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The group of units of a group algebra of characteristic p

By ADALBERT BOVDI (Debrecen)

1. Introduction

In this paper we give a survey of results and unsolved problems con-
cerning the group of units of a group algebra of characteristic p. The results
presented here are chosen from among the most recent ones and are even
partly unpublished, in order to describe the present state of research in
this area.

The study of the group of units is one of the classical topics in group
rings and started in the early 40s with the papers of Higman [1, 2] and
Jennings [1]. The most fundamental characterization theorems were pub-
lished during the 70s. Sehgal’s book [4] gave an overview on this topic
of the results known to us in the late 70s, and proposed 42 problems. In
the next decade this book determined the directions of research to a great
extent.

Research on the groups of units of group rings is a meeting point of
concepts, techniques and problems of group theory and ring theory, since
one can examine ring theoretical properties of the group ring and group
theoretical properties of its group of units, and in both cases one encounters
the need for tools from both theories. Lie properties of group algebras were
described during the 70s. These results were applied first to the unit group
by Bovdi and Khripta [3], who obtained the description of group algebras
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of torsion groups with solvable group of units. Clearly, Lie commutators
are considerably easier to calculate than group commutators and one may
think of obtaining information on the group of units by looking at the
associated Lie algebra. It has turned out that, in most cases, the Lie
structure reflects well the characteristics of the group of units and there is
a close relationship between properties of these two.

Since then, only the surveys by A. Bovdi [10], Dennis [2], Giamb-
runo [1], Polcino Milies [4] and Shalev [1, 2] have appeared on certain
questions concerning the group of units of group algebras over fields of
characteristic p, not counting the isomorphism problem, on which Sandling
gave a detailed survey [3]. Since Giambruno’s paper gives a good overview
of Hartley’s problem on the group identities of the group of units of group
algebras, related questions will not be discussed here. Külshammer [1]
gives group-theoretical descriptions of ring-theoretical invariants of group
algebras of finite groups.

2. Basic notions

If F is a field of characteristic p and the group G contains an element
of order p then FG is called a modular group algebra.

Clearly, all units of the group ring FG form a group called the group
of units of FG and denoted by U(FG). The subgroup

V (FG) =
{

u =
∑

g∈G

agg ∈ U(FG)
∣∣∣

∑

g∈G

ag = 1
}

is called the group of normalized units of FG.
Obviously, G is a subgroup of V (FG) and U(FG) = V (FG)× U(F).
Often it is difficult to determine whether a given element in a group

ring is a unit.
Suppose that a, b ∈ FG. A group algebra FG is said to be von Neuman

finite if ab = 1 implies ba = 1. Kaplansky proved that if F is a field of
characteristic zero, then FG is von Neuman finite. The corresponding
question in characteristic p is open.

One can easily see that elements of the set U(F)G = {cg | c ∈ U(F)
g ∈ G} are units in FG, called the trivial units.

It is possible that the group algebra FG has only trivial units. For
instance, V (FG) = G if one of the following conditions holds:

1. F is the field of two elements and G is the group of order 2 or 3;
2. F is an arbitrary field and G is a u.p.-group (Strojnowski [1]).
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Definition. If V (FG) = G, then the group V (FG) is called trivial.

It is an old and difficult problem, due to Kaplansky [1, 2] and Mal’cev,
to determine whether V (FG) is trivial for a torsion-free group G. This is
true for torsion-free nilpotent groups, because they are u.p.-groups, but
the problem is open for torsion-free supersolvable groups.

Clearly, if x is a nilpotent element and xn = 0, then the element 1+x

has the inverse 1− x + x2 − x3 + · · ·+ (−1)n−1xn−1. Units of form 1 + x

will be called unipotent.
Unipotent units of the following form play an important role in the

investigation of V (FG). Let a ∈ G be an element of order n and put
ā = 1 + a + a2 + · · ·+ an−1. If g ∈ G and g /∈ NG(〈a〉), then (a− 1)gā is a
nonzero nilpotent element of index 2. Hence, ua,g = 1+(a−1)gā is a unit
called a bicyclic unit . The subgroup of V (FG) generated by all bicyclic
units is denoted by B2(FG).

