Publ. Math. Debrecen

On fixed points in noncomplete metric spaces

By ADRIAN CONSTANTIN (Timişoara)

A common fixed point theorem of a pair of mappings of a metric space into itself is proved, generalizing the results of K. Iseki [3], R. Kannan [4] and S. P. Singh [5].

1. In [1] D. Delbosco gives a unified approach for contractive mappings considering the set \mathcal{G} of all continuous functions $g:[0, \infty)^{3} \rightarrow[0, \infty)$ satisfying the conditions:
(i) $g(1,1,1)=h<1$,
(ii) if $u, v \in[0, \infty)$ are such that $u \leq g(v, v, u)$ or $u \leq g(u, v, v)$ or $u \leq g(v, u, v)$ then $u \leq h v$, and proving the following

Theorem A. Let S and T be two mappings of a complete metric space (X, d) into itself satisfying the inequality

$$
d(S x, T y) \leq g(d(x, y), d(x, S x), d(y, T y))
$$

for all $x, y \in X$, where g is in \mathcal{G}. Then S and T have a unique common fixed point.

Some fixed point theorems for mappings on noncomplete metric space were proved by several authors: R. Kannan [4], S. P. Singh [5], M. TASKOVIĆ [6].

The aim of this note is to prove a similar result to Delbosco's result for mappings defined on a noncomplete metric space (X, d) into itself, generalizing the results of R. Kannan [4] and S. P. Singh [5].
2. We consider the set \mathcal{L} of all continuous functions $g:[0, \infty)^{3} \rightarrow$ $[0, \infty)$ with the property that if $u, v \in[0, \infty)$ are such that $u<g(v, v, u)$ or $u<g(v, u, v)$ or $u<g(u, v, v)$ then $u<v$.

Mathematics Subject Classification: 47H10.
Key words and phrases: Common fixed points, metric space.

Theorem 1. Let S and T be two continuous mappings of a metric space into itself satisfying the inequality

$$
\begin{equation*}
d(S x, T y)<g(d(x, y), d(x, S x), d(y, T y)) \tag{1}
\end{equation*}
$$

for all $(x, y) \in X \times X \backslash\{(x, x) \mid x \in X$ and $S x=T x\}$ where g is in \mathcal{L}. If there is a $x_{0} \in X$ such that the sequence $\left\{(T s)^{n} x_{0}\right\}$ has a subsequence $\left\{(T S)^{n_{i}} x_{0}\right\}$ converging to a point $x \in X$, we have that x is the unique common fixed point of S and T.

Proof. We consider the sequence $\left\{x_{n}\right\}$ defined by

$$
x_{2 n+1}=S(T S)^{n} x_{0}, \quad x_{2 n}=(T S)^{n} x_{0}, \quad n \geq 0
$$

We observe that if there is a $z \in X$ such that $S z=z$ then $T z=z$. If $T z \neq z$ we would obtain that

$$
d(z, T z)=d(S z, T z)<g(0,0, d(z, T z))
$$

and since $g \in \mathcal{L}$ we deduce that $d(z, T z)<0$, contradiction. Analogous we can prove that if there is a $z \in X$ such that $T z=z$ then $S z=z$.

If there is a $z \in X$ such that $S z=T z=z$ we have that there is no other point $y \in X$ such that $S y=T y=y$ since otherwise we would have that

$$
d(y, z)=d(S y, T z)<g(d(y, z), 0,0)
$$

and since $g \in \mathcal{L}$ we deduce that $d(y, z)<0$, contradiction.
If there is a $n \in \mathbb{N}$ such that $x_{2 n+1}=x_{2 n}$ or $x_{2 n+1}=x_{2 n+2}$ by the preceding remarks we deduce that $(T S)^{n} x_{0}=x$ (respectively $S(T S)^{n} x_{0}=x$) and $S x=T x=x$. More then that, x is the unique common fixed point of S and T.

We suppose that for every $n \in \mathbb{N}$ we have $x_{2 n+1} \neq x_{2 n}$ and $x_{2 n+1} \neq$ $x_{2 n+2}$ and we deduce that

$$
\begin{aligned}
& d\left(x_{2 n+1}, x_{2 n+2}\right)=d\left(S(T S)^{n} x_{0},(T S)^{n+1} x_{0}\right)< \\
& \quad<g\left(d\left((T S)^{n} x_{0}, S(T S)^{n} x_{0}\right), d\left((T S)^{n} x_{0}, S(T S)^{n} x_{0}\right)\right. \\
& \left.\quad d\left(S(T S)^{n} x_{0},(T S)^{n+1} x_{0}\right)\right)= \\
& \quad=g\left(d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n+1}, x_{2 n+2}\right)\right), \quad n \geq 0
\end{aligned}
$$

Since $g \in \mathcal{L}$ we have that $d\left(x_{2 n+1}, x_{2 n+2}\right)<d\left(x_{2 n}, x_{2 n+1}\right)$.

