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A note on positive integer solutions of the equation
xy + yz + zx = n

By MAOHUA LE (Zhanjiang)

Abstract. Let n be a positive integer. In this note we prove that if n > 1013, then
there exist at most seven exceptional values n for which the equation xy + yz + zx = n
has no positive integers (x, y, z). Moreover, under the assumption of the generalized
Riemann conjecture, the above-mentioned exceptional values do not exist.

1. Introduction

Let Z, N be the sets of integers and positive integers respectively. For
a fixed positive integer n, let S(n) denote the number of solutions (x, y, z)
of the equation

(1) xy + yz + zx = n, x, y, z ∈ N, x ≤ y ≤ z.

In [6], Kovács examined that if n ≤ 107, then S(n) > 0 except n = 1,
2, 4, 22, 30, 42, 58, 70, 78, 102, 130, 190, 210, 330 and 462. Let E(X)
denote the number of n ≤ X for which S(n) = 0. Cai [1] proved that
E(X) = O(X · 2−(1−ε)(log X)/ log log X) for any ε > 0. Recently, Hassan,

Brindza and Pintér [2] showed that if S(n) = 0, then the squarefree
part of n belongs to a finite set which can be effectively determined up to
at most one element. While S(n) = 0, n is called an exceptional value. In
this note we prove the following result.
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Theorem. If n > 1013, then there exist at most seven exceptional
values n. Moreover, under the assumption of the generalized Riemann
conjecture, the above-mentioned exceptional values do not exist.

2. Preliminaries

Lemma 1. If n > 1 and 2 - n or n > 4 and 4 | n, then S(n) > 0.

Proof. If n > 1 and 2 - n, then (1) has a solution (x, y, z) =
(1, 1, (n − 1)/2). If n > 4 and 4 | n, then (1) has a solution (x, y, z) =
(2, 2, n/4− 1). The lemma is proved.

Lemma 2 ([7]). For any positive integer t, let pt denote the t-th odd
prime. Then pt ≥ max(3, (t + 1) log(t + 1)).

Lemma 3. For any positive integer k,

p1p2 · · · pk >
5
2

(
k + 1

e

)k+3/2 k+1∏
t=3

log t.

Proof. Using Lemma 2, we get

(2) p1p2 · · · pk >
3
2
(k + 1) ! (log 3)

k+1∏
t=3

log t.

By Stirling’s theorem, we have

(3) (k + 1) ! >
√

2π(k + 1)
(

k + 1
e

)k+1

.

Substituting (3) into (2), we obtain the lemma immediately.

Lemma 4. For any positive integer k, let P (k) =
√

8p1p2 · · · pk

/
log 8p1p2 · · · pk. If k ≥ 5, then P (k + 1) > 2P (k).

Proof. Since pi (i = 1, 2, . . . , k) are all odd primes for which do not
exceed pk, every prime factor q of 8p1p2 · · · pk − 1 satisfies q ≥ pk+1. It
implies that 8p1p2 · · · pk − 1 ≥ pk+1. Hence, if k ≥ 5, then we have

P (k + 1)
P (k)

=
√

pk+1
log 8p1p2 · · · pk

log 8p1p2 · · · pk + log pk+1
>

1
2
√

pk+1 ≥ 1
2

√
17 > 2.

The lemma is proved.
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We now recall some basic properties on class numbers of binary quad-
ratic forms (see [3]). For any positive integer m, let h(m) and h0(m) denote
the class number of binary quadratic forms and binary quadratic primitive
forms with discriminant −m, respectively. Then we have

(4) h(m) =
∑

d2|m
h0

(m

d2

)
,

where d2 runs through all square divisors of m. If m ≡ 0 or 3 (mod 4),
then the negative discriminant −m can be written as

(5) −m = −fg2,

where −f is a fundamental discriminant, g is a positive integer. Further,
we have

(6) h0(m) = h0(fg2) = h0(f)
∏

p|g

(
1−

(−f

p

)
1
p

)

and

(7) h0(f) =
√

f

π
L (1, χ), if f > 4,

where p runs through all prime factors of g, (−f/p) is Kronecker’s symbol,
χ is a real primitive character modulo f , L(s, χ) is the Dirichlet L-function
associated with χ. Furthermore, let ω(f) denote the number of distinct
prime factors of f , then we have

(8) 2ω(f)−1
∣∣ h0(f).

Lemma 5 ([4, 5]). Let χ be a real primitive character modulo q. For

any positive number ε with ε ≤ 0.0723, if q > e1/ε, then

L (1, χ) > min
(

1
7.735 log q

,
2.865ε

qε

)
,

except at most one exceptional modulo q. Moreover, under the assumption

of the generalized Riemann conjecture, the exceptional modulo does not

exist.
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3. Proof of Theorem

Let n be an exceptional value with n > 1013. By Lemma 1, we have
2 ‖ n. Then n can be written in the form

(9) n = 2`1`2 · · · `k u2α1
1 u2α2

2 · · ·u2αr
r v2β1+1

1 v2β2+1
2 · · · v2βs+1

s ,

where `1, `2, . . . , `k, u1, u2, . . . , ur, v1, v2, . . . , vs are distinct odd primes,
α1, α2, . . . , αr, β1, β2, . . . , βs are positive integers. We may assume that
`1 < `2 < . . . < `k, u1 < u2 < . . . < ur and v1 < v2 < . . . < vs. Notice
that 3 ! S(n) ≥ 3h(4n)− 3d(n) by [2, page 201], where d(n) is the number
of positive divisors of n. Then we have

(10) d(n) ≥ h(4n).