Let x =
∑

g∈G αgg ∈ FG. Then the subset Supp(x)={g ∈ G | αg 6=0}
is called the support of x, and the subgroup 〈Supp(x)〉 of G generated by
Supp(x) is called the support subgroup of x.

Question (Sandling). Suppose that G is infinite and x ∈ V (FG). How
does the support of x−1 depend on that for x?

Pappas [1] obtains a very interesting result on the support of ∗-sym-
metric units x (i.e. x∗ = x, where ∗ is the classical involution). Friedman,
Gustavson and Papas [1] shows that if G contains an abelian subgroup of
finite index, then for each finite set X ⊂ G there is a finite set Y (X) ⊂ G

with the following property: for each unit X such that Supp(x) ⊆ X the
support of x−1 is a subset of Y (X).

Wef finish this part with the following remark: several results in this
surveys and on the isomorphism problem work only for a prime field Fp.
It would be nice to see everything extended to any field of characteristic p.

3. Units for locally finite groups

Let G be a locally finite p-group and let F be a field of characteristic p.
Then the group of normalized units V (FG) is a locally finite p-group which
coincides with 1 + IF(G), where IF(G) is the augmentation ideal of FG.
Furthermore,

1. if G is finite then V (FG) is nilpotent;
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2. if FG is finite, then V (FG) is of order |F||G|−1.
In a natural way the following question arises: when do we have

V (FG) = 1 + IF(G)

i.e., when does FG have “many” units? The answer to this question is
known only in certain cases. For a p-group G of finite exponent V (FG) =
1+IF(G) implies that G is locally finite. Indeed, in this case by one of its
characterizations the Jacobson radical of FG is IF(G). Using Zelmanov’s
theorem [1, 2] from Lichtman’s result [1] we conclude that the group G is
necessarily locally finite.

4. Units for abelian groups

Now let G be a finite abelian p-group and Fp the field of p elements.
Then the structure theorem on V (FpG) is well-known. In the direct de-
composition of the group V (FpG) the number of cyclic groups of order pi is
fi(V ) = |Gpi−1 |−2|Gpi |+|Gpi+1 |. Moreover, let G = 〈a1〉×〈a2〉×· · ·×〈at〉
and let ai be of order qi. Denote by L(G) the set of all t-tuples of
integers α = (α1, α2, . . . , αt) with components satisfying 0 ≤ αi < qi

and the property that at least one of them is not divisible by p. Define
uα = 1 + (a1 − 1)α1(a2 − 1)α2 . . . (at − 1)αt . By Sandling’s result [2]

V (FpG) =
∏

α∈L(G)

〈uα〉.

A. Bovdi and Szakács [2] extend this result of Sandling, and give a
basis for V (FG) over an arbitary finite field F.

The study the group of units V (FG) for infinite abelian p-group G
was started by Berman and May. Let F be perfect field of characteristic
p and let G be an arbitary abelian p-group. If FGpα

is infinite then it is
easy to calculate the Ulm–Kaplansky invariant

fα(V (FG)) =

{
max

{|F|,
∣∣Gpα ∣∣} if Gpα 6= Gpα+1

,

0 if Gpα

= Gpα+1
.

It is an open question whether G is a direct factor of V (FpG) and
whether V (FpG)/G is totally projective.

Hill and Ullery in [1] answer this conjecture affirmatively for a group
G which is an isotype subgroup of a direct product of countable reduced
p-groups.
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5. Normal complement in the group of units

Definition. Let M be an ideal of the group ring FpG. Then the sub-
group M+ = {u ∈ V (FpG) | u − 1 ∈ M} is called a congruence subgroup
of V (FpG).

The existence of a normal complement N to G in V (FpG) is still
an open problem, (see Dennis [2]). Moreover, one may ask: is there any
congruence subgroup M+ such that V (FpG) = M+ o G? Ivory [1] gave
the first example showing that a decomposition V (FpG) = GnN need not
exist. It happens, for example, when G is a dihedral group, a semidihedral
group, or a generalized quaternion group of order greater than 8. We
emphasize:

Question. Does the normal complement to G exist for p 6= 2?

