
Publ. Math. Debrecen

52 / 1-2 (1998), 137–143

The sequentially-convex hull of certain
compact operators

By DAVID OATES (Exeter)

Abstract. Necessary and sufficient conditions are given for the closed unit ball,
positive face and positive quadrant in the space of compact linear operators between
a pair of spaces of continuous functions to be the sequentially convex hulls of their
extreme points.

1. Introduction

Let C(X) and C(Y ) denote the continuous real- or complex-valued
functions on the compact Hausdorff spaces X and Y and let Sc be the
closed unit ball in the space Lc(C(X), C(Y )) of compact linear operators
from C(X) to C(Y ) with its operator-norm topology. We denote by E the
set of extreme points of Sc.

The set Sc is among those investigated by Morris and Phelps in [3].
These are remarkable because although they are not compact, the conclu-
sion of the Krein–Milman Theorem still holds for them when the pair
(X,Y ) satisfies certain very specific topological properties. Their result is
that, excepting a special case, Sc is the operator-norm closed convex hull
of E if and only if X is dispersed and Y is totally disconnected.

We consider here the question of when the set Sc satisfies the formally
stronger conclusions of Choquet’s Theorem: that each point is represented
as the centroid of a probability measure on the extreme points.
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In fact we prove the stronger assertion that the same conditions on
(X,Y ) as in [3] are necessary and sufficient for each point of Sc to be the
centroid of a countably supported measure on the extreme points.

In other words, we show that, excepting the same special case, the
condition that X is dispersed and Y is totally disconnected is necessary
and sufficient for Sc to be the sequentially-convex hull of E in the norm
topology, where the sequentially-convex hull of E is defined to be the set

s-co E =
{ ∞∑

i=1

aiEi : ai > 0,

∞∑

i=1

ai = 1, Ei ∈ E
}

.

The author is indebted to an anonymous referee for suggesting the use
of the λ-property of Aron, Lohman and Suarez [1] and Theorem 1 of
their paper in place of his original direct proof, which used the monotone
convergence theorem to get a maximal representing measure.

The Aron–Lohman–Suarez Theorem works for the closed unit ball of
Lc(C(X), C(Y )) and its closed face K1, but not for the positive part K0

of the unit ball. We indicate how their theorem may be modified to show
that our main result also holds with Sc replaced by K0.

Our results develop that proved in [4] which covered the case where
the scalars were real and X consisted of a single point.

2. Linear operators on C(X) with X dispersed

Let C(X) denote the space of all continuous real- or complex-valued
functions on the compact Hausdorff space X, with the supremum norm,
and let Xd be the set of point measures {δx : x ∈ X} taken with the
discrete topology.

A compact space X is said to be dispersed if it contains no non-
empty perfect subset and is totally disconnected if every open covering has
an open refinement in which no two sets intersect.

We use the following characterisation of a dispersed space.

Proposition 2.1 ([5], [7]). Let C(X) be the space of all continuous

real- or complex-valued functions on a compact Hausdorff space X. Then

X is dispersed if and only if every non-zero element F of the dual space

C(X)∗ may be written in the form F =
∑∞

i=1 ciδxi where c1, c2, . . . are
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non-zero scalars, x1, x2, . . . are points of X, the series converges in the

norm topology and
∑∞

i=1 |ci| < ∞.

When the points xi are chosen to be distinct the expansion is unique
and ‖F‖ =

∑∞
i=1 |ci|.

It is known from [3] that the extreme operators E may be identified
with the set of all continuous functions g from Y to the set Γ×Xd, where Γ
is the unit circle. That is, for each E ∈ E there exist a continuous function
α from X to Γ and a function β from Y to X with Ef(y) = α(y)δβ(y)(f)
for all f ∈ C(X).

Since Y is compact each β has finite range and the corresponding
operator E is finite-dimensional.

We now show that the λ-condition of [1] holds for each point T of Sc.