Analogous we have

$$
\begin{aligned}
& d\left(x_{2 n}, x_{2 n+1}\right)=d\left((T S)^{n} x_{0}, S(T S)^{n} x_{0}\right)< \\
& \quad<g\left(d\left((T S)^{n} x_{0}, S(T S)^{n-1} x_{0}\right), d\left((T S)^{n} x_{0}, S(T S)^{n} x_{0}\right)\right. \\
& \left.\quad d\left((T S)^{n} x_{0}, S(T S)^{n-1} x_{0}\right)\right)= \\
& \quad=g\left(d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n}, x_{2 n-1}\right)\right)
\end{aligned}
$$

and since $g \in \mathcal{L}$ we deduce that $d\left(x_{2 n}, x_{2 n+1}\right)<d\left(x_{2 n}, x_{2 n-1}\right)$.
We have so proved that the sequence $\left\{d\left(x_{k}, x_{k+1}\right)\right\}$ is monotone decreasing. We deduce that

$$
\begin{aligned}
d\left(x_{2 n_{i}}, x_{2 n_{i}+1}\right) & =d\left((T S)^{n_{i}} x_{0}, S(T S)^{n_{i}} x_{0}\right)>d\left(\left(T S^{n_{i}+1} x_{0}, S(T S)^{n_{i}} x_{0}\right)>\right. \\
> & \cdots>d\left((T S)^{n_{i+1}} x_{0}, S(T S)^{n_{i+1}} x_{0}\right), \quad i \geq 1
\end{aligned}
$$

Since T, S are continuous, letting $n_{i} \rightarrow \infty$, we deduce that

$$
\begin{equation*}
d(x, S x)=d(T S x, S x) \tag{2}
\end{equation*}
$$

If $S x=x$ we deduce that $T x=S x=x$ and x is the unique common fixed point of T and S.

Let us suppose that $S x \neq x$. We have that

$$
d(T S x, S x)<g(d(S x, x), d(T S x, S x), d(x, S x))
$$

and since $g \in \mathcal{L}$ we deduce that $d(T S x, S x)<d(S x, x)$ which contradicts relation (2).

Corollary 1. (S. P. Singh [5]). Let T be a continuous mapping of a metric space into itself satisfying the inequality

$$
\begin{equation*}
d(T x, T y)<\frac{1}{2}(d(x, T x)+d(y, T y)) \tag{3}
\end{equation*}
$$

for all $x \neq y$. If there is a $x_{0} \in X$ such that sequence $\left\{T^{n} x_{0}\right\}$ has a subsequence $\left\{T^{n_{i}} x_{0}\right\}$ converging to a point $x \in X$ then x is the unique fixed point of T.

Proof. We take $g:[0, \infty)^{3} \rightarrow[0, \infty), g\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{2}\left(x_{2}+x_{3}\right)$ and $T=S$ in Theorem 1.

Corollary 2. Let T be a continuous mapping of a metric space into itself satisfying the inequality

$$
\begin{equation*}
d(T x, T y)<g(d(x, y), d(x, T x), d(y, T y)) \tag{4}
\end{equation*}
$$

for all $x \neq y$ where $g \in \mathcal{L}$. If there is a $x_{0} \in X$ such that the sequence $\left\{T^{n} x_{0}\right\}$ has a subsequence $\left\{T^{n_{i}} x_{0}\right\}$ converging to a point $x \in X$ then x is the unique fixed point of T.

Proof. We take $T=S$ in Theorem 1 .
Corollary 3. (K. Iseki [3]). Let (X, d) be a metric space and S a continuous mapping of X into itself satisfying

$$
d(S x, S y) \leq \alpha d(x, y)
$$

for all $x, y \in X$ where $0<\alpha<1$. If for some $x_{0} \in X$, the sequence $x_{1}=S x_{0}, x_{2}=S x_{1}, x_{3}=S x_{2}, \ldots$ contains s convergent subsequence which converges to some $x \in X$, then x is the unique fixed point of S.

Proof. If the sequence $\left\{S^{2 n} x_{0}\right\}$ contains a subsequence converging to x we can apply our theorem with $g:[0, \infty)^{3} \rightarrow[0, \infty)$, $g\left(x_{1}, x_{2}, x_{3}\right)=\alpha x_{1}$.

Let us suppose that the sequence $\left\{S^{2 n+1} x_{0}\right\}$ contains a subsequence converging to x. Since $d\left(S^{n+1} x_{0}, S^{n} x_{0}\right) \leq \alpha^{n} d\left(S x_{0}, x_{0}\right)$ we deduce that the sequence $\left\{S^{2 n} x_{0}\right\}$ contains a subsequence converging to x and so we obtain the result.
3. We prove now, by mean of an example, that Corollary 2 is stronger than the result of S. P. Singh [5]:

Example 1. Consider the mapping $T:[0,1) \rightarrow\left[0, \frac{1}{3}\right), T x=\frac{x}{3}$ and let d be the euclidean metric. We have that

$$
\begin{aligned}
& d(T x, T y)=\frac{|x-y|}{3} \\
& \frac{1}{2}(d(x, T x)+d(y, T y))=\frac{x+y}{3}
\end{aligned}
$$

and for $y=0<x$ we do not have that

$$
d(T x, T y)<\frac{1}{2}(d(x, T x)+d(y, T y))
$$

so that we can not apply Corollary 1.