It is easy to verify (see, for example A. Bovdi [3]) that if G is a circle
group (i.e. G is isomorphic to the adjoint group of a certain Jacobson
radical ring R of characteristic p with respect to the circle operation a◦b =
a + b + ab with a, b ∈ R), then V (FpG) = M+ oG.

Using this statement the following earlier results can easily be ob-
tained, because all these groups are cicrle groups:

1. (Moran and Tench [1], Bovdi [2, 3]). G is a nilpotent p-group of class 2
and exponent p;

2. (A. Bovdi [2, 9]). G is a nilpotent group of class 2 and exponent 4.

The normal complement problem was discussed in detail in Roggen-
kamp and Scott’s paper [2], especially for p = 3, which was an important
motivation for Sandling’s result [4]: if the commutator subgroup of the fi-
nite p-group G is central and elementary abelian, then there exist a normal
complement N for G in V (FpG). However, the question about the exis-
tence of a normal complement which is a congruence subgroup of some
ideal is still open even in this case.

6. Conjugacy classes

For modular group algebras we know only few results on the conjugacy
classes of the units of the group algebra FpG. Studies in this direction were
initiated by Coleman [1].
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Theorem. Let H be a normal subgroup of the finite p-group G and

let F be a field of characteristic p. Then

NV (FG)(H) = G · CV (FG)(H).

We obtain a corollary for a finite p-group G:
1. NV (FG)(G) = G · ζ(V (FG));
2. if the conjugacy class C of V (FG) contains an element of G then C∩G

is a conjugacy class in G;
3. the group V (FG) possesses an outer automorphism of order p.

Let a ∈ FG and Ca = {x−1ax | x ∈ V (FG)}. Rao and Sandling [2]
proved that p2 divides the order |Ca| for every noncentral element a ∈ FG.
We improve this result as follows.

Theorem. Let G be a nonabelian finite p-group and let F be a field

of characteristic p. If u is a noncentral element in FG then the conjugacy

subset Cu has the following properties:

1. if F is an infinite field then Cu is infinite;

2. if the commutator subgroup of G is a subgroup of CG(u), p 6= 2 and

|F| = pt, then pt+1
∣∣ |Cu|;

3. if |F| = 2t, the commutator subgroup of the 2-group G is a subgroup

of CG(u) and G/CG(u) is a cyclic group then 2t+1
∣∣ |Cu|;

4. if p = 2 and 2r = max{4, |F|} then 2r
∣∣ |Cu|.

Clearly, if |Cu| = p then the commutator subgroup of G is a subgroup
of CG(u) and by it is imposible. It is reasonable to ask about the order of
Cu for which the commutator subgroup of G is not a subgroup of CG(u).

If G is a finite p-group and F is a field of characteristic p then V (FG)
has a conjugacy class Cu which contains no element of G. Therefore, the
analogue of the first conjecture of Zassenhaus for modular group algebras
is not true.

The study the group of units of group rings with finite conjugacy
classes was started by Sehgal and Zassenhaus [1]. They gave answers for
group algebras when F is a field of characteristic 0 and G has no subgroups
of type p∞. The case when F is an infinite field of characteristic p 6= 2 was
studied by Polcino Milies [1, 2] and the problem was solved by Cliff and
Sehgal [1]. A more detailed characterization is given Coelho and Polcino
Milies [1].
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Theorem. Let FG be a noncommutative infinite modular group al-

gebra of characteristic p. The group of units V (FG) is an FC-group (a

group with all conjugacy classes finite) if and only if p = 2, |G′| = 2,

T (G) = G′ ×A, where A is a finite central subgroup of odd order.

For nonmodular group algebras the result is more interesting.
Let G be an arbitary group. We define the subgroup

∆(G) = {u ∈ G | |G : CG(u)| < ∞},

called the FC-center of G. Clearly, if G = ∆(G) then G is an FC-group.
The subgroup SF(G) = ∆(U(FG)) ∩ G is called the F-supercenter

of G. This concept was introduced by Sehgal and Zassenhaus for integral
group rings. Clearly, the center of G is a subgroup of SF(G) and for an
infinite group algebra FG of a torsion group G they coincide.

