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Introduction

In General Relativity Theory a mathematical structure named
Lorentzian manifold is fundamental. This structure is denoted by [M, g]
where M is a real C∞-differentiable 4-dimensional paracompact manifold
without boundary and g is a global C∞-differentiable field of two times
covariant symmetric tensors with diagonal form (−−−+). This g is called
the Lorentzian metric of M .

The geometry of [M, g] is generally based on the concept of Minkowski
norm. In a local chart of M , this norm is:

∀X ∈ TxM
∣∣ |X| = (gab(x)XaXb)1/2 = (g(x)(X, X))1/2, a, b = 1, 2, 3, 4.

The Minkowski norm of TxM and the distance on M defined by it
are important concepts of Lorentzian geometry (in Beem and Ehrlich’s
monograph [1], 1981, consisting of eleven chapters five are dedicated to the
study of this norm and distance). But in spite of their definitions, which
are very similar to those of Riemannian geometry, the first is not at all
a norm nor is the second a distance. Obviously, here the terminology is
improperly used. The efforts to draw a parallelism between this geometry
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of [M, g] and the geometry of a Riemannian manifold in such a way are
ineffectual (see [1]). However, both functions are important and useful in
General Relativity Theory.

In the present paper, for a time oriented Lorentzian manifold [M, g],
a new norm of TxM (∀x ∈ M) and consequently a new distance on M are
proposed, these providing a new geometry of [M, g]. This new geometry is
similar to the Riemannian geometry and it is also justified from a physical
point of view. Some elements of this new geometry (the fundamental ones)
are presented here.

The ideas come from the theory of Krein spaces (defined and stud-
ied by M. Krein in 1936). A Krein space is a mathematical structure
[B, K], where B is a Banach space and K is a convex pointed closed cone
with nonempty interior in B (Cone = a subset K of B for which the re-
lation X ∈ K implies ρX ∈ K (∀ρ ∈ R, ρ ≥ 0). K is pointed iff X
and −X belong to K then X = 0). The Krein spaces are fundamental
structures for a theory of positive operators developed after World War
II by M.A. Krasnosel’skij and his school at Voronezh (Russia). Two im-
portant monographs were published ([3], M.A. Krasnosel’skij, 1964 and
[4], M.A. Krasnosel’skij, J.A. Lifshits, A.V. Sobolev, 1989). Using
some ideas of these works, we studied in three papers ([5], 1988; [6], 1988;
[7], 1990; D.I. Papuc) the geometry of manifolds endowed with a field of
tangent cones. The theory of vector bundles endowed with cone fields was
studied in two other works ([8], 1992; [9], 1994; D.I. Papuc).

1. A new local geometry of a Lorentzian manifold

I.1. Definition 1. A Lorentzian manifold is a structure, denoted by
[M, g], where M is a real (n +1)-dimensional C∞-differentiable connected
paracompact manifold without boundary, and g is a C∞-differential global
field of tangents to M tensors, these tensors being two-times covariant
symmetric and with diagonal form (− · · · −+).

For a Lorentzian manifold a tangent vector X ∈ TxM can be: timelike
if g(x)(X, X) > 0, isotropic if g(x)(X,X) = 0, and nonspacelike (nontime-
like) if g(x)(X, X) ≥ 0 (≤ 0).

Given a Lorentzian manifold [M, g], C(x) denotes the set of nonspace-
like tangent vectors from TxM , i.e.

(1) C(x) = {X ∈ TxM | g(x)(X,X) ≥ 0}, ∀x ∈ M.
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Every set C(x) is determined by a degenerate hyperquadric g(x)(X, X) = 0
and it is composed of two subsets, denoted by C+(x) and C−(x), which
are convex pointed closed cones with nonempty interior in the topological
vector space TxM . These cones satisfy the relations: C+(x) ∪ C−(x) =
C(x), C+(x) ∩ C−(x) = {0}, X ∈ C+(c) iff −X ∈ C−(x).

2. Definition 2. A locally time-normalized Lorentzian manifold is a
structure [M, g] for which an open covering {U} of M is fixed, every subset
U being a connected geometric zone of a local chart of M , and for every U

a C∞-differentiable vector field Z defined on U of tangent timelike vectors
is also fixed.

