−1
us−iρ(u) du, i = 1, . . . , s− 1

1, i = s,
Thus

N− lim
n→∞

[
N− lim

m→∞

〈[
(δ(r)

m (x))s
]
n
, φ(x)

〉]
=

c(ρ, r, s)φ(rs+s−1)(0)
(rs + s− 1)!

=
(−1)rs+s−1c(ρ, r, s)

(rs + s− 1)!
〈
δ(rs+s−1)(x), φ(x)

〉

and equation (1) follows. Equation (2) follows on noticing that
[
ρ(r)(y)

]s
yrs+s−1

is an odd function for even s and so c(ρ, r, s) = 0 for even s. This completes
the proof of the theorem.

The next definition for the product of two distributions was given
in [2].

Definition 3.3. Let f and g be distributions in D′ and let

fn(x) = (f ∗ δn)(x), gn(x) = (g ∗ δn)(x).

Then the product f.g is defined to exist and be equal to the distribution
h on the interval (a, b) if

N− lim
n→∞

〈fn(x)gn(x), φ(x)〉 = 〈h(x), φ(x)〉

for all test functions φ in D with support contained in the interval (a, b).

We note that with this definition of the product of two distributions,
the definition of the distribution f2 as the composition of the function x2

and the distribution f if it exists, is distinct from the definition of the
product f.f if it exists. However, the following theorem holds:

Theorem 3.7. Let f be a distribution in D′. Then the distribution
f2 exists on the interval (a, b) if and only if the distribution f.f exists on
the interval (a, b) and then

f2 = f · f
on the interval (a, b).

Proof. It follows as in the proof of Theorem 3.6 that

[
(fm(x))2

]
n

=

1/n∫

−1/n

t2δn(t) dt−2fm(x)

1/n∫

−1/n

tδn(t) dt+
[
fm(x)

]2
1/n∫

−1/n

δn(t) dt,
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where

lim
n→∞

1/n∫

−1/n

t2δn(t) dt = lim
n→∞

1/n∫

−1/n

tδn(t) dt = 0,

1/n∫

−1/n

δn(t) dt = 1.

Then it follows that f2 exists on the interval (a, b), if and only if

N− lim
n→∞

[
N− lim

m→∞

〈[
fm(x))2

]
n
, φ(x)

〉]

exists and is equal to

N− lim
m→∞

〈[
fm(x)

]2
n
, φ(x)

〉
= N− lim

n→∞
〈fn(x)fn(x), φ(x)〉,

for all φ in D with support contained in the interval (a, b). That is, if and
only if f.f exists on the interval (a, b).
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