On the oscillatory behavior of solutions of second order nonlinear differential equations

By HUEI-LIN HONG (Chung-Li)

Abstract

Let $\alpha>0$ be a constant. We establish the oscillatory behavior of the second order nonlinear differential equation $$
\begin{equation*} \left(a(t) \psi(x)\left|x^{\prime}\right|^{\alpha-1} x^{\prime}\right)^{\prime}+q(t) f(x)=r(t), \quad t \geq t_{0}>0 \tag{*} \end{equation*}
$$ where $a, q, r \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ and $f, \psi \in C(\mathbb{R}, \mathbb{R}), a(t)>0, \alpha>0$ is a constant, $q(t) \not \equiv 0$ and $\psi(x)>0$ for $x \neq 0$.

1. Introduction

Throughout this paper we consider the following second order nonlinear differential equation

$$
\begin{equation*}
\left(a(t) \psi(x)\left|x^{\prime}\right|^{\alpha-1} x^{\prime}\right)^{\prime}+q(t) f(x)=r(t), \quad t \geq t_{0}>0 \tag{E}
\end{equation*}
$$

where $a, q, r \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ and $f, \psi \in C(\mathbb{R}, \mathbb{R}), a(t)>0, \alpha>0$ is a constant, $q(t) \not \equiv 0$ on $\left[t_{0}, \infty\right)$ and $\psi(x)>0$ for $x \neq 0$.

In 1979, Elbert [2] established the existence and uniqueness of solutions to the initial value problem for equation (E) on $\left[t_{0}, \infty\right)$. By a solution of (E) we mean a function $x \in C^{1}\left[T_{x}, \infty\right), T_{x} \geq t_{0}$, which has the property $\left|x^{\prime}(t)\right|^{\alpha-1} x^{\prime}(t) \in C^{1}\left[T_{x}, \infty\right)$ and satisfies (E) with $\psi(x)=1$, $f(x)=|x|^{\alpha-1} x$ and $r(t)=0$ on $\left[T_{x}, \infty\right)$. We consider only those solutions $x(t)$ of (E) which satisfy $\sup \{|x(t)|: t \geq T\}>0$ for all $T \geq T_{x}$. We assume that (E) possesses such a solution. A nontrivial solution of (E) is

Mathematics Subject Classification: 34C10.
Key words and phrases: Oscillation, behavior, nonlinear differential equation.
called oscillatory if it has arbitrarily large zeros; otherwise it is said to be nonoscillatory. Equation (E) is nonoscillatory [resp. oscillatory] if all of its solutions are nonoscillatory [resp. oscillatory].

When $\alpha=1$, equation (E) becomes

$$
\begin{equation*}
\left(a(t) \psi(x) x^{\prime}\right)^{\prime}+q(t) f(x)=r(t), \quad t \geq t_{0}>0 \tag{0}
\end{equation*}
$$

Graef and Spikes [3] discussed the oscillatory behavior of solutions of $\left(\mathrm{E}_{0}\right)$. Now we generalize their results to the equation (E), where $q(t)$ is allowed to change signs and we do not require $\int^{\infty} q(s) d s=\infty$. In this paper we give sufficient conditions for any solution of (E) to be either oscillatory or satisfying $\liminf _{t \rightarrow \infty}|x(t)|=0$. Three other results give sufficient conditions for all solutions of (E) to be oscillatory in the case when $r(t) \equiv 0$. Moreover, our results will cover all solutions not just the bounded ones, and some examples illustrating our results are also included. For other related results, we refer the reader to Rudolf Blaśko, John R. Graef, Miloš Haĉik and Paul W. Spikes [1], Hsu, Lian and Yeh [4], Kusano and Lalli [5], Kusano and Wang [6] and J. Yan [8].

2. Oscillatory and asymptotic behavior

In this paper the following conditions will be utilized as they are needed:

$$
\begin{gather*}
\int_{t_{0}}^{\infty} \frac{1}{a^{\frac{1}{\alpha}}(s)} d s=\infty ; \tag{1}\\
x f(x)>0 \quad \text { for all } x \neq 0 ; \tag{2}\\
\int_{t_{0}}^{\infty}|r(s)| d s<\infty \tag{3}
\end{gather*}
$$

Also, to simplify notation we let $W(t)=\frac{a(t) \psi(x(t))\left|x^{\prime}(t)\right|^{\alpha-1} x^{\prime}(t)}{f(x(t))}$ for any nonoscillatory solution $x(t)$ of equation (E).

We first extend a result of Graef and Spikes [3]. For the proof we need the following lemma which can be found in [7, p. 14].