A locally time-normalized Lorentzian manifold will be denoted by
[M, g; {(U,Z)}]. Obviously, every Lorentzian manifold can be endowed
with a structure of locally time-normalized Lorentzian manifold.

One has:

(2) ∀x ∈ U | g(x)(Z(x), Z(x)) > 0.

3. The local cone field of nonspacelike tangent vectors. Given a lo-
cally time-normalized Lorentzian manifold [M, g; {(U,Z)}], for every pair
(U,Z), in each point of U , the field Z determines one of the cones C+(x),
C−(x). This is the cone C+(x) or C−(x) which contains the vector Z(x).
This cone denoted by K(x) is defined by:

(3)
K(x) = {X ∈ TxM | (X 6= 0 ∧ g(X, X) ≥ 0

∧ g(Z(x), X) > 0) ∨ (X = 0)}.

In such a way a local map

(4) K : x ∈ U → K(x) ⊂ TxM ⊂ T (M)

is defined. This map verifies the axioms A1, A2 from [8], p. 39:

A1. For every x ∈ U the set K(x) ⊂ TxM is a convex pointed closed cone
with a non-empty interior (in the topological vector space TxM);

A2. The sets
⋃

x∈U IntK(x) and
⋃

x∈U (TxM \ K(x)) are open subsets
of T (M).
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Consequently the open submanifold U of M is endowed with a field of
tangent cones. One can consider the structure [(T (U), p, U); K], where
T (U), p, U) is the tangent vector bundle of U and K is the map defined
by (4). All results exposed in [8] for an arbitrary structure [(E, p,M); K]
can be applied for (T (U), p, U); K]. Thus for every pair (U,Z), a new
geometry of the Lorentzian manifold [U, g|U ] is obtained. In Section II
some fundamental elements of this new geometry will be presented.

Remark 1. It is easy to see that for every local pair (U,Z) the struc-
ture [(T (U), p, U); K] is uniquely determined by M, g, U and Z.

Remark 2. The same field K can be determined by any element of the
set of all Lorentzian metrics globally conformal to g, i.e. by an arbitrary
element of the set

C(M, g) = {ρg : M → (0,∞), ρ is C∞-differentiable}.

Remark 3. In order to study the structures [(T (U), p, U); K] deter-
mined by the pairs {(U,Z)}, a preferential atlas of the manifold M may
be used, its local charts being characterised by the following: the geomet-
ric zones of these local charts are open sets {U} and in every such chart
Z = ∂/∂xn+1 (the local Frobenius theorem).

Obviously, in virtue of (2), in a preferential local chart gn+1 n+1 > 0
holds.

The transformation of coordinates between two preferential local
charts having the same open set U as geometric zone is given by:

(5)
x
′i = x

′i(x1, x2, . . . , xn), i = 1, 2, . . . , n

x
′n+1 = x

′n+1(x1, x2, . . . , xn) + xn+1.

Remark 4. In order to study a fixed structure [(T (U), p, U); K] in
any of the local preferential charts specified above, the Lorentzian metric
tensor g (which together with U and Z determines the cone field K) will be
replaced by the local tensor g ·(gn+1 n+1)−1 = g∗. Obviously g∗n+1 n+1 = 1.

Remark 5. In a local preferential chart associated to the pair (U,Z)
one has

(6) g∗(Z, Z) = g∗n+1 n+1 = 1, g∗(Z, X) = g∗n+1 iX
i + Xn+1, i = 1, . . . , n
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II. Using the results concerning the geometry of a structure [M, K;Z],
([5], [6], [7]) for a locally time-normalized Lorentzian manifold, i.e. for a
structure [M, g; {(U,Z)}], a new geometry is obtained. We are going to
present some elements of this new geometry.

For an arbitrary fixed pair (U,Z) the following geometric elements are
considered:

a) The structure [(T (U), p, U); K] which was presented in I.3.
(T (U), p, U) is the tangent vector bundle of the manifold U and K is
the cone field determined by (3) and (4).