Proposition 2.2. Let T be an operator in the closed unit ball Sc of

Lc(C(X), C(Y )) where X is a dispersed compact space and Y is a totally

disconnected compact space. Then there exist λ ∈ (0, 1), E ∈ E and

S ∈ Sc such that T = λE + (1− λ)S.

Proof. We may suppose that T is non-zero. By Theorem VI 7.1
of [2], since T is compact, it is represented by a continuous function τ

from Y to the space C(X)∗ of regular Borel measures on X, taken with
its norm topology. For all s ∈ Y and f ∈ C(X) Tf(s) = τ(s)(f) and
‖T‖ = sup

s∈Y
‖τ(s)‖ holds.

For each x ∈ X the set Ux = {F ∈ C(X)∗ : |F ({x})| > 0} is open. By
Proposition 2.1, since X is dispersed, {Ux : x ∈ X} is an open covering of
C(X)∗ \ {0} and V = {τ−1(Ux) : x ∈ X} ∪ {V0} is an open covering of Y ,
where V0 = {s ∈ Y : ‖τ(s)‖ < 1

2‖T‖}.
Since Y is totally disconnected and compact there is a finite parti-

tion Y0, . . . , YN of Y into open and closed subsets which refines V and
where Y0 ⊇ τ−1({0}). Let x1, . . . , xN be such that τ(Yi) ⊆ Uxi for
i = 1, . . . , N . The continuous function F → |F ({xi})| attains its infimum
on the weakly compact set τ(Yi) at a point τ(si) where 0 < |τ(si)({xi})| =
εi ≤ |τ(s)({xi})| for all s ∈ Yi.

Now let λ = min{ε1, . . . , εN , 1
4‖T‖} > 0. Define the function g from

Y to Γ×Xd by

(2.1) g(s) =
N∑

i=1

τ(s)({xi})
|τ(s)({xi})|δxiχYi

(s) + δx0χY0
(s).
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When s ∈ Y0 we have

‖τ(s)− λg(s)‖ ≤ ‖τ(s)‖+ λ ≤ 3
4
‖T‖ ≤ 1− λ.

If 1 ≤ i ≤ N and s ∈ Yi, then

‖τ(s)− λg(s)‖ = ‖τ(s)‖ − |τ(s)({xi})|+ |τ(s)({xi})− λg(s)({xi})|

= ‖τ(s)‖ − |τ(s)({xi})|+
∣∣∣∣τ(s)({xi})− λ

τ(s)({xi})
|τ(s)({xi})|

∣∣∣∣
= ‖τ(s)‖ − |τ(s)({xi})|+ |τ(s)({xi})| − λ

= ‖τ(s)‖ − λ ≤ 1− λ.

Now g represents an operator E ∈ E and we have proved that

‖T − λE‖ ≤ 1− λ. If we define S =
T − λE

1− λ
, then S ∈ Sc and

T = λE + (1− λ)S. ¤
Theorem 2.3. Let X and Y be compact Hausdorff spaces with X

dispersed and Y totally disconnected. Then Sc = s-co E .

Proof. By Theorem 2.2, for each T of Sc there exist λ ∈ (0, 1], E ∈ E
and S ∈ Sc with

T = λE + (1− λ)S.

By Theorem 1 of [1] this is a necessary and sufficient condition for Sc =
s-co E to hold, which completes the proof. ¤

When X is a single point and the scalars are complex, Sc reduces to
the closed unit ball in the complex space C(Y ). The need for a condition
on the number of points in X in the following theorem arises from the
result in [6] that this unit ball is the closed convex hull of its extreme
points for every compact Hausdorff space Y .

Theorem 2.4. Let X and Y be compact Hausdorff spaces and suppose
that if the scalars are complex and Y contains at least two points then so
does X. Then the following are equivalent.

(a) X is dispersed and Y is totally disconnected,
(b) Sc = co E ,
(c) Sc = s-co E .

