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On the oscillatory behavior of solutions of second
order nonlinear differential equations

By HUEI-LIN HONG (Chung-Li)

Abstract. Let α > 0 be a constant. We establish the oscillatory behavior of the
second order nonlinear differential equation

(∗) �
a(t)ψ(x)|x′|α−1x′

�′
+ q(t)f(x) = r(t), t ≥ t0 > 0,

where a, q, r ∈ C([t0,∞),R) and f , ψ ∈ C(R,R), a(t) > 0, α > 0 is a constant, q(t) 6≡ 0
and ψ(x) > 0 for x 6= 0.

1. Introduction

Throughout this paper we consider the following second order nonlin-
ear differential equation

(E)
(
a(t)ψ(x)|x′|α−1x′

)′ + q(t)f(x) = r(t), t ≥ t0 > 0,

where a, q, r ∈ C([t0,∞),R) and f , ψ ∈ C(R,R), a(t) > 0, α > 0 is a
constant, q(t) 6≡ 0 on [t0,∞) and ψ(x) > 0 for x 6= 0.

In 1979, Elbert [2] established the existence and uniqueness of so-
lutions to the initial value problem for equation (E) on [t0,∞). By a
solution of (E) we mean a function x ∈ C1[Tx,∞), Tx ≥ t0, which has
the property |x′(t)|α−1x′(t) ∈ C1[Tx,∞) and satisfies (E) with ψ(x) = 1,
f(x) = |x|α−1x and r(t) = 0 on [Tx,∞). We consider only those solutions
x(t) of (E) which satisfy sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx. We
assume that (E) possesses such a solution. A nontrivial solution of (E) is
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called oscillatory if it has arbitrarily large zeros; otherwise it is said to be
nonoscillatory . Equation (E) is nonoscillatory [resp. oscillatory ] if all of
its solutions are nonoscillatory [resp. oscillatory].

When α = 1, equation (E) becomes

(E0)
(
a(t)ψ(x)x′

)′ + q(t)f(x) = r(t), t ≥ t0 > 0.

Graef and Spikes [3] discussed the oscillatory behavior of solutions of
(E0). Now we generalize their results to the equation (E), where q(t)
is allowed to change signs and we do not require

∫∞
q(s)ds = ∞. In

this paper we give sufficient conditions for any solution of (E) to be either
oscillatory or satisfying lim inf

t→∞
|x(t)| = 0. Three other results give sufficient

conditions for all solutions of (E) to be oscillatory in the case when r(t) ≡ 0.
Moreover, our results will cover all solutions not just the bounded ones,
and some examples illustrating our results are also included. For other
related results, we refer the reader to Rudolf Blaśko, John R. Graef,

Miloš Haĉik and Paul W. Spikes [1], Hsu, Lian and Yeh [4], Kusano

and Lalli [5], Kusano and Wang [6] and J. Yan [8].

2. Oscillatory and asymptotic behavior

In this paper the following conditions will be utilized as they are
needed:

∫ ∞

t0

1
a

1
α (s)

ds = ∞;(1)

xf(x) > 0 for all x 6= 0;(2)
∫ ∞

t0

|r(s)|ds < ∞.(3)

Also, to simplify notation we let W (t) = a(t)ψ(x(t))|x′(t)|α−1x′(t)
f(x(t)) for any

nonoscillatory solution x(t) of equation (E).
We first extend a result of Graef and Spikes [3]. For the proof we

need the following lemma which can be found in [7, p. 14].
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Lemma 1. Let k(t, s, z) be a real-valued function of t and s in [T, C)
and z in [T1, C1] such that for fixed t and s, k is a nondecreasing function

of z. Let g(t) be a given function on [T,C), and let u and v be two

functions on [T, C) satisfying u(s) and v(s) are in [T1, C1] for all s in

[T, C), k
(
t, s, v(s)

)
and k

(
t, s, u(s)

)
are locally integrable in s for fixed t,

and for all t in [T,C)

v(t) = g(t) +
∫ t

T

k
(
t, s, v(s)

)
ds,

and

u(t) ≥ g(t) +
∫ t

T

k
(
t, s, u(s)

)
ds.