The interior of the cone K(x) is given by

(7) Int K(x) = {X ∈ TxM | (g(X,X) > 0 ∧ g(Z(x), X) > 0)}.

b) An ordering relation for the elements of TxM , ∀x ∈ U :

∀X, Y ∈ TxM | X ≤ Y ⇒ Y −X ∈ K(x).(8)

X ≤ Y ⇔ (X = Y ) ∨
[
(X 6= Y ) ∧ (

g(X, X) + g(Y, Y ) ≥ 2 g(X, Y )
)

∧(
g(Z(x), Y

)
> g

(
Z(x), X)

)]
.

The pair (TxM,≤) is an ordered vector space, directed on both sides.

c) A pseudonorm of TxM .
∀X ∈ TxM and ∀Y ∈ IntK(x) we have:

(9) X /∈ {ρY | ρ ∈ R} ⇔ (g(Y, X))2 − g(Y, Y )g(X, X) > 0.

If X ∈ TxM one puts

(10)
D(X) = [(g(Z(x), X))2

− g(Z(x), Z(x))g(X, X)]1/2(g(Z(x), Z(x)))−1,

then the map

(10’) D(.) : X ∈ TxM → D(X) ∈ R

is a pseudonorm on TxM , i.e.

(11) D(X) ≥ 0, D(ρX) = |ρ|D(X), D(X) + D(Y ) ≥ D(X + Y ).
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Notice that D(X) = 0 ⇔ X ∈ {ρ Z(x) | ρ ∈ R}.
In a local preferential chart of the pair (U,Z) (see (6))

(12) D(X) = ((g∗(Z(x), X))2 − g∗(X,X))1/2

holds.

d) By means of the ordering relation defined by (8) the fundamental
function ν is defined ([7], p. 44, 1992, D.I. Papuc):

(13) ν : (Z,X) ∈
⋃

x∈U

(IntK(x)× T (x)) → ν(Z,X) ∈ R2,

where
ν(Z, X) = (α(Z,X), β(Z,X)) ∈ R2,

and the real numbers are determined by

(14)
α(Z,X) = min{λ ∈ R | X ≥ λZ},
β(Z,X) = max{λ ∈ R | λZ ≥ X},

or equivalently

(14’)
α(Z, X) = g(Z, X)(g(Z, Z))−1 + D(X),

β(Z, X) = g(Z, X)(g(Z, Z))−1 −D(X).

e) A norm on TxM . For every x ∈ U the map | . |Z : X ∈ TxM →
|X|Z ∈ R, where Tx(U) = TxM and

(15) |X|Z = min{λ ∈ R | λ ≥ 0, −λZ(x) ≤ X ≤ λZ(x)}

or equivalently

|X|Z = max{|α(Z(x), X)|, |β(Z(x), X)|}
= |g(Z(x), X)|(g(Z(x), Z(x))−1 + D(X)(15’)

= |g(Z(x), X)|(g(Z(x), Z(x))−1 + [(g(Z(x), X))2

− g(Z(x), Z(x))g(X, X)]1/2(g(Z(x), Z(x))−1

is a norm on the tangent vector space TxM .
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The norm | . |Z is invariant with respect to the replacement of the
tensor g by the tensor g∗ = ρg, where ρ ∈ {ρ : U → (0,∞), ρ is C∞-
differentiable} and it is determined by Z(x) and K(x) or by Z(x) and any
tensor field g∗.

If one replaces Z by ρZ, (where ρ : U → (0,∞), ρ is C∞) then

(16) ∀X ∈ TxM
∣∣ |X|ρZ = (ρ(x))−1|X|Z .

Therefore we can say that the vector Z(x) serves as a unit of measure in
TxM .

In a local preferential chart (see (6)) one has

|X|Z = |g∗(Z(x), X)|+ [(g(Z(x), X))2 − g∗(X, X)]1/2.

Geometrical and physical interpretation of the norm: If for an arbi-
trary X ∈ TxM we put X = ρZ(x) + X1, g(Z(x), X1) = 0 then

(17)
g(Z(x), X)(g(Z(x), Z(x))−1 = ρ

D(X) = (−g(X1, X1)(g(Z(x), Z(x))−1)1/2.

By means of (15’) one obtains

(18) |X|Z = |ρ|+ [−g(X1, X1)(g(Z(x), Z(x))−1]1/2

and thus the following geometrical and physical interpretations of the norm
determined by (15) arise:

Geometrical interpretation: |X|Z is the sum of |ρ| and of the quotient
of two norms: the norm of X1 determined by −g and the Minkowski norm
of Z(x) determined by g (both norms are real positive numbers).