Lemma 1. Let $k(t, s, z)$ be a real-valued function of t and s in $[T, C)$ and z in $\left[T_{1}, C_{1}\right]$ such that for fixed t and s, k is a nondecreasing function of z. Let $g(t)$ be a given function on $[T, C)$, and let u and v be two functions on $[T, C)$ satisfying $u(s)$ and $v(s)$ are in $\left[T_{1}, C_{1}\right]$ for all s in $[T, C), k(t, s, v(s))$ and $k(t, s, u(s))$ are locally integrable in s for fixed t, and for all t in $[T, C)$

$$
v(t)=g(t)+\int_{T}^{t} k(t, s, v(s)) d s
$$

and

$$
u(t) \geq g(t)+\int_{T}^{t} k(t, s, u(s)) d s
$$

Then $v(t) \leq u(t)$ for all t in $[T, C)$.
Lemma 2. Suppose (2) holds and that

$$
\begin{equation*}
f^{\prime}(x) \geq 0 \quad \text { for } x \neq 0 . \tag{4}
\end{equation*}
$$

Let $x(t)$ be a positive (negative) solution of (E) on $\left[T_{1}, C\right)$ for some T_{1} such that $t_{0} \leq T_{1}<C \leq \infty$. If there exists T in $\left[T_{1}, C\right)$ and a positive constant A_{1} such that

$$
\begin{gather*}
-W\left(T_{1}\right)+\int_{T_{1}}^{t}\left(q(s)-\frac{r(s)}{f(x(s))}\right) d s \\
+\int_{T_{1}}^{T} \frac{f^{\prime}(x(s))|W(s)|^{\frac{\alpha+1}{\alpha}}}{\left(a(s) \psi(x(s))|f(x(s))|^{\alpha-1}\right)^{\frac{1}{\alpha}}} d s \geq A_{1} \tag{5}
\end{gather*}
$$

for all t in $\left[T_{1}, C\right)$, then $a(t) \psi(x(t))\left|x^{\prime}(t)\right|^{\alpha-1} x^{\prime}(t) \leq-A_{1} f(x(T))$ (respectively, $\left.a(t) \psi(x(t))\left|x^{\prime}(t)\right|^{\alpha-1} x^{\prime}(t) \geq-A_{1} f(x(T))\right)$ for all t in $[T, C)$.

Proof. Since

$$
W^{\prime}(t)=\frac{r(t)}{f(x(t))}-q(t)-\frac{f^{\prime}(x(t))|W(t)|^{\frac{\alpha+1}{\alpha}}}{\left(a(t) \psi(x(t))|f(x(t))|^{\alpha-1}\right)^{\frac{1}{\alpha}}},
$$

integrating it from T_{1} to t, we have

$$
\begin{aligned}
-W(t)= & -W\left(T_{1}\right)+\int_{T_{1}}^{t}\left(q(s)-\frac{r(s)}{f(x(s))}\right) d s \\
& +\int_{T_{1}}^{t} \frac{f^{\prime}(x(t))|W(t)|^{\frac{\alpha+1}{\alpha}}}{\left(a(s) \psi(x(s))|f(x(s))|^{\alpha-1}\right)^{\frac{1}{\alpha}}} d s,
\end{aligned}
$$

for $T_{1} \leq t<C$, and thus from (5) we see that

$$
\begin{equation*}
-W(t) \geq A_{1}+\int_{T}^{t} \frac{f^{\prime}(x(s))|W(s)|^{\frac{\alpha+1}{\alpha}}}{\left(a(s) \psi(x(s))|f(x(s))|^{\alpha-1}\right)^{\frac{1}{\alpha}}} d s \tag{6}
\end{equation*}
$$

for $T_{1} \leq t<C$. Since the integral in (6) is nonnegative and by the definition of $W(t)$, we have $x(t) x^{\prime}(t)<0$ on $[T, C)$.