Then v(t) ≤ u(t) for all t in [T,C).

Lemma 2. Suppose (2) holds and that

(4) f ′(x) ≥ 0 for x 6= 0.

Let x(t) be a positive (negative) solution of (E) on [T1, C) for some T1

such that t0 ≤ T1 < C ≤ ∞. If there exists T in [T1, C) and a positive

constant A1 such that

(5)

−W (T1) +
∫ t

T1

(
q(s)− r(s)

f
(
x(s)

)
)
ds

+
∫ T

T1

f ′
(
x(s)

)|W (s)|α+1
α

(
a(s)ψ

(
x(s)

)|f(
x(s)

)|α−1
) 1

α

ds ≥ A1

for all t in [T1, C), then a(t)ψ
(
x(t)

)|x′(t)|α−1x′(t) ≤ −A1f
(
x(T )

)
(respec-

tively, a(t)ψ
(
x(t)

)|x′(t)|α−1x′(t) ≥ −A1f
(
x(T )

)
) for all t in [T,C).

Proof. Since

W ′(t) =
r(t)

f
(
x(t)

) − q(t)− f ′
(
x(t)

)|W (t)|α+1
α

(
a(t)ψ

(
x(t)

)|f(
x(t)

)|α−1
) 1

α

,
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integrating it from T1 to t, we have

−W (t) = −W (T1) +
∫ t

T1

(
q(s)− r(s)

f
(
x(s)

)
)
ds

+
∫ t

T1

f ′
(
x(t)

)|W (t)|α+1
α

(
a(s)ψ

(
x(s)

)|f(
x(s)

)|α−1
) 1

α

ds,

for T1 ≤ t < C, and thus from (5) we see that

(6) −W (t) ≥ A1 +
∫ t

T

f ′
(
x(s)

)|W (s)|α+1
α

(
a(s)ψ

(
x(s)

)|f(
x(s)

)|α−1
) 1

α

ds,

for T1 ≤ t < C. Since the integral in (6) is nonnegative and by the
definition of W (t), we have x(t)x′(t) < 0 on [T, C).

If x(t) is positive, let u(t) = −a(t)ψ
(
x(t)

)|x′(t)|α−1x′(t). Then (6)
becomes

u(t) ≥ A1f
(
x(t)

)
+

∫ t

T

f
(
x(t)

)
f ′

(
x(s)

)(−x′(s)
)
u(s)

f2
(
x(s)

) ds.

Define

k(t, s, z) =
f
(
x(t)

)
f ′

(
x(s)

)(−x′(s)
)
z

f2
(
x(s)

) ,

for t, s ∈ [T, C) and z ∈ [0,∞). It is easy to see that k(t, s, z) is non-
decreasing with respective to z for fixed t and s. Hence applying Lemma 1
with g(t) = A1f

(
x(t)

)
, we have that u(t) ≥ v(t), where v(t) satisfies the

equation

v(t) = A1f
(
x(t)

)
+ f

(
x(t)

) ∫ t

T

f ′
(
x(s)

)(−x′(s)
)
v(s)

f2
(
x(s)

) ds,

provided v(s) ∈ [0,∞), for each s ∈ [T,C). Multiplying the last equation
by 1

f(x(t)) and differentiating, we obtain

v′(t)f
(
x(t)

)− v(t)f ′
(
x(t)

)
x′(t)

f2
(
x(t)

) =
f ′

(
x(t)

)(−x′(t)
)
v(t)

f2
(
x(t)

) ,
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then v′(t)
f(x(t)) ≡ 0, so that v′(t) ≡ 0. Thus v(t) = v(T ) = A1f

(
x(T )

)
, for all

t ∈ [T, C). Hence

a(t)ψ
(
x(t)

)|x′(t)|α−1x′(t) ≤ −A1f
(
x(T )

)
for T ≤ t < C.

The proof for x(t) negative follows by a similar argument by taking

u(t) = a(t)ψ
(
x(t)

)|x′(t)|α−1x′(t) and g(t) = −A1f
(
x(t)

)
.