Polcino Milies and Sehgal [1] studied the F-supercenter and this in-
vestigation was completed in a paper of Coelho and Polcino Milies [1].
Considering the case SF(G) = G we are able to describe fully those F an
G for which U(FG) is an FC-group.

V. Bovdi [1] describes the FC-center ∆(U) of the unit group U(FG)
for arbitary infinite group algebras FG. Remember that by Neumann’s
theorem the set of all elements of finite order T (∆(U)) is a subgroup of
∆(U) containing all elements of finite order of ∆(U). By V. Bovdi’s result
the elements of the commutator subgroup of T (∆(U)) are unipotent and
central in ∆(U). Therefore, ∆(U) is a solvable group of length at most 3,
and the subgroup T (∆(U)) is nilpotent of class at most 2.

7. The center

Let G be a finite p-group and let Cg be the conjugacy class of G

containing g ∈ G. The element Ĉg =
∑

g∈Cg
g of the group algebra FG

is called a class sum. Clearly, the class sums form a basis for the center
of FG.

Definition. Let G be a finite p-group and |Cg| > 2. The depth of
the conjugacy class Cg is the nonnegative integer d which satisfies the
conditions that CG(g) = CG(gpd

) and CG(gpd

) is a proper subgroup of
CG(gpd+1

).
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Recall that the centralizer of any element of a non-singleton conjugacy
class Cg is called the defect group of the conjugacy class.

Clearly, the defect group of a conjugacy class is unique up to conju-
gation as centralizers of conjugate elements are conjugate subgroups.

A. Bovdi and Patay [2] describe the center ζ(V ) of V (FpG) for a finite
p-group G. For groups G with zero depth of any of the conjugacy classes,
this is Sehgal’s result [1].

Theorem. Let FpG be the group algebra of a finite p-group G. Denote

by Pi (i = 1, 2, . . . , s) the defect groups of conjugacy classes of G. For an

arbitrary integer l denote by Rl(Pi) the set of conjugacy classes of the

form Cgpl with defect group Pi for which the depth of the conjugacy class

Cg is not less than l. Furthermore, let C = ζ(G) be the center of G, and

qi,l the order of ζ(Pi)pl

[p].
In the direct decomposition of the center ζ(V ) of V (FpG) the number

of the cyclic groups of order pl is

fl(ζ(V )) =
∣∣∣Cpl−1

∣∣∣− 2
∣∣∣Cpl

∣∣∣ +
∣∣∣Cpl+1

∣∣∣

+
s∑

i=1

(
|Rl−1(Pi)| − |Rl(Pi)|1 + qi,l−1

qi,l−1
+
|Rl+1(Pi)|

qi,l

)
.

Therefore, we know the invariants of ζ(V ) but it is very hard to find
a basis for this subgroup. How can we supplement the Sandling basis of
V (Fpζ(G)) to a basis of ζ(V )?

The Ulm–Kaplansky invariants of the center of V (FG) for some in-
finite p-group G over a field of characteristic p have been determined in
A. Bovdi and Patay [2], Nachev and Mollov [1]. Let G be a p-group and
denote by E(G) the set of all elements g ∈ ∆(G) such that g has an infinite
height in the center of the centralizer CG(g) of g. Under the assumption
that E(G) is a subgroup, A. Bovdi and Patay [3] describe the first Ulm-
subgroup and the maximal divisible subgroup of the center of the unit
group V (FG). Every nilpotent and FC-group satisfies these properties.

8. Sections of the group of units

Suppose that R is a commutative ring of characteristic p, H is a finite
normal subgroup of the group G and p divides |H|. If Ĥ =

∑
h∈H h then Ĥ
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is central in RG, Ĥ2 = 0 and 1+xĤ ∈ V (RG) for any x ∈ RG. Obviously,
AH =

{
1+xĤ | x ∈ RG

}
is a commutative subgroup of V (RG) and since

y−1(1 + xĤ)y = 1 + y−1xyĤ ∈ AH for any y ∈ V (RG), AH is a normal
abelian subgroup.