If $x(t)$ is positive, let $u(t)=-a(t) \psi(x(t))\left|x^{\prime}(t)\right|^{\alpha-1} x^{\prime}(t)$. Then (6) becomes

$$
u(t) \geq A_{1} f(x(t))+\int_{T}^{t} \frac{f(x(t)) f^{\prime}(x(s))\left(-x^{\prime}(s)\right) u(s)}{f^{2}(x(s))} d s
$$

Define

$$
k(t, s, z)=\frac{f(x(t)) f^{\prime}(x(s))\left(-x^{\prime}(s)\right) z}{f^{2}(x(s))}
$$

for $t, s \in[T, C)$ and $z \in[0, \infty)$. It is easy to see that $k(t, s, z)$ is nondecreasing with respective to z for fixed t and s. Hence applying Lemma 1 with $g(t)=A_{1} f(x(t))$, we have that $u(t) \geq v(t)$, where $v(t)$ satisfies the equation

$$
v(t)=A_{1} f(x(t))+f(x(t)) \int_{T}^{t} \frac{f^{\prime}(x(s))\left(-x^{\prime}(s)\right) v(s)}{f^{2}(x(s))} d s
$$

provided $v(s) \in[0, \infty)$, for each $s \in[T, C)$. Multiplying the last equation by $\frac{1}{f(x(t))}$ and differentiating, we obtain

$$
\frac{v^{\prime}(t) f(x(t))-v(t) f^{\prime}(x(t)) x^{\prime}(t)}{f^{2}(x(t))}=\frac{f^{\prime}(x(t))\left(-x^{\prime}(t)\right) v(t)}{f^{2}(x(t))}
$$

then $\frac{v^{\prime}(t)}{f(x(t))} \equiv 0$, so that $v^{\prime}(t) \equiv 0$. Thus $v(t)=v(T)=A_{1} f(x(T))$, for all $t \in[T, C)$. Hence

$$
a(t) \psi(x(t))\left|x^{\prime}(t)\right|^{\alpha-1} x^{\prime}(t) \leq-A_{1} f(x(T)) \quad \text { for } T \leq t<C .
$$

The proof for $x(t)$ negative follows by a similar argument by taking

$$
u(t)=a(t) \psi(x(t))\left|x^{\prime}(t)\right|^{\alpha-1} x^{\prime}(t) \quad \text { and } \quad g(t)=-A_{1} f(x(t)) .
$$

Lemma 3. Suppose that (1)-(4) hold and that

$$
\begin{equation*}
\int_{t_{0}}^{\infty} q(s) d s \quad \text { converges } \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(x)| \rightarrow \infty \quad \text { as }|x| \rightarrow \infty \tag{8}
\end{equation*}
$$

If $x(t)$ is a solution of (E) such that $\liminf _{t \rightarrow \infty}|x(t)|>0$, then

$$
\begin{gather*}
\int^{\infty} \frac{f^{\prime}(x(s))|W(s)|^{\frac{\alpha+1}{\alpha}}}{\left(a(s) \psi(x(s))|f(x(s))|^{\alpha-1}\right)^{\frac{1}{\alpha}}} d s<\infty \tag{9}\\
W(t) \rightarrow 0 \quad \text { as } t \rightarrow \infty \tag{10}
\end{gather*}
$$

and

$$
\begin{aligned}
W(t)= & \int_{t}^{\infty}\left(q(s)-\frac{r(s)}{f(x(s))}\right) d s \\
& +\int_{t}^{\infty} \frac{f^{\prime}(x(s))|W(s)|^{\frac{\alpha+1}{\alpha}}}{\left(a(s) \psi(x(s))|f(x(s))|^{\alpha-1}\right)^{\frac{1}{\alpha}}} d s
\end{aligned}
$$

for all sufficiently large t.
Proof. Since $x(t)$ is a solution of (E) satisfying $\liminf _{t \rightarrow \infty}|x(t)|>0$, there exists $m>0, M>0$ and $t_{1}>t_{0}$ such that $|x(t)| \geq m$ and $|f(x(t))| \geq M$
for $t \geq t_{1}$. This, together with (3), implies that

$$
\begin{equation*}
\left|\int_{t_{1}}^{t} \frac{r(s)}{f(x(s))} d s\right| \leq \int_{t_{1}}^{t}\left|\frac{r(s)}{f(x(s))}\right| d s \leq N_{1}, \tag{12}
\end{equation*}
$$

for some $N_{1}>0$ and for all $t \geq t_{1}$.
Now suppose that (9) does not hold. Then, in view (8), there exists $A_{1}>0$ and $t_{2}>t_{1}$ such that (5) holds for all $t \geq t_{2}$. If $x(t)>0$ on $\left[t_{1}, \infty\right)$, it follows from Lemma 2 and its proof that $x^{\prime}(t)<0$ and $a(t) \psi(x(t))\left|x^{\prime}(t)\right|^{\alpha-1} x^{\prime}(t) \leq-A_{1} f(x(T))$ for $t \geq t_{2}$. Since $x(t)$ is positive and decreasing on $\left[t_{2}, \infty\right), 0<\psi(x(t)) \leq A_{2}$ on $\left[t_{2}, \infty\right)$ for some positive constant A_{2}. Thus

$$
x^{\prime}(t) \leq-\left\{\frac{A_{1} f\left(x\left(t_{2}\right)\right)}{A_{2} a(t)}\right\}^{\frac{1}{\alpha}}
$$

