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On a diophantine equation concerning the
number of integer points in special domains II

By L. HAJDU (Debrecen)

Abstract. In an earlier paper we considered a family of polynomial diophantine
equations which are closely related to the number of integer points in special domains,
and we solved some of these equations. In this paper we investigate a more general
family of equations. We give some properties of the polynomials involved, and we solve
all those equations, which turn to be elliptic ones.

1. Introduction

In an earlier paper (cf. [5]) we dealt with the diophantine equation

(1)

#{(x1, x2) ∈ Z2 : |x1|+ |x2| ≤ r}

= #{(y1, . . . , yn) ∈ Zn :
n∑

i=1

|yi| ≤ R}.

As we remarked in [5], this equation has some geometrical and combina-
torical aspects. For n = 3 and n = 4, equation (1) was completely solved.
Further, we made the conjecture that for every n > 2, equation (1) has
only finitely many solutions. In the first part of this paper we will prove
this conjecture for n = 6. In fact we will solve (1) in this case completely.

Mathematics Subject Classification: Primary 11P21, 11D41, 11D25; Secondary 11B83.
Key words and phrases: integer points, polynomial recurrence, polynomial diophantine
equations, elliptic equations.
Research supported in part by the Hungarian Academy of Sciences, by Grants 014245
and T 016 975 from the Hungarian National Foundation for Scientific Research and by
the Universitas Foundation of Kereskedelmi Bank RT.



332 L. Hajdu

Moreover, one can consider the following, more general equation:

(2)

#{(x1, . . . , xk) ∈ Zk :
k∑

i=1

|xi| ≤ r}

= #{(y1, . . . , yn) ∈ Zn :
n∑

i=1

|yi| ≤ R}.

Subsequently we will completely solve equation (2) in the cases (k, n) =
(3, 4) and (4, 6).

All three above equations turn out (after certain substitutions) to be
elliptic equations. As we mentioned also in [5], the recent bounds con-
cerning the solutions of elliptic equations are still too large, in general, to
use them for solving a concrete equation. (For the best known explicit
bounds concerning the solutions cf. [6].) Thus, just as in [5], we will use
the elliptic equation package of the computational numbertheoretical pro-
gram package SIMATH (cf. [9]) to solve our equations. We mention here
that the elliptic curve package of SIMATH is based on an algorithm devel-
oped by J. Gebel, A. Pethő and H. G. Zimmer [3], and independently
R. J. Stroeker and N. Tzanakis [10].

2. Notation

First we introduce our notation. Let, as in [5],

fn(r) = #{(x1, . . . , xn) ∈ Zn : |x1|+ . . . + |xn| ≤ r} for n = 1, 2, . . .

and
fn(r) = 1 for n = 0.

For n ≤ 6 we have

f0(r) = 1, f1(r) = 2r + 1, f2(r) = 2r2 + 2r + 1,

f3(r) =
4
3
r3 + 2r2 +

8
3
r + 1,

f4(r) =
2
3
r4 +

4
3
r3 +

10
3

r2 +
8
3
r + 1,

f5(r) =
4
15

r5 +
2
3
r4 +

8
3
r3 +

10
3

r2 +
46
15

r + 1,

and
f6(r) =

4
45

r6 +
4
15

r5 +
14
9

r4 +
8
3
r3 +

196
45

r2 +
46
15

r + 1.



On a diophantine equation concerning the number of integer points . . . 333

One can verify easily that the degree of fn is n, and for n ≥ 1 the polyno-
mials satisfy the following recursion:

fn(r) = 2
r−1∑

k=0

fn−1(k) + fn−1(r).

3. Results

In this section we formulate our results.1 First we give some trivial
properties of the polynomials fn.

Theorem 1.
1. If n is odd (resp. even) then the polynomial fn(r) is odd (resp.

even) with respect to − 1
2 , that is for every r ∈ R we have fn(− 1

2 + r) =
−fn(− 1

2 − r) (resp. fn(− 1
2 + r) = fn(− 1

2 − r)).
2. For nonnegative integers n and k we have fn(k) = fk(n).

The above statements can be proved simply e.g. by induction, and we
omit the details.