Proof. By Theorem 2.3, (a) implies (c). That (c) implies (b) is
immediate. If (b) holds then (a) follows from Theorem 4.6 of [3]. ¤
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Let K0 and K1 denote respectively the set of non-negative opera-
tors in Sc and its subset consisting of the non-negative compact operators
satisfying the condition T1 = 1, where 1 is the unit function.

Corollary 2.5. For real scalars, if X is dispersed and Y is totally

disconnected then K1 is the sequentially-convex hull of its extreme points.

Proof. When X is dispersed, Y is totally disconnected and the
scalars are real, Theorem 2.3 and the fact that K1 is a closed face of
Sc show that K1 = s-co ext K1. ¤

Proposition 2.6. Let the scalars be real. Then X is dispersed and Y

is totally disconnected if and only if K0 is the sequentially-convex hull of

its extreme points.

Proof. Let X be dispersed, Y be totally disconnected and let T ≥ 0
be in Sc. In the proof of Theorem 2.2, we may replace equation (2.1) by

(2.2) g(s) =
N∑

i=1

τ(s)({xi})
|τ(s)({xi})|δxiχYi

(s) + 0χ
Y0

(s)

where 0 is the origin in C(X)∗.
As proved in [6], the operator E represented by g is an extreme point

of K0 because its range is in Xd ∪ {0}. Also the operator T − λE is
non-negative.

This shows that K0 satisfies the following version of the λ-property:
For each point T of K0 there exist λ ∈ (0, 1], E ∈ ext K0 and S ∈ K0 with

T = λE + (1− λ)S.

We now observe that the proof of Theorem 1 in [1] holds for K0, the
non-negative part of the closed unit ball, provided their function λ(T ) is
redefined as

λ(T ) = sup{λ ∈ (0, 1] : T = λE + (1− λ)S, E ∈ ext K0, T ∈ K0}.

Remark 2.2 of [1] then shows that K0 = s-co ext K0.
Conversely, let X and Y be compact spaces with K0 = s-co ext K0.

Let y1 and y2 belong to the same connected component of Y and let
h ∈ C(Y ) separate y1 and y2 with 0 ≤ h(y) ≤ 1 for all y ∈ Y . Let x be
fixed in X.
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The linear operator defined on C(X) by Tf(y) = f(x)h(y) lies in K0.
Now T =

∑∞
i=1 aiEi where ai > 0,

∑∞
i=1 ai = ‖T‖ and Ei ∈ extK0.

There exist continuous functions βi from Y to Xd ∪ {0} in C(X)∗ with
Eif(y) = βi(y)(f) for all y ∈ Y and all f ∈ C(X). Since Xd ∪ {0} is
discrete, βi(y1) = βi(y2) for all i ≥ 1.

We apply the operator T to a function f0 ∈ C(X) with f0(x) = 1.
Now

h(y1) = f0(x)h(y1) = Tf0(y1) =
∞∑

i=1

aiEif0(y1) =
∞∑

i=1

aiβi(y1)(f0)

=
∞∑

i=1

aiβi(y2)(f0) =
∞∑

i=1

aiEif0(y2) = Tf0(y2) = f0(x)h(y2) = h(y2).

But this contradicts the fact that h separates y1 from y2, so each compo-
nent of Y consists of a single point and Y is totally disconnected.

Let U+ = {F ∈ C(X)∗ : F ≥ 0, ‖F‖ ≤ 1}. It follows from K0 =
s-co ext K0 that C(Y, U+) ⊆ C(Y, s-co(Xd∪{0}) ) and U+ ⊆ s-co(Xd∪{0}).
Since P (X), the set of regular probability measures on X, is a face of U+,
P (X) = s-co Xd in the norm topology and using the Riesz decomposition
of measures, each F ∈ C(X)∗ is the norm convergent sum of a series of
scalar multiples of point evaluations. Proposition 2.1 then asserts that X

is dispersed. ¤

We note that Corollary 2.5 may also be proved directly by the first
part of the above argument with the final term in (2.2) omitted altogether.
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