Integrating it from t_{2} to t, we have

$$
x(t) \leq x\left(t_{2}\right)-\left\{\frac{A_{1} f\left(x\left(t_{2}\right)\right)}{A_{2}}\right\}^{\frac{1}{\alpha}} \int_{t_{2}}^{t} \frac{1}{a^{\frac{1}{\alpha}}(s)} d s
$$

Let $t \rightarrow \infty$ in the last equation, then (1) implies that $x(t)<0$ for t large enough, this contradicts the assumption that $x(t)$ is positive on $\left[t_{1}, \infty\right)$. A similar argument handles the case when $x(t)<0$ on $\left[t_{1}, \infty\right)$.

Since

$$
W^{\prime}(t)+\frac{f^{\prime}(x(t))|W(t)|^{\frac{\alpha+1}{\alpha}}}{\left(a(t) \psi(x(t))|f(x(t))|^{\alpha-1}\right)^{\frac{1}{\alpha}}}=\frac{r(t)}{f(x(t))}-q(t)
$$

integrating it from t to ξ, we have

$$
\begin{gather*}
W(\xi)+\int_{t}^{\xi} \frac{f^{\prime}(x(s))|W(s)|^{\frac{\alpha+1}{\alpha}}}{\left(a(s) \psi(x(s))|f(x(s))|^{\alpha-1}\right)^{\frac{1}{\alpha}}} d s \tag{13}\\
=W(t)+\int_{t}^{\xi}\left(\frac{r(s)}{f(x(s))}-q(s)\right) d s .
\end{gather*}
$$

From (7), (9), (12) and (13), we see that $\lim _{\xi \rightarrow \infty} W(\xi)$ exists, say $W(\xi) \rightarrow A_{3}$ as $\xi \rightarrow \infty$, so that from (13) we have

$$
\begin{aligned}
& W(t)=A_{3}+\int_{t}^{\infty}\left(\frac{r(s)}{f(x(s))}-q(s)\right) d s \\
& +\int_{t}^{\infty} \frac{f^{\prime}(x(s))|W(s)|^{\frac{\alpha+1}{\alpha}}}{\left(a(s) \psi(x(s))|f(x(s))|^{\alpha-1}\right)^{\frac{1}{\alpha}}} d s
\end{aligned}
$$

for $t \geq t_{1}$. To show that (10) and (11) hold we have to show that $A_{3}=0$. Suppose first that $x(t)>0$ on $\left[t_{1}, \infty\right)$. If $A_{3}<0$, then from (7), (9) and (12), there exists $T_{1}>t_{1}$ such that

$$
\begin{gathered}
\left|\int_{T_{1}}^{t} q(s) d s\right| \leq-\frac{A_{3}}{8} \\
\left|\int_{T_{1}}^{t} \frac{r(s)}{f(x(s))} d s\right| \leq-\frac{A_{3}}{8}, \quad \text { for } t \geq T_{1}, \text { and } \\
\int_{T_{1}}^{\infty} \frac{f^{\prime}(x(s))|W(s)|^{\frac{\alpha+1}{\alpha}}}{\left(a(s) \psi(x(s))|f(x(s))|^{\alpha-1}\right)^{\frac{1}{\alpha}}} d s<-\frac{A_{3}}{8} .
\end{gathered}
$$

From (14) we see that (5) holds on $\left[T_{1}, \infty\right)$ with $T=T_{1}$. But then, as argued above, Lemma 2 and its proof contradict the assumption that $x(t)>0$ on $\left[t_{1}, \infty\right)$.

If $A_{3}>0$, it follows from (7), (9), (12) and (14) that $W(t) \rightarrow A_{3}$ as $t \rightarrow \infty$, so there exists $T_{2}>T_{1}$ such that $W(t) \geq \frac{A_{3}}{2}$ for $t \geq T_{2}$. Then

$$
\begin{aligned}
& \int_{T_{2}}^{t} \frac{f^{\prime}(x(s))|W(s)|^{\frac{\alpha+1}{\alpha}}}{\left(a(s) \psi(x(s))|f(x(s))|^{\alpha-1}\right)^{\frac{1}{\alpha}}} d s \\
&=\int_{T_{2}}^{t} \frac{a(s) \psi(x(s)) f^{\prime}(x(s))\left|x^{\prime}(s)\right|^{\alpha+1}}{f^{2}(x(s))} d s \\
& \quad \geq \frac{A_{3}}{2} \int_{T_{2}}^{t} \frac{f^{\prime}(x(s)) x^{\prime}(s)}{f(x(s))} d s=\frac{A_{3}}{2} \ln \frac{f(x(t))}{f(x(T))}
\end{aligned}
$$

