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On locally monomial functions

By ATTILA GILANYT (Debrecen)

Abstract. In the present paper the equation

Ayf(z) —nlf(y) =o¥®)  ((z,y) = (0,0), z <0 <z +ny),

for real functions, where n is a natural number and « a non-negative real number, is
considered.

1. Introduction

The subject of this paper is related to the study of real polynomial
and monomial functions with the aid of the Dinghas interval-derivative
and the operator D defined below. In the sequel, in the Introduction we
assume that f is a real function.

For real numbers x, y write

Ay f(x) = f(z+y) - f(2)
and, forn e N={1,2,3,...},
Ay f(z) = Ay (A} f(x)).

For a non-negative integer n we say that f is a polynomial function of
degree n if AZ“f(x) =0 for all z,y € R; f is called a monomial function
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of degree n € N if Al f(z) = n!f(y), (z,y € R). A monomial function of
degree 1 is considered as an additive function, as well. (For polynomial
and monomial functions we refer to [10].)

If, for a positive integer n and for a real number &, the limit

Ay f(x)

lim
(z,y)—(£0)  Yy"
z<&<z+ny

D™ f(£) ==

exists, then D" f(£) is said to be the n*" Dinghas interval-derivative of f
at & (cf. [1]). We consider, furthermore, the operator

P T RIi0)

 (my)—(60) y"
e<é<ztny

I

as far as it exists.

Polynomial and monomial functions can be characterized by the op-
erators above: A. SIMON and P. VOLKMANN proved in [6] that for a non-
negative integer n, a function is a polynomial function of degree n if and
only if its (n + 1)*" Dinghas derivative is zero at all £ € R. It was shown
in [2] that for a positive integer n, a function f is a monomial function of
degree n if and only if D" f(¢) = 0 for all £ € R. It was also proved in [2]
that for n € N, the property D" f(0) = 0 implies f(ly) — " f(y) = o(y™),
(y \\ 0) for any integer [.

The investigation of the local properties of the operators D and D
are motivated by the result mentioned above. The following two problems
in this field are due to P. Volkmann: given n € N, does the property
D1 £(0) = 0 imply that there exists a polynomial function p : R — R
of degree n such that f(z) — p(z) = o(z"), (z — 0); and similarly does
D"f(0) = 0 imply that there exists a monomial function g : R — R
of degree n such that f(z) — g(z) = o(z"), (z — 0)? A. SIMON and
P. VOLKMANN in [7] gave a positive answer to the first question in the
case when n = 1. Furthermore, they proved the following more general
theorem: for an arbitrary non-negative real number « # 1 if

2
lim Ayf(x)

(z,y)—(0,0)  y*
r<0<z+2y

=0,
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then there exists a polynomial function p : R — R of degree 1 such that
f(2) = p(2) = o(|2]%), (z = 0). )

Surprisingly, the answer to the question related to the operator D™f(0)
is negative. A counterexample is given by F : (=1,1) — R, F(z) =
zln(—Inlz|) for x # 0, F(0) = 0. (See [3] and [7].) In the present paper
the relation

A —nlf)

(z,y)—(0,0) ye
z<0<z+ny

=0,

or in other words

(1) Ayf(x) —nlf(y) =o(y®) ((z,y) = (0,0), © <0 <z +ny)

is studied (it is strongly related to some results in [7]), and a function f
satisfying (1) is called a locally monomial function of degree n with order «,
at 0.

In the second part of the paper we show that if, for n € N, a € R,
«a > n, a function f is a locally monomial function of degree n with order «,
at 0, then there exists a monomial function g : R — R of degree n such
that

(2) f(@) = g(x) = o|]*)  (z —0).

For some similar results on monomial functions of degree 1 and 2 we refer
to [8] and [9].

In the third part of the paper we prove that if f is a locally monomial
function of degree 1 with order « (i.e. a locally additive function with
order «), at 0, then even for 0 < o < 1 there exists a monomial function
g: R — R of degree 1 (i.e. an additive function), such that (2) holds.