By (5) and (9), we have

−4n = −fg2,(11)
where

f = 8`1`2 · · · `kv1v2 · · · vs, g = uα1
1 uα2

2 · · · uαr
r vβ1

1 vβ2
2 · · · vβs

s .(12)

and −f is a fundamental discriminant. Further, by (4), (6), (11) and (12),
we get

(13)

h(4n) =
∑

d2|4n

h0

(
4n

d2

)
=

∑

d2|g2

h0

(
f

g2

d2

)

=
∑

d2|g2

h0(f)


 ∏

p|g/d

(
1−

(−f

p

)
1
p

)


= h0(f)
∑

d|g


 ∏

p|g/d

(
1−

(−f

p

)
1
p

)
 .

Since (−f/p) ≤ 1, we deduce from (12) and (13) that

(14)

h(4n) ≥ h0(f)
∑

d|g


 ∏

p|g/d

(
1− 1

p

)


= h0(f)

(
r∏

i=1

(uαi
i − 1)

) 


s∏

j=1

(
v

βj

j − 1
)

 .
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On the other hand, by (9), we have

(15) d(n) = 2k+1

(
r∏

i=1

(2αi + 1)

)


s∏

j=1

(2βj + 2)


 .

The combination of (10), (14) and (15) yields

(16) 2k+s+1 ≥ h0(f)

(
r∏

i=1

uαi
i − 1

2αi + 1

)


s∏

j=1

v
βj

j − 1
βj + 1


 .

We first consider the case of g = 1. Then we have r = s = 0, and by
(16), we get

(17) 2k+1 ≥ h0(f).

Using Lemma 5, by (7), we have

(18) h0(f) =
√

f

π
L (1, χ) >





√
f

7.735π log f
, if 4 · 1013 < f ≤ 1028,

0.2071f0.4277

π
, if f > 1028,

except at most one exceptional value. Let pt denote the t-th odd prime.
We see from (12) that f ≥ 8p1p2 · · · pk. Therefore, by Lemma 3, we get

(19) f > 20
(

k + 1
e

)k+3/2 k+1∏
t=3

log t.

Substituting (19) into (18), if f > 1028, then from (17) and (18) we get

(20) 654 (12.77)k > (k + 1)k+3/2
k+1∏
t=3

log t.

We calculate from (20) that k ≤ 10. Since f > 1028, by (17) and (18), we
get 8 · 103 > 2k+1 π > 0.2071f0.4277 > 1010, a contradiction.

If 4 · 1013 < f ≤ 1028, then from (17) and (18) we get

(21) 2k+1 >

√
f

7.735π log f
.
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By Lemma 4, if k ≥ 11, then from (21) we get

(22)

105 · 2k−11 > 2k+1 · 7.735 π >

√
f

log f
≥

√
8p1p2 · · · pk

log 8p1p2 · · · pk

> 2k−11

√
8p1p2 · · · p11

log 8p1p2 · · · p11
> 1.6 · 105 · 2k−11,

a contradiction. So we have k ≤ 10, and by (21),

(23) 49767 >

√
f

log f
.

Since f > 4 · 1013, (23) is impossible. Thus, there exists at most one
exceptional value n such that n > 1013 and g = 1. Moreover, by Lemma 5,
under the assumption of the generalized Riemann conjecture, the above-
mentioned exceptional value does not exist.

We next consider the case of g > 1. By (8) and (12), we have h0(f) ≥
2k+s. Hence, by (16), we obtain

(24) 2 ≥
(

r∏

i=1

uαi
i − 1

2αi + 1

)


s∏

j=1

v
βj

j − 1
βj + 1


 .

Recall that u1, u2, . . . , ur, v1, v2, . . . , vs are distinct odd primes satisfying
u1 < u2 < · · · < ur and v1 < v2 < · · · < vs. We find from (24) that

r = 1, s = 0, (u1, α1) = (3, 1), (3, 2), (5, 1), (7, 1);

r = 2, s = 0, (u1, u2, α1, α2) = (3, 5, 1, 1), (3, 7, 1, 1);

r = 0, s = 1, (v1, β1) = (3, 1), (5, 1);(25)

r = 1, s = 1, (u1, v1, α1, β1)

= (3, 5, 1, 1), (3, 7, 1, 1), (5, 3, 1, 1), (7, 3, 1, 1).

From (12) and (25), we obtain

(26) g ∈ {3, 5, 7, 9, 15, 21}.
Notice that

(27)

(
r∏

i=1

uαi
i − 1

2αi + 1

) 


s∏

j=1

v
βj

j − 1
βj + 1


 >

2
3
.
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We get from (16) and (27) that

(28) 2k+s · 3 ≥ h0(f).

Using the same method as in the case of g = 1, we can prove that there
exists at most one f for which (28) holds. Moreover, under the assump-
tion of the generalized Riemann conjecture, such f does not exist. Thus,
by (26), there exist at most six exceptional values n with g > 1. To sum
up, the proof is complete.
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