Physical interpretation: if for n = 3 we consider the Minkowski 4-
dimensional space [TxM, g(x)] and in a local chart of M , normal in x

(i.e. in this chart for the tensor g(x) the relations gij = −δij , gn+1 i = 0,
gn+1 n+1 = c2, i, j = 1, 2, 3 hold) we put Z(x) = (0, 0, 0, 1/c), where c is
the speed of light, then for an arbitrary vector X(X1, X2, X3, t) ∈ TxM

the norm |X|Z is the sum of euclidean distances |ct| and (δijX
iXj)1/2.

f) Linear connections associated to a pair (U,Z). A linear connection
defined on U , for which the cone field K and the vector field Z are invariant
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in the parallel displacement along any curve in U , will have to satisfy the
relations

(19)
gab|c + (∂(log ρ)/∂xc)gab, Za

|b = 0, ρ : U → (0,∞)

a, b, c = 1, . . . , n + 1.

Using any of the preferential local charts defined in the Remark 3 (1.I),
one gets Γa

n+1c = 0 and ρ = (gn+1 n+1)−1. Therefore in these preferential
local charts, the conditions (19) are equivalent to

(20)

ρ = (gn+1 n+1)−1

Γa
n+1 b = 0

∂gi n+1/∂xa + (∂ log ρ/∂xa)gi n+1 = Γb
iagb n+1,

∂gij/∂xa + (∂ log ρ/∂xa)gij = Γb
iagbj + Γb

jagib,

i, j = 1, . . . , n; a, b = 1 . . . , n + 1.

This is a linear system of n(n + 1)(n + 3)/2 equations with
n(n + 1)2 unknown functions {Γa

ib}. At least (n2 − 1)/2 functions will
remain undetermined. Consequently there are linear connections associ-
ated to an arbitrary pair (U,Z).

Remark that if a tangent vector field X defined on U is parallel in
the parallel transport determined by a linear connection associated to the
pair (U,Z) then the functions ρg(Z, X) and ρg(X,X) are constant in this
parallel transport. Therefore all geometric relations and concepts defined
above (the relation X ≤ Y , see (8), the pseudonorm D, see (10) and
(10’), the function ν, see (14) and (14’), and the norm | . |Z , see (15) and
(15’)) are invariant in the parallel transport determined by these linear
connections.

If we try to find a symmetric linear connection which satisfies (19)
then the following conditions must be verified by the tensor field g :
∂(gia/gn+1 n+1)/∂xn+1 = 0. For the symmetric linear connection Γ also
Γa

b n+1 = 0 holds true. The linear system (20) supplies a linear system for
Γ of n(n+1)(n+2)/2 equations with n(n+1)2/2 unknown functions. The
number of equations is greater than the number of functions by n(n+1)/2.
Obviously, a symmetric linear connection for which the field of cones K
and the vector field Z are invariant in the parallel displacement along any
curve of M , generally does not exist.
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2. Some particular Lorentzian manifolds

1. Time-normalized space–time manifolds

Definition 3. A space–time manifold is a Lorentzian manifold M for
which there is a global C∞-differentiable tangent vector field Z of timelikes
vectors, i.e. a global tangent vector field Z for which

(21) ∀x ∈ M
∣∣ g(x)(Z(x), Z(x)) > 0.

A time-normalized space–time manifold is a space–time manifold for which
a global C∞-differentiable tangent vector field Z of timelike vectors is fixed.

A time-normalized space–time manifold will be noted by [M, g; Z].
If for a structure [M, g;Z] the pair (U = M, Z) is considered, then the

geometry of this pair (U,Z) developed in the first part will be the geometry
of the structure [M, g;Z]. In this manner the fundamental elements of
a new geometry of a time-normalized space–time manifold are obtained.
Note that in this case for the manifold M one may use a preferential
atlas so that in the local charts of this atlas the tangent vector field Z

is represented by Z = ∂/∂xn+1. The coordinate transformations for the
local charts of this atlas are (5).