The results in the paper lead to the conjecture that for an arbitrary
n € N, a > 0, a # n if the function f satisfies (1) then there exists a
monomial function of degree n with property (2), but it may occur that
exactly when o = n (i.e. in the case of the operator D) there exists no

such monomial function.
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2. Locally monomial functions of degree n with order @ > n

Lemma 1. For n,A € N, A > 2 put

aE)O) a[())\n)
A= : . : s
(0) (An)
OOy O‘(A:)n

where fori =0,... ,(A—=1)nand k= —i,... , An—1

k(T :
0, otherwise.
Let a; denote the i*® row in A, (i = 0,...,(\ — 1)n). Furthermore, let

b= (B0 ...30"), where

k n
—1)x if Ak
Bk — ( )A<n_;;>7 if A

0, if Mk
fork=0,...,An.
There are positive integers Ky, ... , K(x_1), such that
(3) Koap+ ...+ K()\,l)na(,\,l)n = b,
and
(4) Ko—l—...—l—K()\_l)n:)\n.

PROOF. It is trivial that the lemma holds for n = 1, A > 2, A € N

with K():"':K)\_l =1.
For n, A > 2, n, A € N the existence of positive integers satisfying (3)
was proved in Lemma 2 in [3]. The numbers Ko, ..., K(x_1), satisfy

I+a+...+2¥ )" =Ko+ Kiz' +...+ Kp_1),2?79" (2 €R),

therefore, substituting z = 1 we get (4).
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Theorem 1. Let o > 0 be a real, n be an arbitrary natural number
and f be a real function with property (1). Then we have

() flz) =1"f(z) = o(|2]*) (2 —0).

for any integer I.

PROOF. In the special case & = n Theorem 1 was proved in [2]. The
proof, given here, is similar, with some technical simplifications.

Let a > 0 and n € N be given numbers and let f: R — R satisfy (1).
We show relation (5) in two steps.

I. At first we prove, by induction on [, that (1) implies

(6) flz) =1"f(z) +o(z%) (2\.0)

for any [ € N.
The case [ =1 is trivial.
Let I > 1 be an arbitrary integer and suppose that

(7) fGy) =" fy) =o(y®) (y\0)
has already been proved for j =1,... 1 — 1.
We define the real functions ey, ... ,€i_1), and € as follows:

(8) gi(z) =AY f(—iz) —nlf(z) (i=0,...,(l—-1)n;z € R)

9) e(z) = ALf(—(—1nz) —nlf(lz) (z€R).

Using the notation of Lemma 1 for A = and by the well-known formula

ARy = S (—1)nk <Z>f(m +hy) (z,y€ER)

k=0

we get that these equations can be written as

In
ei(z) =Y aV f((n—k)z) — nlf(2)

(i:E),...,(l—l)n; z € R)

(10)
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and l
e(z) =Y BWf((n—k)z) —nlf(lz) (z€R).
k=0
By Lemma 1 there exist positive integers K, ... , K_1), for which
Ko(lo + ...+ K(l_l)na(l_l)n —b=0
and

Ko+ ...+ Kg_1yn = .

Therefore, by the equations in (8) and (9) we obtain

n!( Fllz) —1m f(z)) = Kogo(2) + - + K11 (2) —(2) (2 €R).

To prove (6), we show that for k =0,...,(I—1)n

(12) en(2) = 0(z%) (2\.0)
and
(13) e(z) =o0(z%) (2\,0).
If we choose x = —(I — 1)nz and y = lz for z > 0, z € R, then

x<0<z+ny,so (1) and (9) imply (13).
If we replace (z,y) by

0,2),(—=2,2),...,(—nz,z) (2 €R, z>0),

then z < 0 < x + ny, therefore, from (1) and (8) we have (12) for
k=0,...,n. In the case [ = 2 property (12) is already proved. If [ > 2 for
k=0,...,(Il = 1)n we prove it by induction on k. The proof is done for
0<k<n.Letn<k<(l—1)n be an arbitrary fixed integer and suppose
that

(14) er(2) = 0(z%) (2. 0)

is true for r =0,... ,k — 1. Set

- —1
n
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where [ | denotes the integer part of a real number and we define € : R — R

as follows:
(15) E(z) = A7 f(—kz) — nlf(lz).
Since
k—1
k—n< n[ }
n
forx = —kz and y = Iz, we have z < 0 and

kE—1
:L"—I—ny:—k:z—l—n<[n] —|—1)z20,

hence (1) implies
(16) E(z) =o0(z%) (2\,0).