But this, together with (8) and (9), implies that $x(t)$ is bound above, hence, $0<\psi(x(t)) \leq A_{4}$ for some positive constant A_{4}.
Since $a(t) \psi(x(t))\left|x^{\prime}(t)\right|^{\alpha-1} x^{\prime}(t) \geq \frac{A_{3}}{2} f(x(t))$, then $x^{\prime}(t)>0$ for $t \geq T_{2}$ which, together with (4), implies that $f(x(t)) \geq f\left(x\left(T_{2}\right)\right)$ for $t \geq T_{2}$. Therefore

$$
x^{\prime}(t) \geq\left\{\frac{A_{3} f\left(x\left(T_{2}\right)\right)}{2 A_{4} a(t)}\right\}^{\frac{1}{\alpha}} \quad \text { on }\left[T_{2}, \infty\right)
$$

Integrating it from T_{2} to t, we have

$$
x(t) \geq x\left(T_{2}\right)+\left\{\frac{A_{3} f\left(x\left(T_{2}\right)\right)}{2 A_{4}}\right\}^{\frac{1}{\alpha}} \int_{T_{2}}^{t} \frac{1}{a^{\frac{1}{\alpha}}(s)} d s
$$

for $t \geq T_{2}$. By (1), this contradicts the boundness of $x(t)$. Hence we obtain that $A_{3}=0$ for the case $x(t)>0$ on $\left[t_{1}, \infty\right)$. The proof that $A_{3}=0$ when $x(t)<0$ on $\left[t_{1}, \infty\right)$ is similar and will be omitted.

Before starting our first theorem we observe that if (3) and (7) hold, then

$$
h_{0}(t)=\frac{1}{a^{\frac{1}{\alpha+1}}(t)} \int_{t}^{\infty}[q(s)-P|r(s)|] d s
$$

is a well-defined function on $\left[t_{0}, \infty\right)$ for any positive constant P in the sense that the improper integrals involved converge, we can define

$$
h_{1}(t)=\int_{t}^{\infty} h_{0}^{\frac{\alpha+1}{\alpha}}(s) d s
$$

and

$$
h_{n+1}(t)=\int_{t}^{\infty}\left[h_{0}(s)+\frac{L h_{n}(s)}{a^{\frac{1}{\alpha+1}}(s)}\right]^{\frac{\alpha+1}{\alpha}} d s
$$

for $n=1,2,3, \ldots$, where L is any positive constant.
In the next two theorems we will need the condition that for every constant $L>0$, there exists a positive integer N such that

$$
\begin{equation*}
h_{n} \text { exists for } n=0,1,2, \ldots, N-1 \text { and } h_{N} \text { does not exist. } \tag{15}
\end{equation*}
$$

Theorem 4. Suppose that (1)-(4), (7)-(8) and (15) hold, and for any $\lambda_{1}>0$ there exists $\lambda_{2}>0$ such that

$$
\begin{equation*}
\frac{f^{\prime}(x)}{\left(\psi(x)|f(x)|^{\alpha-1}\right)^{\frac{1}{\alpha}}} \geq \lambda_{2} \quad \text { for all }|x| \geq \lambda_{1} \tag{16}
\end{equation*}
$$

Suppose, furthermore, that for any $P>0$,

$$
\begin{equation*}
h_{0}(t) \geq 0 \text { for all sufficiently large } t \text {. } \tag{17}
\end{equation*}
$$

Then any solution $x(t)$ of (E) is either oscillatory or satisfies $\liminf _{t \rightarrow \infty}|x(t)|=0$.