Lemma 3. Suppose that (1)–(4) hold and that

∫ ∞

t0

q(s)ds converges(7)

and

|f(x)| → ∞ as |x| → ∞.(8)

If x(t) is a solution of (E) such that lim inf
t→∞

|x(t)| > 0, then

∫ ∞ f ′
(
x(s)

)|W (s)|α+1
α

(
a(s)ψ

(
x(s)

)|f(
x(s)

)|α−1
) 1

α

ds < ∞,(9)

W (t) → 0 as t →∞,(10)

and

(11)

W (t) =
∫ ∞

t

(
q(s)− r(s)

f
(
x(s)

)
)

ds

+
∫ ∞

t

f ′
(
x(s)

)|W (s)|α+1
α

(
a(s)ψ

(
x(s)

)|f(
x(s)

)|α−1
) 1

α

ds,

for all sufficiently large t.

Proof. Since x(t) is a solution of (E) satisfying lim inf
t→∞

|x(t)|> 0,

there exists m> 0, M> 0 and t1 >t0 such that |x(t)| ≥m and |f(
x(t)

)| ≥M
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for t≥ t1. This, together with (3), implies that

(12)

∣∣∣∣∣
∫ t

t1

r(s)
f
(
x(s)

)ds

∣∣∣∣∣ ≤
∫ t

t1

∣∣∣∣∣
r(s)

f
(
x(s)

)
∣∣∣∣∣ ds ≤ N1,

for some N1 > 0 and for all t ≥ t1.
Now suppose that (9) does not hold. Then, in view (8), there exists

A1 > 0 and t2 > t1 such that (5) holds for all t ≥ t2. If x(t) > 0
on [t1,∞), it follows from Lemma 2 and its proof that x′(t) < 0 and
a(t)ψ

(
x(t)

)|x′(t)|α−1x′(t) ≤ −A1f
(
x(T )

)
for t ≥ t2. Since x(t) is positive

and decreasing on [t2,∞), 0 < ψ
(
x(t)

) ≤ A2 on [t2,∞) for some positive
constant A2. Thus

x′(t) ≤ −
{

A1f
(
x(t2)

)

A2a(t)

} 1
α

.

Integrating it from t2 to t, we have

x(t) ≤ x(t2)−
{

A1f
(
x(t2)

)

A2

} 1
α ∫ t

t2

1
a

1
α (s)

ds.

Let t → ∞ in the last equation, then (1) implies that x(t) < 0 for t large
enough, this contradicts the assumption that x(t) is positive on [t1,∞).
A similar argument handles the case when x(t) < 0 on [t1,∞).

Since

W ′(t) +
f ′

(
x(t)

)|W (t)|α+1
α

(
a(t)ψ

(
x(t)

)|f(
x(t)

)|α−1
) 1

α

=
r(t)

f
(
x(t)

) − q(t),

integrating it from t to ξ, we have

(13)

W (ξ) +
∫ ξ

t

f ′
(
x(s)

)|W (s)|α+1
α

(
a(s)ψ

(
x(s)

)|f(
x(s)

)|α−1
) 1

α

ds

= W (t) +
∫ ξ

t

( r(s)
f
(
x(s)

) − q(s)
)
ds.
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From (7), (9), (12) and (13), we see that lim
ξ→∞

W (ξ) exists, say W (ξ) → A3

as ξ →∞, so that from (13) we have

(14)

W (t) = A3 +
∫ ∞

t

( r(s)
f
(
x(s)

) − q(s)
)
ds

+
∫ ∞

t

f ′
(
x(s)

)|W (s)|α+1
α

(
a(s)ψ

(
x(s)

)|f(
x(s)

)|α−1
) 1

α

ds,

for t ≥ t1. To show that (10) and (11) hold we have to show that A3 = 0.
Suppose first that x(t) > 0 on [t1,∞). If A3 < 0, then from (7), (9) and
(12), there exists T1 > t1 such that

∣∣∣∣
∫ t

T1

q(s)ds

∣∣∣∣ ≤ −A3

8
,

∣∣∣∣∣
∫ t

T1

r(s)
f
(
x(s)

)ds

∣∣∣∣∣ ≤ −A3

8
, for t ≥ T1, and

∫ ∞

T1

f ′
(
x(s)

)|W (s)|α+1
α

(
a(s)ψ

(
x(s)

)|f(
x(s)

)|α−1
) 1

α

ds < −A3

8
.