Let ¢ = (70,-.- ,7Yn+k) be a vector with components v = ... =
Ynak—in—1 = 0 and write

7n+k—in+j =
0, otherwise

for j =0,...,In. The simple inequality

[k_l]ngk—l

n
yields
~ k—1
n+k—ln:n+k—[ ]n—n
(17) n
>k—(k—1)=1,
and then the components v, ;7 .7V, x_ini1sr--- > Tn+k Of the vector c,

defined above, exist.
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It is easy to see, like in (10) and (11), that (15) can be written in the
following form:

n+k
(18) &(z) =Y vif((n—j)2) —nlf(l2).
§=0
Let us omit the components Yo, ... ,7,,x_j,_1 Of the vector ¢ and denote

the resulting vector by b = (5(0) e ﬁ(l")). It can be seen from the definition
of ¢ that b equals b = (3 ... 3Um) which was given for n and A\ = [ in
Lemma 2.2. It is also easy to see, since we have cancelled only zeroes from
¢, that (18) can be written as follows:

In
(19) 82)=> BWf(n—(n+k—In+j)z)—nlf(lz) (z€R).

=0

Let us now consider the functions Ertbins Entk_ing1r- - Ek and the
corresponding coefficient vectors a,, ;7.5 @, p_jpi1s- - »ak from (10). It
follows from the definition of these vectors (see Lemma 1) that for their
components i =n+k—In,n+k—In+1,... .k

0 1 —in— —in—
az():az(): ntk—In-2 _  ntk—in-1 _

L= =a;

If we omit these components from these vectors and denote them, in the
order above, by

~ - (0 ~ (I

ag = (oz((] ). .oz(()"))

~ _ (7(0) ~(l")
Q1) = (@ (-1 X 1)n)

then we can write the functions e, 7., € , €k in the form

ntk—int+1> "

En—i—k—ln Z ~(S)f TZ - n + k— ln + S)Z) — n'f(z)

(20)

en(z) = dglf)_l)nf(n —(n+k—In+s)2)—nlf(z).
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One can see that ag, ... ’d(i—l)n are equal to the vectors

ap = (oz((]o) . .oz(()in))

5 _ (~0) (in)
UG-y = (@, ),

defined for n and A = [ in Lemma 1. So by this lemma, there exist positive
integers Ko, ... 7K(Z—1)n such that Kgag + ...+ K([_l)n d(i—1)n —-b=0
and Ko+ ...+ f(([_l)n = [". Thus (19) and (20) imply

Koen+k_l~n(z) + Klsn%_[nﬂ(z) +.. 4+ f(([_l)nsk(z)
=&(2) +nlf(lz) —nli"f(z)  (z€R),

that is
1 - -

er(z) = k. Ko, i (2) + Kagy gy (2) + -

(21) (I-1)n
oot f{(f—l)n—lgkfl(z) + 5(2’) + n'(f([z) — inf(z)>> (Z € R)

From

~ -1 -1 —1In-1

[— [’“ ]+1gk g Uznzln

n n n

together with the inductive hypothesis (7) we get:
flz) = 1" f(2) = o(=%) (2 \.0).
By (14) and (17)

er(z) =0(z%) (2°\.0)

for r =n+k—1In,... ,k—1. Combining (21), (16) and the previous two
formulae we get

ep(z) = 0(z%) (2 \,0).
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II. Now we prove that under our assumptions f(0) = 0 and
(22) f(=2) = (=1)"f(2) = o(|z]*) (2 —0).