Proof. Assume the conclusion is false. Then there is a solution $x(t)$ of (E) such that $\liminf _{t \rightarrow \infty}|x(t)|>0$. It follows from (4) that $|f(x(t))| \geq M$ for some $M>0$ and all $t \geq t_{1}$ for some $t_{1} \geq t_{0}$. From (11) and (16) we then have

$$
\begin{equation*}
W(t) \geq a^{\frac{1}{\alpha+1}}(t) h_{0}(t)+L \int_{t}^{\infty} \frac{|W(s)|^{\frac{\alpha+1}{\alpha}}}{a^{\frac{1}{\alpha}}(s)} d s \tag{18}
\end{equation*}
$$

for $t \geq t_{1}$ and some $L>0$. Now (9) implies that

$$
\begin{equation*}
\int_{t_{1}}^{\infty} \frac{|W(s)|^{\frac{\alpha+1}{\alpha}}}{a^{\frac{1}{\alpha}}(s)} d s<\infty \tag{19}
\end{equation*}
$$

together with (17) and (18), imply that $W(t) \geq a^{\frac{1}{\alpha+1}}(t) h_{0}(t) \geq 0$. Thus

$$
\begin{equation*}
\frac{W^{\alpha+1}(t)}{a(t)} \geq h_{0}^{\alpha+1}(t) \tag{20}
\end{equation*}
$$

If $N=1$, then (19) and (20) imply that

$$
h_{1}(t)=\int_{t}^{\infty} h_{0}^{\frac{\alpha+1}{\alpha}}(s) d s<\infty
$$

which contradicts the nonexistence of $h_{N}(t)=h_{1}(t)$. If $N=2$, then (18) and (20) yield

$$
\begin{align*}
W(t) & \geq a^{\frac{1}{\alpha+1}}(t) h_{0}(t)+L \int_{t}^{\infty} h_{0}^{\frac{\alpha+1}{\alpha}}(s) d s \tag{21}\\
& =a^{\frac{1}{\alpha+1}}(t) h_{0}(t)+L h_{1}(t) .
\end{align*}
$$

So

$$
\frac{W^{\alpha+1}(t)}{a(t)} \geq\left[h_{0}(t)+\frac{L h_{1}(t)}{a^{\frac{1}{\alpha+1}}(t)}\right]^{\alpha+1} .
$$

From (19), an integration of the above inequality would give a contradiction to the nonexistence of $h_{N}(t)=h_{2}(t)$. A similar arguments leads to a contradiction for any integer $N>2$. Hence we complete the proof.

Example 5. Consider the equation

$$
\begin{equation*}
\left(|x|^{3-\alpha}\left|x^{\prime}\right| x^{\prime}\right)^{\prime}+\frac{1}{2 t^{\frac{3}{2}}}(2+\sin t-2 t \cos t) x^{3} \tag{1}
\end{equation*}
$$

$$
=\frac{3+\alpha}{t^{4+\alpha}}+\frac{1}{2 t^{\frac{9}{2}}}(2+\sin t-2 t \cos t), \quad t \geq 1 .
$$

Then any solution of $\left(\mathrm{E}_{1}\right)$ is either oscillatory or satisfying $\liminf _{t \rightarrow \infty}|x(t)|=0$.
Equation (E_{1}) has a nonoscillatory solution $x(t)=\frac{1}{t}$. Here $a(t)=1$, $\psi(x)=|x|^{3-\alpha}, q(t)=\frac{1}{2 t^{\frac{3}{2}}}(2+\sin t-2 t \cos t), f(x)=x^{3}$ and $r(t)=$ $\frac{3+\alpha}{t^{4+\alpha}}+\frac{1}{2 t^{\frac{9}{2}}}(2+\sin t-2 t \cos t)$. It is easy to see that (1)-(4) hold and

$$
\begin{gathered}
\frac{f^{\prime}(x)}{\left(\psi(x)|f(x)|^{\alpha-1}\right)^{\frac{1}{\alpha}}}=3 \\
\int_{t}^{\infty} q(s) d s=\frac{2+\sin t}{\sqrt{t}} \geq \frac{1}{\sqrt{t}} .
\end{gathered}
$$

Now $|r(t)| \leq \frac{6+\alpha}{t^{3}}$, for $t \geq 1$, so

$$
\int_{t}^{\infty}|r(s)| d s \leq \frac{6+\alpha}{2 t^{2}}
$$

Hence $h_{0}(t)=\frac{1}{a^{\frac{1}{\alpha+1}}(t)} \int_{t}^{\infty}[q(s)-P|r(s)|] d s \geq 0$ for all sufficiently large t. Since

$$
\int_{t}^{\infty} h_{0}^{\frac{\alpha+1}{\alpha}}(s) d s \geq \int_{t}^{\infty}\left[\frac{1}{\sqrt{s}}-\frac{P}{2 s^{2}}\right]^{\frac{\alpha+1}{\alpha}} d s=\infty
$$

we have that $N=1$ and thus (15)-(17) hold. Then by Theorem 4 we have that any solution of $\left(\mathrm{E}_{1}\right)$ is either oscillatory or satisfying $\liminf _{t \rightarrow \infty}|x(t)|=0$.