Now we turn to the equations

f2(r) = f6(R) in r,R ∈ Z, r, R ≥ 0,(3)

f3(r) = f4(R) in r,R ∈ Z, r, R ≥ 0,(4)
and

f4(r) = f6(R) in r,R ∈ Z, r, R ≥ 0.(5)

Here we would like to mention that for all the remaining pairs (n, k)
(that is for (n, k) 6∈ {(2, 3), (2, 6), (3, 4), (4, 6)}) the equation

fn(r) = fk(R) in r,R ∈ Z, r, R ≥ 0

does not seem to be an elliptic equation. Hence to solve this equation for
the remaining pairs (n, k), some other method should be used. (In fact
in [5] to solve equation (1) for (n, k) = (2, 4) we used the arguments of
Á. Pintér [8] and B. M. M. de Weger [13].)

We also remark that very recently B. Brindza and Á. Pintér (cf. [1])
obtained finiteness results concerning the solutions of equations of the type
f(x) = g(y), where f and g are polynomials with integer coefficients. How-
ever, in [1] f and g are of some special kind, and unfortunately the method

1Added in proof. After this paper was accepted for publication, Professor J. Vaaler
informed me that Theorem 1 was independently proved in a joint paper (to appear) of
D. Bump, K. K. S. Choi, P. Kurlberg and J. Vaaler.
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of B. Brindza and Á. Pintér does not seem to be applicable for our
equations.

First we will prove that the only solutions of (3) are (r,R) = (0, 0),
(2, 1) and (6, 2). In fact we will prove more, we show that the only solutions
of (3) in integers are (r,R) = (−7, 2), (−7,−3), (−3, 1), (−3,−2), (−1, 0),
(−1,−1), (0, 0), (0,−1), (2, 1), (2,−2), (6, 2) and (6,−3).

This statement will follow from Theorem 2. Put x = 90R2+90R+435
and y = 4050r+2025. Then from equation (3) we get the elliptic equation

(6) x3 − 288225x + 47165625 = y2 in integers x, y.

We have the following

Theorem 2. The only integer solutions of equation (6) are (x,±y) =
(40, 5975), (−375, 10125), (165, 2025), (2271, 105381), (435, 2025),
(−600, 2025), (3891, 240489), (129, 3483), (23115, 3513375),(85, 4825),
(975, 26325), (−240, 10125), (475, 4175), (−456, 9153), (615, 10125),
(−51, 7857) and (57475, 13778425).

As a simple consequence of Theorem 2 we obtain our statement con-
cerning the solutions of (3).

We will also prove that the only nonnegative integer solutions of (4)
are (r,R) = (0, 0) and (4, 3). We shall prove more, namely that the only
solutions of (4) in integers are (r,R) = (0, 0), (0,−1), (4, 3) and (4,−4).
This statement will follow from Theorem 3. Put x = 2r + 1 and y =
2R2 + 2R + 4. Then from equation (4) we get the equation

(7) x3 + 5x + 10 = y2 in integers x, y.

We have the following

Theorem 3. The only integer solutions of equation (7) are (x,±y) =
(1, 4), (−1, 2), (9, 28) and (6, 16).

Our statement concerning the solutions of (4) now follows as a simple
consequence.

We will prove as well that the only nonnegative integer solutions of
(5) are (r,R) = (0, 0) and (6, 4). We will prove more again, namely that
the only solutions of (5) in integers are (r,R) = (−7, 4), (−7,−5), (−1, 0),
(−1,−1), (0, 0), (0,−1), (6, 4) and (6,−5). This statement will follow from
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Theorem 4. Put x = 30R2 +30R +145 and y = 450r2 +450r +900. Then
from equation (5) we get the equation

(8) x3 − 32025x + 2405000 = y2 in integers x, y.

We have the following

Theorem 4. The only integer solutions of equation (8) are (x,±y) =
(200, 2000), (55, 900), (145, 900), (−200, 900), (655, 16200), (745, 19800),
(100, 450), (−55, 2000), (−145, 2000) and (158600, 63161800).

Our statement concerning the solutions of (5) now follows immedi-
ately.