We consider the functions

o(2) = S (0" (") F(kz) = nlf(2)
=320 ()
and

defined in (8). By the well-known formulae

f:(—m"*k <Z> k" —nl =0

k=0
and

é(—l)”—k (1)1 = ni=o0

we can write the functions €9 and 1 in the form

(23) o) = S0+ () (706 - 17502)
k=0
and
z:n—”_kn —Dz)—=(k=1)"f(2)]).
@) @) =3 (3) (= 2y = = 1s2)

In the first part of the proof we have shown that e¢(z) = o(2%), €1(z) =

o(z%) and f(lz) = 1"f(2) = o(z%), (z \\ 0, I = 1,...,n). This relation

together with (23) implies f(0) = 0, therefore, applying (24) we get
f(=2) = (=1)"f(2) = o(%) (2 \.0)

which yields (22).
Finally, (6) and (22) prove Theorem 1.
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Theorem 2. Let § > 0 be a real number and n € N. If the function
f:[=6,6] — R satisfies the property

(25) Ay f(x) —=nlf(y) =0 (z€[-6,0], y,x+ny € [0,d]),
then for any integer | there exists a real number §; > 0 such that

(26) flz) =1"f(z) =0 (z € [=d;,01]).

PROOF. Let 6 > 0 and n € N be given and let f : [-0,d] — R be
a function satisfying (25). We prove that for an arbitrary integer [ with
o = ﬁ equation (26) holds.

The proof can be done in a similar way as in the proof of Theorem 1,
therefore, we give the outline of the argument, only.

At first, we show by induction on [ that for any [ € N

(27) ) -1 f(z) =0 (z€ [fi 5})

In’In

For [ > 1 we define the functions

0 6
60" . "g(l—l)n and [ [m, lTL:| — R

by the same formula as in (8) and (9) and we use a similar method as in
the proof of Theorem 1, to show that

atr=0 (-e[-£.2)

n’in

for k=0,...,(I —1)n and

e(z) =0 (ze[ 0 5})

Cin’in

By Lemma 1
n!(f(lz) _ l"f(2)> = Koeo(2) + ... + Kg_1yne—1)n(2) —€(2)

(e Farl)

which proves (27).
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To prove
n )
(28) f=2) = (0 =0 (e [-=.2])
we consider the functions ¢y and €1 on the interval [—%, %} Here we
have 5 6
(=0 (2€ |- )
and

£1(2) =0 (ze [—%, 5]))

n?
therefore, we get, by the method used in the second part of the proof of
Theorem 1, that

)
f(=2) = (=1)"f(2) =0 (Z S [_ﬁv ED’
from which with
o 4
fe2) -2z =0 (:€|-5-5])
(28) follows.
Finally, (28) together with (27) implies (26).

Theorem 3. Let § > 0 be a real number and n € N. If the function
[+ [=6,8] — R satisfies property (25), then there exists a real number
0 > 0 such that

(20) A7 f(x) = nlf(y) = 0

for x,y,x +ny € [—6,9].

PROOF. Let ¢ > 0and n € N be given numbers and let f : [-,] — R
be a function with property (25). Let, furthermore, 5 = % and = and ¢
be fixed numbers for which z, 3,z + ny € [-9,d].

It is trivial, that in the case when § = 0 equation (29) holds. For an

arbitrary function ¢ : R — R we have the simple formula

Ape(z) = (-1)"A% jo(z +ny) (z,y €R),
so by

f=y) = (=1)"f(y) =0 (y €[-4,6)),
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which was proved in Theorem 2, we can write

AGf(z) —nlf(y) = (=1)" (AL, f(z + ny) — nlf(-y))
(z,y, x +ny € [-6,0]).
Therefore, we may suppose that g € (0, 5].
In the case when z € [—6,0] and Z + ng € [0, 6], (29) comes from (1).
If ,Z +ny € [-6,0] and 7 € (0, 9] since
Apf(z) —nlf(y) = (=1)"A%, f(—z) — (=1)"n!f(-y)
= Ay f(—x —ny) —nlf(y)  (z,y,2+ny €[-6,0])

with & = —% — ny we get 7,9,7 + ny € (0,6], which means that we
may suppose that Z € (0,0]. Therefore, it is sufficient to prove (29) for
z,y € (0,9].