Let Tl(G/H) be a complete system of coset representatives of the
subgroup H in G, and χ(x) the augmentation of x. Any x ∈ RG can
be written as x =

∑
i uixi, where xi ∈ RH and ui ∈ Tl(G/H). By

xiĤ = χ(xi)Ĥ we have

1 + xĤ = 1 +
∑

i

χ(xi)uiĤ =
∏

i

(
1 + χ(xi)uiĤ

)
.

From this we obtain the direct sum decomposition

AH =
∏

ui∈Tl(G/H)

〈1 + λuiĤ | λ ∈ R〉,

and it is easy to see that the group 〈1 + λuiĤ | λ ∈ R〉 is isomorphic to
the additive group of the ring R.

Evidently, the abelian group AH is of exponent p, and AH is central
if and only if G′ is a subgroup of H.

From this direct sum decomposition of AH we obtain the next useful
result.

Lemma. Let R be a commutative ring of characteristic p, and let H
be a finite normal subgroup of the group G of order divisible by p. Fix an
element g ∈ G such that the centralizer C = CG(gĤ) is a proper subgroup
of G and let L = NG(C) be the normalizer of C in G. If

B = 〈1 + λu−1
i guiĤ | λ ∈ R, ui ∈ Tl(L/C)〉,

then

B =
∏

ui∈Tl(L/C)

〈1 + λu−1
i guiĤ | λ ∈ R〉,

C is a normal subgroup of B · L, and BL/C is isomorphic to the wreath
product of the additive groups of the ring R and L/C.

Coleman and Passman [1] proved that a wreath product of two groups
of order p is involved in V (FpG) (i.e. there is a subgroup of V (FpG) which
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can be mapped homomorphically onto the wreath product Cp oCp). If the
commutator subgroup of finite p-groups is not cyclic, the next assertion is
just the theorem of Coleman and Passman.

Corollary. Let G be a nilpotent group which has a finite normal

subgroup H with the characteristic of the field F dividing |H| and assume

that H does not contain the commutator subgroup of G. Then R o (L/C)
is involved in V (FG).

Obviously, a nonabelian 2-group H does not contain a wreath product
of two groups of order 2 if and only if the set Ω(H) = {x ∈ H | x2 = 1} is an
abelian subgroup. In the next theorem V. Bovdi and Dokuchaev describe
all 2-groups G for which V (FG) does not contain a wreath product of two
groups of order 2.

Theorem. Let F be a field of characteristic 2, and let G be a finite

nonabelian 2-group. Then all elements of order two of V (FG) generate an

abelian subgroup Ω(V (FG)) if and only if one of the following holds:

1. G = Sn,m = 〈a, b | a2n

= b2m

= 1, ab = a1+2n−1
, n, m ≥ 2〉, or

G = Q8;

2. G is a direct product of the quaternion group of order 8 and a cyclic

group of order 2n, or the direct product of two quaternion groups of

order 8;

3. G is the semidirect product of the cyclic group 〈d | d2n

= 1〉 with

the quaternion group 〈 a, b | a4 = 1, a2 = b2, ab = a−1〉 such that

(a, d) = d1+2n−1
and (b, d) = 1;

4. G is the central product of the group S2,2 = 〈 a, b | a4 = b4 = 1, a2 =
(b, a) 〉 with the quaternion group of order 8, the nontrivial element

common to the two central factors being a2b2;

5. G is isomorphic to

H32 =
〈
x, y, u | x4 = y4 = x−2(y, x) = 1, y2 = u2 = (u, x), x2y2 = (u, y)

〉
.

Let G be a finite 2-group and let a, b be elements of order two
of V (FG). Then the subgroup generated by a and b in V (FG) is a di-
hedral subgroup of order 2n+1. Clearly, there exists a dihedral subgroup
of maximal order 2t+1 in V (FG) and this t we call the dihedral depth
of V (FG).
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It would be of interest to investigate the dihedral depth of V (FG).
Above conditionons were established for the dihedral depth of V (FG) to
be equal to 1.

The description of nonabelian p-groups G for p 6= 2 with the follow-
ing property is given by Baginski [1]: V (FpG) does not contain a wreath
product of two groups of order p if and only if

G = 〈a, b | apm

= bpn

= 1, b−1ab = apn−1+1, n > 1, m > 1〉.