4. Proofs of the Theorems

As was previously remarked, we omit the easy proof of Theorem 1.
To the proof of our Theorems 2, 3 and 4, we need a Lemma and some

new notation. In fact we will use the usual notations concerning elliptic
curves, but for the convenience of the reader we give them here as well.
For a more detailed study of elliptic curves we refer to [3] and [4].

Let E be an elliptic curve over Q defined by

E : y2 = x3 + ax + b (a, b ∈ Z)

with nonzero discriminant. Let r denote the rank, g the number of torsion
points and j the j-invariant (or modular invariant) of E. For any point
P of E denote by ĥ(P ) the canonical height (or Néron-Tate height) of P .
ĥ is a positive definite quadratic form; denote by λ1 its smallest eigenvalue.

Choose a basis P1, . . . , Pr of the Mordell-Weyl group of E. Now every
point P of E has a unique representation of the form

P =
r∑

i=1

niPi + Pr+1 (ni ∈ Z),

where Pr+1 is some torsion point. Let

N = max
1≤i≤r

|ni|.

Denote by µ∞ the height of E, i.e.

µ∞ = log max{|a|1/2
, |b|1/3}.
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Denote by ℘ Weierstrass’ ℘ function corresponding to E, and let P be any
point of E. Then we have

P = (℘(u), ℘′(u))

for some complex number u with |u| ≤ 1
2 . Here u is called the elliptic

logarithm of P . Denote by ω1 and ω2 the real and the complex period of
E, respectively, and let τ = ±ω2/ω1, such that Im(τ) > 0. Let j = j1

j2

with j1, j2 ∈ Z, (j1, j2) = 1 and put h = log max{4|aj2|, 4|bj2|, |j1|, |j2|}.
Choose real numbers V1, . . . , Vr with

log Vi ≥ max
{

ĥ(Pi), h,
3π|ui|2

ω2
1 Im(τ)

}
for i = 1, . . . , r,

where ui is the elliptic logarithm of Pi, i = 1, . . . , r.
It is well-known that already from a result of L. J. Mordell [7], by

a famous theorem of A. Thue [11], it follows that the number of integer
points on E is finite.

Using the following Lemma (due to J. Gebel, A. Pethő and H. G.
Zimmer [3]), one can find, at least in principle, all the integer points on a
given elliptic curve. We remark that we used this Lemma in [5] as well.

Lemma. Preserving the above notations, let P =
r∑

i=1

niPi + Pr+1 be

an integral point on the elliptic curve E, where P1, . . . , Pr is a basis of the
Mordell-Weyl group of E, and Pr+1 is a torsion point. Then the maximum

N = max
1≤i≤r

{|ni|}

satisfies the inequality

N ≤ max



2r+2√c1c2(log(c2(r + 2)r+2))

(r+2)/2
,

2 max
1≤i≤r

{Vi}
r + 1



 ,

where

c1 = max
{

log(gc1
′)

λ1
, 1

}
and c2 = max

{
C

λ1
, 109

}(
h

2

)r+1 r∏

i=1

log Vi

with

c1
′ =

2
13
6

ω1
and C = 2.9 · 106r+6 · 42r2 · (r + 1)2r2+9r+12.3

.
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Proof. This statement is proved in [3] (see the Theorem in [3] on
page 180) using a lower bound for linear forms in elliptic logarithms, due
to S. David [2].

Now we will prove Theorems 2, 3 and 4. As the proofs are similar, we
will give them simultaneously.

Proof of the Theorems. We will follow the discussion in [4] and [5],
and we preserve the above notations. Let

E1 = {(x, y) | (x, y) ∈ Q2, x3 − 288225x + 47165625 = y2} ∪ {O},
E2 = {(x, y) | (x, y) ∈ Q2, x3 + 5x + 10 = y2} ∪ {O},

and
E3 = {(x, y) | (x, y) ∈ Q2, x3 − 32025x + 2405000 = y2} ∪ {O},

where O denotes the point at infinity. In the sequel we determine some
parameters of E1, E2 and E3 using SIMATH. Writing Ei we will always
suppose that i ∈ {1, 2, 3}, and p(Ei) will denote the corresponding param-
eter p of Ei. The modular invariant of Ei is

E1 E2 E3

j(Ei) = j1(Ei)/j2(Ei) = 19930747648
4300641

270
1

−4982686912
544071

and the height of Ei is

E1 E2 E3

µ∞(Ei) = 6.28574835... 0.80471895... 5.18713606...