From (14) we see that (5) holds on [T1,∞) with T = T1. But then,
as argued above, Lemma 2 and its proof contradict the assumption that
x(t) > 0 on [t1,∞).

If A3 > 0, it follows from (7), (9), (12) and (14) that W (t) → A3 as
t →∞, so there exists T2 > T1 such that W (t) ≥ A3

2 for t ≥ T2. Then

∫ t

T2

f ′
(
x(s)

)|W (s)|α+1
α

(
a(s)ψ

(
x(s)

)|f(
x(s)

)|α−1
) 1

α

ds

=
∫ t

T2

a(s)ψ
(
x(s)

)
f ′

(
x(s)

)|x′(s)|α+1

f2
(
x(s)

) ds

≥ A3

2

∫ t

T2

f ′
(
x(s)

)
x′(s)

f
(
x(s)

) ds =
A3

2
ln

f
(
x(t)

)

f
(
x(T )

) .
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But this, together with (8) and (9), implies that x(t) is bound above,
hence, 0 < ψ

(
x(t)

) ≤ A4 for some positive constant A4.
Since a(t)ψ

(
x(t)

)|x′(t)|α−1x′(t) ≥ A3
2 f

(
x(t)

)
, then x′(t) > 0 for t ≥ T2

which, together with (4), implies that f
(
x(t)

) ≥ f
(
x(T2)

)
for t ≥ T2.

Therefore

x′(t) ≥
{

A3f
(
x(T2)

)

2A4a(t)

} 1
α

on [T2,∞).

Integrating it from T2 to t, we have

x(t) ≥ x(T2) +

{
A3f

(
x(T2)

)

2A4

} 1
α ∫ t

T2

1
a

1
α (s)

ds

for t ≥ T2. By (1), this contradicts the boundness of x(t). Hence we obtain
that A3 = 0 for the case x(t) > 0 on [t1,∞). The proof that A3 = 0 when
x(t) < 0 on [t1,∞) is similar and will be omitted.

Before starting our first theorem we observe that if (3) and (7) hold,
then

h0(t) =
1

a
1

α+1 (t)

∫ ∞

t

[
q(s)− P |r(s)|

]
ds

is a well-defined function on [t0,∞) for any positive constant P in the
sense that the improper integrals involved converge, we can define

h1(t) =
∫ ∞

t

h
α+1

α
0 (s)ds

and

hn+1(t) =
∫ ∞

t

[
h0(s) +

Lhn(s)

a
1

α+1 (s)

]α+1
α

ds,

for n = 1, 2, 3, . . . , where L is any positive constant.
In the next two theorems we will need the condition that for every

constant L > 0, there exists a positive integer N such that

(15) hn exists for n = 0, 1, 2, . . . , N − 1 and hN does not exist.
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Theorem 4. Suppose that (1)–(4), (7)–(8) and (15) hold, and for any
λ1 > 0 there exists λ2 > 0 such that

(16)
f ′(x)

(
ψ(x)|f(x)|α−1

) 1
α

≥ λ2 for all |x| ≥ λ1.

Suppose, furthermore, that for any P > 0,

(17) h0(t) ≥ 0 for all sufficiently large t.

Then any solution x(t) of (E) is either oscillatory or satisfies
lim inf
t→∞

|x(t)| = 0.