If z and § have these properties, then there exist natural numbers m
such that £ — my < 0. Let mg be the smallest natural number with this

property and we define z}, = Z — (mo — p)y for p=0,...,mo.
We prove by induction on p that by

(30) cu = Ay f(z,) —nlf (@)

¢y =0 for p=0,...,mg, which with p = mg implies

A f(@) - nlf(5) =0,

which is our statement.

By (25), obviously, ¢y = 0.

Let p € {1,...,mp} and suppose that ¢, = 0 is already proved for
v=20,...,u—1. Taking

r=x, -1y, y=y (i=1,...,n)
and
m:x;—ngj, yzzga

respectively, the inductive hypothesis and (25) lead to

A f(xy, —ig) —nlf(y) =0 (i=1,...,n)
and

Ag, f(, — ng) — nlf(25) = 0.
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It is easy to see that with the notation of Lemma 1 (for A = 2) we can
write these equations as follows

(31) ST aM fah 4 (n—k)g) —nlf() =0 (i=1,....n)
k=0
and
(32) > BEf (i, + (n— k)g) — nlf(25) = 0.
k=0

Furthermore, (30) has the form
(33) Za"“f (27, + (n = k)g) —nlf (3) =

By Lemma 1 for a; = (ago), . ,aEQn)), (i=0,...,n) and

b = (BO, ..., 83™) there exist positive integers Kj,..., K, such that
Kopap+ ...+ Kpa, —b=0and Kg+ --- + K, = 2". Therefore, by the
equations in (31), (32) and (33) we get

—(Ko =+ -+ + Kn)nlf(7) + nlf(2y) = Kocy,
that is
—2"nlf(y) + n!f(29) = Koc,.
By Theorem 2 we have f(2y) — 2" f(y) = 0, which implies ¢, = 0.

Theorem 4. Let n be a natural number and «« > n be a real number.
If a function f : R — R satisfies

(1) Ayf(x) —nlfly) = oy®) ((z,y) = (0,0), 2 <0<z +ny)

then there exists a monomial function g : R — R of degree n such that
(2) f(@) —g(x) = o(lz]*) (z —0).

PrOOF. Let n € N and a > n, a € R be given. For a function
f: R — R satisfying (1) Theorem 1 implies

(34) fllz) =1 f(z) = o(|]*) (2 —=0)



On locally monomial functions 357

for any integer I. Let now [ € N, [ > 1 be fixed. It is easy to see, that (34)
is equivalent to the following statement: there exist a real number § > 0
and a continuous, increasing function h : [0,d] — R with the property
lim,\ o h(z) = 0 such that

[f(l2) = 1" f(2)] < [2["h(l2]) (2 € [-6,6]).

Therefore, for an arbitrary zo € [—d,0] and k € N we have

)i F5ECE)

er(20) == l(k_l)”f<lkzol> - lk”f(;:)

With

we get

“1yn [20]* 20
eutaa)] < 100m 2 (ol

and the monotony of h yields

IEN

(35) lek(20)] < Fa—m) n h(|zol)-
For an arbitrary NV € N we obtain

Z
(30) £1(a0) o envo) = Fo0) = 190 ().

Since o > n
o0

1 1
Z lk(a—n) = Jo—n _ 1’

=1

therefore,
>_er(z0)
k=1

is convergent, so the limit

(37) o(z0) = lim lf(l)
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exists, and (35) and (36) yield

IERE

| f(z0) — 9(20)| < Ja—n _1

which implies (2).
For z € [—0,0], z + ny € [0, ] by (1) we have

AL f(E) - nlf(#)
lim m

k
k—oo (lk)

:0’

and (37) gives

Ayg(x) —nlg(y) = k{ﬂ;ﬁ’“”( 2 f(w) n'f( >> =0,

which together with Theorem 3 show that there exists a real number § > 0
such that g is a monomial function of degree n on the interval [—§, 6]. This
result and the known extension theorem for monomial functions (cf. [5],
for instance) imply our statement.