To use our Lemma, one has to know a basis as well as the torsion group
of Ei. Using SIMATH, it turns out that the only torsion point of Ei is O,
hence g(Ei) = 1. The rank of Ei is

E1 E2 E3

r(Ei) = 3 1 3

We can determine a basis B(Ei) of the Mordell-Weyl group of Ei. We
obtain B(E1) = {P1 = (165, 2025), P2 = (435, 2025), P3 = (975, 26325)},
B(E2) = {P4 = (1, 4)} and B(E3) = {P5 = (55, 900), P6 = (145, 900),
P7 = (100, 450)} with

ĥ(P1) = 1.09722796... , ĥ(P2) = 1.22682755... , ĥ(P3) = 1.98354011... ,

ĥ(P4) = 0.12837506... ,
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and

ĥ(P5) = 1.67154020... , ĥ(P6) = 1.71887124... ,

ĥ(P7) = 1.84960414... .

Hence we get

E1 E2 E3

λ1(Ei) = 0.79418680... 0.12837506... 1.51120454...

The real and the complex periods of Ei are

E1 E2 E3

ω1(Ei) = 0.41216398... 2.52921076... 0.51927608...

and

E1 E2 E3

ω2(Ei)= i · 0.31380448...
1.26460538...+
i · 0.90405376...

0.25963804...+
i · 0.08867484...

respectively, whence

E1 E2 E3

Im(τ(Ei)) = 0.76135834... 0.35744500... 0.17076627...

We have

E1 E2 E3

c1
′(Ei) < 10.89335407 1.77519733 8.64636044

and

E1 E2 E3

c1(Ei) < 3.00704175 4.47058465 1.42742985

Moreover, we obtain

E1 E2 E3

h(Ei) < 34.32974491 5.59842196 29.28618986
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Therefore we may choose

Vi = eh(E1) = 811369682662500 for i = 1, 2, 3,

Vi = eh(E2) = 270 for i = 4,

and

Vi = 1.67 · 1022 for i = 5, 6, 7.

For the constant C(Ei) we obtain

E1 E2 E3

C(Ei) < 6.28 · 1069 4.80 · 1020 6.28 · 1069

whence

E1 E2 E3

c2(Ei) < 2.78 · 1079 1.64 · 1023 2.56 · 1079

Using the above parameters, our Lemma yields the estimates

E1 E2 E3

N(Ei) < 1.48 · 1047 2.93 · 1015 9.74 · 1046

Now using B. M. M. de Weger’s method (see [12]), these initial bounds
can be reduced, and using SIMATH again, we obtain all the integral points
on Ei. In the following tables we give these integral points as well as their
coordinates in the above calculated basis of Ei.
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All integer points on E1:

(x,±y) coeff. of P1 coeff. of P2 coeff. of P3

(40, 5975) 1 −2 0

(−375, 10125) −1 1 0

(165, 2025) 1 0 0

(2271, 105381) 2 0 0

(435, 2025) 0 1 0

(−600, 2025) −1 −1 0

(3891, 240489) 0 −2 0

(129, 3483) −1 1 −1

(23115, 3513375) −2 1 −1

(85, 4825) −1 0 1

(975, 26325) 0 0 1

(−240, 10125) 1 0 1

(475, 4175) 2 0 1

(−456, 9153) 1 −1 −1

(615, 10125) 0 −1 −1

(−51, 7857) −1 −1 −1

(57475, 13778425) 2 −2 −1

All integer points on E2:

(x,±y) coeff. of P4

(1, 4) 1

(−1, 2) −2

(9, 28) −3

(6, 16) 4
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All integer points on E3:

(x,±y) coeff. of P5 coeff. of P6 coeff. of P7

(200, 2000) 1 −1 0

(55, 900) 1 0 0

(145, 900) 0 1 0

(−200, 900) −1 −1 0

(655, 16200) 0 −1 1

(745, 19800) 1 0 −1

(100, 450) 0 0 1

(−55, 2000) −1 0 −1

(−145, 2000) 0 1 1

(158600, 63161800) −1 −1 2

¤
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