Proof. Assume the conclusion is false. Then there is a solution x(t)
of (E) such that lim inf

t→∞
|x(t)| > 0. It follows from (4) that |f(

x(t)
)| ≥ M

for some M > 0 and all t ≥ t1 for some t1 ≥ t0. From (11) and (16) we
then have

(18) W (t) ≥ a
1

α+1 (t)h0(t) + L

∫ ∞

t

|W (s)|α+1
α

a
1
α (s)

ds,

for t ≥ t1 and some L > 0. Now (9) implies that

(19)
∫ ∞

t1

|W (s)|α+1
α

a
1
α (s)

ds < ∞,

together with (17) and (18), imply that W (t) ≥ a
1

α+1 (t)h0(t) ≥ 0. Thus

(20)
Wα+1(t)

a(t)
≥ hα+1

0 (t).

If N = 1, then (19) and (20) imply that

h1(t) =
∫ ∞

t

h
α+1

α
0 (s)ds < ∞,

which contradicts the nonexistence of hN (t) = h1(t). If N = 2, then (18)
and (20) yield

(21)
W (t) ≥ a

1
α+1 (t)h0(t) + L

∫ ∞

t

h
α+1

α
0 (s)ds

= a
1

α+1 (t)h0(t) + Lh1(t).
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So
Wα+1(t)

a(t)
≥

[
h0(t) +

Lh1(t)

a
1

α+1 (t)

]α+1

.

From (19), an integration of the above inequality would give a contradic-
tion to the nonexistence of hN (t) = h2(t). A similar arguments leads to a
contradiction for any integer N > 2. Hence we complete the proof.

Example 5. Consider the equation

(E1)

(|x|3−α|x′|x′)′ + 1
2t

3
2
(2 + sin t− 2t cos t)x3

=
3 + α

t4+α
+

1
2t

9
2
(2 + sin t− 2t cos t), t ≥ 1.

Then any solution of (E1) is either oscillatory or satisfying lim inf
t→∞

|x(t)|=0.

Equation (E1) has a nonoscillatory solution x(t) = 1
t . Here a(t) = 1,

ψ(x) = |x|3−α, q(t) = 1

2t
3
2
(2 + sin t − 2t cos t), f(x) = x3 and r(t) =

3+α
t4+α + 1

2t
9
2
(2 + sin t− 2t cos t). It is easy to see that (1)–(4) hold and

f ′(x)
(
ψ(x)|f(x)|α−1

) 1
α

= 3,

∫ ∞

t

q(s)ds =
2 + sin t√

t
≥ 1√

t
.

Now |r(t)| ≤ 6+α
t3 , for t ≥ 1, so

∫ ∞

t

|r(s)|ds ≤ 6 + α

2t2
.

Hence h0(t) = 1

a
1

α+1 (t)

∫∞
t

[
q(s)−P |r(s)|

]
ds ≥ 0 for all sufficiently large t.

Since ∫ ∞

t

h
α+1

α
0 (s)ds ≥

∫ ∞

t

[
1√
s
− P

2s2

]α+1
α

ds = ∞,

we have that N = 1 and thus (15)–(17) hold. Then by Theorem 4 we have
that any solution of (E1) is either oscillatory or satisfying lim inf

t→∞
|x(t)| = 0.



Oscillation for nonlinear differential equations 65

Our next three theorems are oscillation results for the case when
r(t) ≡ 0. Observe that in this case equation (E) becomes

(E2)
(
a(t)ψ(x)|x′|α−1x′

)′ + q(t)f(x) = 0, t ≥ t0 > 0,

and
h0(t) =

1

a
1

α+1 (t)

∫ ∞

t

q(s)ds.

Theorem 6. Suppose that conditions (1)–(4), (7), (8) and (17) hold.
If there exists λ > 0 such that

(22)
f ′(x)

(
ψ(x)|f(x)|α−1

) 1
α

≥ λ for all x 6= 0.

Then equation (E2) is oscillatory.

Proof. Suppose, to the contrary, that x(t) is a nonocsillatory solu-
tion of (E2). Then there exists t1 ≥ t0 such that |x(t)| > 0 for t ≥ t1. Since
(22) implies that f ′(x) ≥ 0 for x 6= 0, we have |f(

x(t)
)| > 0 for t ≥ t1. It

is easy to see that Lemma 2 is valid for equation (E2) whith condition (5)
replaced by

(5’) −W (T1) +
∫ t

T1

q(s)ds +
∫ T

T1

f ′
(
x(s)

)|W (s)|α+1
α

(
a(s)ψ

(
x(s)

)|f(
x(s)

)|α−1
) 1

α

ds ≥ A1.