Our next three theorems are oscillation results for the case when $r(t) \equiv 0$. Observe that in this case equation (E) becomes

$$
\begin{equation*}
\left(a(t) \psi(x)\left|x^{\prime}\right|^{\alpha-1} x^{\prime}\right)^{\prime}+q(t) f(x)=0, \quad t \geq t_{0}>0 \tag{2}
\end{equation*}
$$

and

$$
h_{0}(t)=\frac{1}{a^{\frac{1}{\alpha+1}}(t)} \int_{t}^{\infty} q(s) d s
$$

Theorem 6. Suppose that conditions (1)-(4), (7), (8) and (17) hold. If there exists $\lambda>0$ such that

$$
\begin{equation*}
\frac{f^{\prime}(x)}{\left(\psi(x)|f(x)|^{\alpha-1}\right)^{\frac{1}{\alpha}}} \geq \lambda \quad \text { for all } x \neq 0 \tag{22}
\end{equation*}
$$

Then equation $\left(\mathrm{E}_{2}\right)$ is oscillatory.
Proof. Suppose, to the contrary, that $x(t)$ is a nonocsillatory solution of (E_{2}). Then there exists $t_{1} \geq t_{0}$ such that $|x(t)|>0$ for $t \geq t_{1}$. Since (22) implies that $f^{\prime}(x) \geq 0$ for $x \neq 0$, we have $|f(x(t))|>0$ for $t \geq t_{1}$. It is easy to see that Lemma 2 is valid for equation (E_{2}) whith condition (5) replaced by

$$
\text { (5') }-W\left(T_{1}\right)+\int_{T_{1}}^{t} q(s) d s+\int_{T_{1}}^{T} \frac{f^{\prime}(x(s))|W(s)|^{\frac{\alpha+1}{\alpha}}}{\left(a(s) \psi(x(s))|f(x(s))|^{\alpha-1}\right)^{\frac{1}{\alpha}}} d s \geq A_{1} \text {. }
$$

Proceeding as in the proof of Lemma 3, we again obtain (10), i.e.,

$$
\int_{T_{1}}^{T} \frac{f^{\prime}(x(s))|W(s)|^{\frac{\alpha+1}{\alpha}}}{\left(a(s) \psi(x(s))|f(x(s))|^{\alpha-1}\right)^{\frac{1}{\alpha}}} d s<\infty
$$

since (12) obviously holds. Using (14) with $r(t) \equiv 0$ and continuing as in the proof of Lemma 3, we again obtain

$$
\begin{equation*}
W(t) \rightarrow 0 \quad \text { as } t \rightarrow \infty, \tag{10}
\end{equation*}
$$

and (11) with $r(t) \equiv 0$, i.e.,

$$
\begin{equation*}
W(t)=\int_{t}^{\infty} q(s) d s+\int_{t}^{\infty} \frac{f^{\prime}(x(s))|W(s)|^{\frac{\alpha+1}{\alpha}}}{\left(a(s) \psi(x(s))|f(x(s))|^{\alpha-1}\right)^{\frac{1}{\alpha}}} d s \tag{11'}
\end{equation*}
$$

for sufficiently large t. The remainder proof of this theorem is similar to that of Theorem 4 and will be omitted.

Example 7. Consider the equation

$$
\begin{equation*}
\left(\left|x^{\prime}\right| x^{\prime}\right)^{\prime}+\frac{1}{2 t^{\frac{3}{2}}}(2+\sin t-2 t \cos t)\left(x+x^{\frac{1}{3}}\right)=0 . \tag{3}
\end{equation*}
$$

It is easy to see that $\left(\mathrm{E}_{3}\right)$ satisfies the hypotheses of Theorem 5 , hence $\left(\mathrm{E}_{3}\right)$ is oscillatory.

The following theorem removes the condition that h_{n} must fail to exist for some $n=N$ (see (15)). It is an extension of part (ii) of Theorem 3 in [8] to nonlinear ordinary equation.

Theorem 8. Assume that the conditions (1)-(4), (7), (8) and (16) hold. If h_{n} exists for all $n=1,2, \ldots$ and there exists an increasing sequence $s_{m} \rightarrow \infty$ as $m \rightarrow \infty$ such that $h_{n}\left(s_{m}\right) \rightarrow \infty$ as $n \rightarrow \infty$ for each m, then equation (E_{2}) is oscillatory.