2. Almost Minkowskian manifolds

Definition 4. An almost Minkowskian manifold is a time-normalized
space–time manifold [M, g; Z] for which the differential system (“distribu-
tion” in Chevalley sense) g(Z, dx) = 0 defined on M is totally integrable
(involutive).

A geometrical interpretation of the condition for a time-normalized
space–time manifold to be an almost Minkowskian manifold is the follow-
ing: for every x ∈ M the linear n-dimensional subspace of TxM determined
by the differential system g(Z, dx) = 0 is the correspondent of Z(x) in the
polarity of TxM determined by the hyperquadric g(X,X) = 0. The n-
dimensional distribution determined this way must be totally integrable.

An almost Minkowskian manifold is characterised as follows:
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Proposition. The necessary and sufficient condition that a time-nor-

malized space–time manifold [M, g; Z] be an almost Minkowskian manifold

is: for every point x ∈ M there exists an admissible local chart of M in

which for the fundamental tensor g∗ = g(gn+1 n+1)−1 and the vector field

Z the conditions

(22) g∗n+1 n+1 = 1, g∗n+1 a = 0, a = 1, . . . , n, Z = ∂/∂xn+1

hold true.

Proof. Conditions (22) are necessary. Indeed, let [M, g; Z] be an
almost Minkowskian manifold. For an arbitrary x ∈ M there is an ad-
missible local chart of M such that x belongs to the geometric zone of
this chart and the vector field Z will be represented in this chart by
Z = ∂/∂xn+1 (local Frobenius theorem). We also replace the fields of
tensors g by g∗ = g(gn+1 n+1)−1. Obviously g∗n+1 n+1 = 1. Also, in this
local chart the differential system from the Definition 4 will be given by
the Pfaff’s equation g∗(Z, dx) = g∗n+1 idxi = g∗n+1 adxa + dxn+1 = 0. This
differential system is integrable if and only if the following conditions are
satisfied:

(23)
g∗n+1 i(∂g∗n+1 j/∂xn+1)− g∗n+1 j(∂g∗n+1 i/∂xn+1)

+∂g∗n+1 i/∂xj − ∂g∗n+1 j/∂xi = 0, i = 1, . . . , n.

The differential system being integrable, it admits n-dimensional integral
manifold which, in the considered admissible local chart, is given by:

xa = ua, xn+1 = f(u1, . . . , un), a = 1, . . . , n

where (x1, . . . , xn, xn+1) belongs to the arithmetical zone of this local
chart. The images in TxM of vectors {∂/∂ui; i = 1, . . . , n} are vec-
tors Xi = ∂/∂xi + (∂f/∂xi)∂/∂xn+1, i = 1, . . . , n. For these vectors
g∗(Z, dx)(Xi) = g∗n+1 i + ∂f/∂xi = 0 holds. Hence: g∗(Z, dx) = d(xn+1 −
f(x1, . . . , xn)). If one proceeds to the change of local coordinates x

′a = xa,
x
′n+1 = −f(x1, . . . , xn)+xn+1, one obtains a new preferential local chart,

with the same geometrical zone, in which g∗(Z, dx) = dx
′n+1 and conse-

quently (22) will be satisfied.
Conditions (22) are sufficient. Indeed, let [M, g; Z] be a time-normal-

ized space–time manifold. We assume that for every point x of M there
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is an admissible local chart of M in which, for the tensorial field g∗

and Z, the conditions (22) are satisfied. By virtue of the second con-
dition (22), the differential system determined by the Pfaff’s equation
g∗(z, dx) = g∗n+1 idxi = dxn+1 = 0 is integrable and thus the condition
from Definition 4 is satisfied.

Corollary. Let [M, g; Z] be an almost Minkowskian manifold. A local

chart of the manifold M in which the relations (22) are satisfied is called

a preferential local of M . A transformation of coordinates between two

preferential charts is given by

(24)
x
′i = x

′i(x1, x2, . . . , xn), i = 1, . . . , n

x
′n+1 = xn+1 + c.

For the almost Minkowskian manifolds, in preferential local charts,
the cones K(x) are determined by:

(25) ∀x ∈ M | K(x) = {X ∈ TxM |Xn+1 ≥ 0, (Xn+1)2 − g∗abX
aXb ≥ 0}

and the fundamental functions α and β by:

∀(Z, X) ∈ ⋃
(IntK(x)× TxM)

∣∣α(Z, X)=Xn+1+(−g∗abX
aXb)1/2

β(Z, X)=Xn+1−(−g∗abX
aXb)1/2(26)

a, b = 1, . . . , n.