If we consider the mapping $g:[0, \infty)^{3} \rightarrow[0, \infty), g\left(x_{1}, x_{2}, x_{3}\right)=$ $\frac{1}{4}\left(x_{1}+x_{2}+x_{3}\right)$ we have that $g \in \mathcal{L}$ and

$$
d(T x, T y)<g(d(x, y), d(x, T x), d(y, T y))
$$

if $x \neq y$ since

$$
\frac{|x-y|}{3}<\frac{1}{4}\left(|x-y|+\frac{2 x}{3}+\frac{2 y}{3}\right)
$$

if $(x, y) \neq(0,0)$. We can so apply Corollary 2 to this function.
4. To compare Theorem 1 with the theorem of Delbosco we see that we have omitted the completeness of the metric space (X, d) and instead we have assumed other conditions on the mappings S and T. These conditions do not guarantae the completeness of the space:

Example 2. Let $X=[0,1] \cap \mathbb{Q}, g:[0, \infty)^{3} \rightarrow[0, \infty), g\left(x_{1}, x_{2}, x_{3}\right)=$ $\alpha\left(x_{2}+x_{3}\right)$ with $\frac{1}{3}<\alpha<\frac{1}{2}$ and $T, S: X \rightarrow X, T x=\frac{x}{4}, S x=\frac{x}{5}$ and let d be the euclidean metric. Both S, T are continuous and since $T S x=\frac{x}{20}$ we can take $x_{0}=0$ and then the existence of a convergent subsequence of the sequence $\left\{(T S)^{n} x_{0}\right\}$ is evident. We have also that

$$
\begin{gathered}
d(S x, T y)=\left|\frac{x}{5}-\frac{y}{4}\right| \\
S x=T x \text { if and only if } x=0 \\
g(d(x, y), d(x, S x), d(y, T y))=\alpha(d(x, S x)+d(y, T y))=\alpha\left(\frac{4 x}{5}+\frac{3 y}{4}\right)
\end{gathered}
$$

and because $\alpha>\frac{1}{3}$ we have that

$$
\alpha\left(\frac{4 x}{5}+\frac{3 y}{4}\right)=\alpha\left(\frac{16 x+15 y}{20}\right)>\frac{4 x+5 y}{20} \geq \frac{|5 y-4 x|}{20}
$$

if $(x, y) \in X \times X \backslash\{(0,0)\}$.
5. Examples 3. Let us consider $X=[0,1)$ with the euclidean metric and let $S:[0,1) \rightarrow[0,1), S x=\frac{x}{2}$ for $x \in(0,1)$ and $S(0)=\frac{1}{2}$. We have that the function $g:[0, \infty)^{3} \rightarrow[0, \infty), g\left(x_{1}, x_{2}, x_{3}\right)=\max \left\{x_{1}, x_{2}, x_{3}\right\}$ is in \mathcal{L} and

$$
d(S x, S y)<g(d(x, y), d(x, S x), d(y, S y))
$$

for $(x, y) \in X \times X \backslash\{(x, x), x \in X\}$ since if $x \neq 0, y \neq 0, x \neq y$, then

$$
d(S x, S y)=\frac{|x-y|}{2}<|x-y| \leq g\left(|x-y|, \frac{x}{2}, \frac{y}{2}\right)
$$

and if $x=0, y \neq 0$ then

$$
d(S x, S y)=\left|\frac{1}{2}-\frac{y}{2}\right|<\frac{1}{2} \leq g\left(y, \frac{1}{2}, \frac{y}{2}\right) .
$$

The function S has no fixed point although it satisfies condition (1) and $S^{2 n}(0) \rightarrow 0$ as $n \rightarrow \infty$. This shows that the result may be not true if we drop the hypothesis that S, T are continuous.

Acknowledgement. The author wishes to express his gratitude to the referee for the suggestions that helped the improvement of this paper.

References

[1] D. Delbosco, A unified approach for all contractive mappings, Inst. Math. Univ. Torino, Report nr. 19 (1981).
[2] M. Edelstein, On non-expansive mappings, Proc. A.M.S. 15 (1964), 689-695.
[3] K. Iséki, Generalization of Kannan fixed point theorems, Math. Sem. Notes, Kobe Univ. 2 IV (1974).
[4] R. Kannan, Some results on fixed points-II, Amer. Math. Monthly 76 (1969), 405-408.
[5] S. P. Singh, Some theorems on fixed points, The Yokohama Math. J. XVIII(1) (1970), 23-25.
[6] M. Tasković, Une classe de conditions suffisantes pour qu'une application soit celle de Banach, Math. Balkanica 4 (1974), 587-589.