3. Locally additive functions with order o # 1

Lemma 2. Let 0 be a positive real number and f : [-§,0] — R. If
there exists a real number K > 0 such that

38)  flr+y)—f@)-fWI<K (ze[=6,0], yz+ye[0,0]),

then we have

(39) [f(z+y) = fz) = fy)| < 3K
for all x, y, x +y € [—0,0].

PROOF. Let Z and g be fixed real numbers such that z, §, T + ¢ €
[0, d]. Then we have one of the following relations:

(A) ze[-4,0], yel0,0], z+y€]0,d];

(B) ze€[-6,0], g€[0,9], z+y € [-4,0];

(C) ze€]0,0], y€[0,0], z+y € [0,0];
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(D) ze€[-4,0], ye[-9,0], T+ 7y e [-0,0];

(E) z€(0,d], y€[-6,0], z+y€l0,0];

(F) S [075]7 g € [_670}7 j—i_g € [_570];
Case (A) is trivial.

In case (B) we get the following inequalities from (38):
-~ 1f@) - f@+9) — f(—7)| < K, with =2 + g and y = —7;
— | = f0)+ f(&)+ f(-z)| < K, with z = Z and y = —;
~ 1f(y) = £(0) = f(y)| < K, with = 0 and y = ;
and the addition of these inequalities implies (39).
In case (F) we get (39) by case (B) and with =y and y = z.
The remaining cases can be treated by the substitutions
r=—gandy=y;r=—ygandy=2+y; x =0 and y =y in case (C);
r=gandy=—-yg;z=Tandy=-T—y;x=T+gygandy=—-T—y
in case (D); x = y and y = T in case (E), respectively.

Theorem 5. Let & > 0 a # 1 be a real number and let f : R — R be
a function with the property

(40) flx+y)—f(x) = fly) =0(y”") (z<0<z+y, y\0).
Then there exists an additive function a : R — R such that

f(@) —a(x) = o(|z[*)  (z —0).

PROOF. For oo > 1 the statement is proved in Theorem 4.
In the sequel, a € [0,1). In this case the proof is similar to some

reasoning in [7].
By (40) there exist real numbers § > 0 and K > 0 such that

hence from Lemma 2 we have

lf(x+y) = flz) = f(y)| <3K (2,y,2+y € [-0,d]).

Z. KOMINEK proved ([4], Lemma 1) that this property implies the existence
of an additive function a : R — R such that

|f(x) —a(x)| < 12K (z € [-0,0]).
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For the function € : [-4,d] — R, e(x) = f(x) — a(z) we have £(0) =0
and by Theorem 1

£(2z) —2¢(2) = o(|z|*) (=2 —0).

It is easy to see, that this property is equivalent to the following: there exist
a real number §; > 0 and a continuous, increasing function A : [0,6;] — R
such that lim,\ o h(z) = 0 and

[£(22) — 2e(2)| < [2|%h(|2]) (2 € [=01, 1))

Introducing the function

e(2) .
, if z € [—d71,04], 0,
O BT
0, ifz=0
we have
o = 1 (0% o = 1 (6%
|2[7e(2) — 52%[2["E(22) |= Slel"h(lz]) (= € [=61,61])
and
1
6(2) —20718(22)] < Fh(zl) (= € [=o1, é1]).
Write
_ 01 01
sk = sup4 |&(2)| ‘ oF <z| < oh1 (k € N).
Then

o 1. /6
Sk+1 §2 1Sk+2h<2k>’ (kEN)
therefore, limy_, . s = 0 and

e(z) =0(z]%) (2 —0).
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