Proceeding as in the proof of Lemma 3, we again obtain (10), i.e.,

(10’)
∫ T

T1

f ′
(
x(s)

)|W (s)|α+1
α

(
a(s)ψ

(
x(s)

)|f(
x(s)

)|α−1
) 1

α

ds < ∞,

since (12) obviously holds. Using (14) with r(t) ≡ 0 and continuing as in
the proof of Lemma 3, we again obtain

(10) W (t) → 0 as t →∞,

and (11) with r(t) ≡ 0, i.e.,

(11’) W (t) =
∫ ∞

t

q(s)ds +
∫ ∞

t

f ′
(
x(s)

)|W (s)|α+1
α

(
a(s)ψ

(
x(s)

)|f(
x(s)

)|α−1
) 1

α

ds,
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for sufficiently large t. The remainder proof of this theorem is similar to
that of Theorem 4 and will be omitted.

Example 7. Consider the equation

(E3)
(|x′|x′)′ + 1

2t
3
2
(2 + sin t− 2t cos t)(x + x

1
3 ) = 0.

It is easy to see that (E3) satisfies the hypotheses of Theorem 5, hence
(E3) is oscillatory.

The following theorem removes the condition that hn must fail to exist
for some n = N (see (15)). It is an extension of part (ii) of Theorem 3 in
[8] to nonlinear ordinary equation.

Theorem 8. Assume that the conditions (1)–(4), (7), (8) and (16)
hold. If hn exists for all n = 1, 2, . . . and there exists an increasing sequence
sm → ∞ as m → ∞ such that hn(sm) → ∞ as n → ∞ for each m, then
equation (E2) is oscillatory.

Proof. Suppose, to the contrary, that x(t) is a nonocsillatory solu-
tion of (E2). Then there exists t1 ≥ t0 such that |x(t)| > 0 for t ≥ t1.
Proceeding as in the proof of Theorem 6, we again obtain (10), (11’), so
(18) and (20) hold. Since hnexists for each n, an argument similar to one
use in Theorem 4 shows that

W (t) ≥ a
1

α+1 (t)h0(t) + Lhn(t), for each n ≥ 1.

Hence there exists sM > t1 such that

W (sM ) ≥ a
1

α+1 (sM )h0(sM ) + Lhn(sM ) →∞, as n →∞,

which contradicts (10).

Theorem 9. Suppose that condition (1)–(4), (7), (17) and (22) hold.
Let

(23)
∫ ∞

t0

ψ
(
x(s)

)|x′(s)|x′(s)
f
(
x(s)

) ds < ∞,

and for some positive integer N such that the functions hn exist for n =
0, 1, 2, . . . , N . If for every B > 0

∫ ∞[
a−

α
α+1 (s)h0(s) + Ba−1(s)hN (s)

]
ds = ∞,
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then equation (E2) is oscillatory.

Proof. Suppose, to the contrary, that x(t) is a nonocsillatory solu-
tion of (E2) and proceeding as in the proof of Theorem 6 (also see (21) in
the proof of Theorem 4), we eventually obtain

W (t) ≥ a
1

α+1 (t)h0(t) + BhN (t),

for t ≥ t1, for some t1 ≥ t0 and B > 0. Hence

ψ
(
x(t)

)|x′(t)|α−1x′(t)
f
(
x(t)

) ≥ a−
α

α+1 (t)h0(t) + Ba−1(t)hN (t).

Integrating it from t1 to t, we obtain

∫ t

t1

ψ
(
x(s)

)|x′(s)|α−1x′(s)
f
(
x(s)

) ds ≥
∫ t

t1

[
a−

α
α+1 (t)h0(t) + Ba−1(t)hN (t)

]
→∞

as t →∞ which contradicts (23).
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