The norm determined by the global vector field Z of an arbitrary
tangent vector X ∈ TxM is supplied by:

|X|Z = max{|Xn+1+(−g∗abX
aXb)1/2|, |Xn+1−(−g∗abX

aXb)1/2|}(27)

= |Xn+1|+ (−g∗abX
aXb)1/2.

3. Local Minkowskian manifolds

Definition 5. A local Minkowskian manifold is a Lorentzian manifold
[M, g] for which there is an admissible atlas A of M such that in any local
chart of A the tensor field g satisfies the conditions:

(28) gij = −δij , gn+1 i = 0, gn+1 n+1 = 1, i, j = 1, . . . , n.
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Every local Minkowskian manifold is an almost Minkowskian manifold
(the conditions (22) are satisfied, the global vector field Z being given in
a local chart which belongs to A by ∂/∂xn+1).

The local charts of the atlas A from Definition 5 are preferential lo-
cal charts of the considered local Minkowskian manifold. The coordinate
transformation determined by two preferential local charts is:

x
′i = ai

jx
j + ai, δija

i
haj

k = δhk, i, j, h, k = 1, . . . , n,(29)

x
′n+1 = xn+1 + a.

A local Minkowskian manifold M for which there exists a preferential
chart whose geometrical zone is M and whose arithmetical zone is Rn+1

is a Minkowskian manifold (a homogeneous Minkowskian space).

3. Example

We consider a Lorentzian manifold [M, g] for which in a local chart
h(U,χ) the tensor field g is determined by:

(30)
gij = −(1 + W )δij , gi4 = 0, g44 = (1−W )c2; i, j = 1, 2, 3;

W = (k/4π)
∫

σr−1dV0

where c is the speed of light ([2]; A. Einstein, 1955).
If one considers on U the vector field Z(0, 0, 0, c−1), then for an arbi-

trary vector field X(X1, X2, X3, X4) defined on U , one has:

(31)
g(Z, Z) = 1−W, g(Z,X) = c(1−W )X4,

g(X, X) = −(1 + W )((X1)2+(X2)2+(X3)2)+c2(1−W )(X4)2.

Hence by virtue of (12),

α(Z,X) = cX4 + ∆((X1)2 + (X2)2 + (X3)2)1/2,(32)

β(Z,X) = cX4 −∆((X1)2 + (X2)2 + (X3)2)1/2

holds, where ∆ = (1 + W )1/2(1−W )−1/2. Also, (15) implies:

(33) |X|Z = c|X4|+ ∆((X1)2 + (X2)2 + (X3)2)1/2.
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An arbitrary linear connection, for which the field of cones K and
the vector field Z are invariant in the parallel transport determined by
this connection, depends on 12 unknown real functions defined on U . A
necessary condition for the existence of such a linear connection which is
symmetric is that W does not depend on x4 = t. The number of linear
conditions which have to be satisfied by the coefficients of this symmetric
connection (in the considered local chart) is greater by 6 than the number
of coefficients.

Conclusions

In the study of an arbitrary time-normalized space–time manifold
[M, g;Z], or more generally, in the study of a locally time-normalized
space–time manifold one can use the norm proposed by (3) and (4). This
norm allows us to considerv canonical parameters on the curves in M and,
subsequently, a length of a curve and a distance on the manifold M . We
obtain a metric geometry of (locally) time-normalized space–time manifold
[M, g;Z] which appears more natural than the “metric” geometry deter-
mined by means of Minkowsky metric. If for two Observers the fundamen-
tal fields Z’s are different (for a locally time-normalized space–time man-
ifold the vector fields Z’s are defined only locally!) the General Relativity
Theory with all its concepts will remain the same, the Lorentzian trans-
formations being involved. If Z is globally defined, then those Lorentzian
transformations (transformations which conserve the fundamental cones)
which conserve also the fundamental field Z, are Galilean transformations.
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SEMINARUL DE GEOMETRIE SI TOPOLOGIE
BVD. VASIK PÂRVAN 4
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