Proof. Suppose, to the contrary, that $x(t)$ is a nonocsillatory solution of $\left(\mathrm{E}_{2}\right)$. Then there exists $t_{1} \geq t_{0}$ such that $|x(t)|>0$ for $t \geq t_{1}$. Proceeding as in the proof of Theorem 6, we again obtain (10), (11'), so (18) and (20) hold. Since h_{n} exists for each n, an argument similar to one use in Theorem 4 shows that

$$
W(t) \geq a^{\frac{1}{\alpha+1}}(t) h_{0}(t)+L h_{n}(t), \quad \text { for each } n \geq 1 .
$$

Hence there exists $s_{M}>t_{1}$ such that

$$
W\left(s_{M}\right) \geq a^{\frac{1}{\alpha+1}}\left(s_{M}\right) h_{0}\left(s_{M}\right)+L h_{n}\left(s_{M}\right) \rightarrow \infty, \quad \text { as } n \rightarrow \infty,
$$

which contradicts (10).
Theorem 9. Suppose that condition (1)-(4), (7), (17) and (22) hold. Let

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \frac{\psi(x(s))\left|x^{\prime}(s)\right| x^{\prime}(s)}{f(x(s))} d s<\infty \tag{23}
\end{equation*}
$$

and for some positive integer N such that the functions h_{n} exist for $n=$ $0,1,2, \ldots, N$. If for every $B>0$

$$
\int^{\infty}\left[a^{-\frac{\alpha}{\alpha+1}}(s) h_{0}(s)+B a^{-1}(s) h_{N}(s)\right] d s=\infty
$$

then equation $\left(\mathrm{E}_{2}\right)$ is oscillatory.
Proof. Suppose, to the contrary, that $x(t)$ is a nonocsillatory solution of $\left(\mathrm{E}_{2}\right)$ and proceeding as in the proof of Theorem 6 (also see (21) in the proof of Theorem 4), we eventually obtain

$$
W(t) \geq a^{\frac{1}{\alpha+1}}(t) h_{0}(t)+B h_{N}(t)
$$

for $t \geq t_{1}$, for some $t_{1} \geq t_{0}$ and $B>0$. Hence

$$
\frac{\psi(x(t))\left|x^{\prime}(t)\right|^{\alpha-1} x^{\prime}(t)}{f(x(t))} \geq a^{-\frac{\alpha}{\alpha+1}}(t) h_{0}(t)+B a^{-1}(t) h_{N}(t)
$$

Integrating it from t_{1} to t, we obtain

$$
\int_{t_{1}}^{t} \frac{\psi(x(s))\left|x^{\prime}(s)\right|^{\alpha-1} x^{\prime}(s)}{f(x(s))} d s \geq \int_{t_{1}}^{t}\left[a^{-\frac{\alpha}{\alpha+1}}(t) h_{0}(t)+B a^{-1}(t) h_{N}(t)\right] \rightarrow \infty
$$

as $t \rightarrow \infty$ which contradicts (23).

References

[1] Rudolf Blaśko, John R. Graef, Milos̆ Hâ̂ık and Paul W. Spikes, Oscillatory behavior of solutions of nonlinear differential equations of second order, Jour. Math. Anal. Appl. 151 (1990), 330-343.
[2] Á. Elbert, A half-linear second order differential equation, Colloquia Math. Soc. János Bolyai 30: Qualitative Theory of Differential equations, Szeged, 1979, 153-180.
[3] John R. Graef and Paul W. Spikes, On the oscillatory behavior of solutions of second order nonlinear defferential equations, Czechoslovak Mathematical Journal 36 (111) (1986), 275-284.
[4] H. B. Hsu, W. C. Lian and C. C. Yeh, Oscillation criteria for second order quasilinear functional differential equations, Nonlinear World $\mathbf{3}$ (1996), 835-848.
[5] T. Kusano and B. S. Lalli, On oscillation of half-linear functional differential equations with deviating arguments, Hiroshima Math. J. 24 (1994), 549-563.
[6] T. Kusano and J. Wang, Oscillation properties of half-linear functional differential equations of second order, Hiroshima Math. J. 25 (1995), 371-385.
[7] W. Walter, Differential and integral inequalities, Springer Verlag, Berlin/New York, 1970.
[8] J. Yan, Oscillatory property for second order linear delay differential equation, Jour. Math. Anal. Appl. 122 (1987), 380-384.

HUEI-LIN HONG
DEPARTMENT OF MATHEMATICS
NATIONAL CENTRAL UNIVERSITY
CHUNG-LI, 320 TAIWAN
REPUBLIC OF CHINA
E-mail: s2134001@sparc20.cc.ncu.edu.tw
(Received January 29, 1996; revised February 23, 1997)