Several extensions of the Coleman–Passman theorem have been ob-
tained recently. They all show that, under suitable conditions on G certain
larger wreath products are involved in V (FG). Shalev [4] has developed
methods of constructing larger wreath products inside the group of units.
A. Mann [1] applies these methods to prove that for finite p-groups with
|G′| > p2 and p 6= 2, the group U(FpG) involves a wreath product Cp o A,
where |A| = p2. We do not know whether it suffices to assume |G′| ≥ p2.

The following conjecture of Shalev seems very hard: Does V (FG)
always possess a section isomorphic to a wreath product of a cyclic group
of order p and the commutator subgroup G′?

Shalev [4] establishes this for a finite p-group (p > 2) with a cyclic
commutator subgroup, and Konovalov [1] for finite 2-groups of maximal
class. Shalev [7] establishes the following result which may be considered
as an asymptotic generalization of the Coleman–Passman theorem:

Theorem. For any prime p there exists a function f : N → N such

that if G is a finite p-group with the order of the commutator subgroup

greater than or equal to pf(k), then V (FpG) involves a wreath product of

a cyclic subgroup of order p and an abelian group of order pk.

9. Normal and subnormal subgroups

We start by considering the question: Determine all subgroups H of
G such that H is normal in U(FG). This question has been considered by
Pearson [1, 2] for finite groups G and in a more general situation by Bovdi
and Khripta [1].
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Theorem. Let R be an algebra over a field F of characteristic p and

suppose that the elements of a normal subgroup H of U(R) are linearly

independent over F. Then all torsion elements form a subgroup T (H).
Suppose that H is noncentral. Then:

1. if T (H) is a nontrivial subgroup and it contains no element of order p

then T (H) is a subgroup of type q∞ and H/〈b〉 is a central subgroup

of U(R)/〈b〉, where b is an element of prime order q;

2. if T (H) is nonabelian then H is a dihedral group of order 6 and F is

the field of two elements;

3. if T (H) is an abelian subgroup and contains an element of order p then

T (H) is a subgroup of order 2, the factor group H/T (H) is central in

U(R)/T (H)), and F is the field of two elements.

The final answer describing when G is normal in U(FG) was given by
Cliff and Sehgal [2].

Theorem. Let F be a field of characteristic p and let G be a non-

abelian group with torsion elements. Then, G is normal in U(FG) if and

only if one of the following conditions holds:

1. G is the dihedral group of order 6 and F is the field of two elements;

2. T (G) is a subgroup of order 2, G′ = T (G) and F is the field of two

elements;

3. T (G) is a subgroup of type q∞, p 6= q and G′ is of prime order q and

the following conditions is satisfied:

a) whenever T (G) has an element of order qn the qnth cyclotomic

polynomial Φqn(x) is irreducible over F;

b) either T (G) is central in G or F is the field of two elements, T (G)
is a subgroup of order 3 or 5, and if g ∈ G does not centralize T

then g−1tg = t−1 for all t ∈ T (G).

The next question of determining subgroups H of G which are sub-
normal in U(FG) has been considered by Pearson and Taylor [1] for a finite
group G, and Gonçalves [4] for a torsion group G over an infinite field F
assuming that the subgroup H is finite or nilpotent.

The next theorem was proved by A. Bovdi and Khripta [1] for abelian
normal subgroups. This is true also in a more general situation.
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Theorem. Let RG be the group ring of a p-group G over the integral

domain R of characteristic p with a nontrivial group of units U(R). Let A

be a normal subgroup of V (RG) such that any two elements of A, which

are conjugate in V (RG), commute. Then

1. if p 6= 2 then Ap and A ∩G are central subgroups in V (RG);
2. if p = 2 then A2 and (A ∩G)2 are central subgroups in V (RG);
3. the cardinality of the maximal elementary subgroup Ap[p] in Ap is not

less then the cardinality of U(R).

As it is well-known, in a nilpotent group A of class 2 any conjugates
commute.

Corollary. Let RG be the group ring of a p-group G over the integral

domain R of characteristic p with U(R) nontrivial. If ζ(V ) is the center

of V (RG) and A is a normal subgroup of V (RG) such that A/A∩ ζ(V ) is

abelian then Ap and (A ∩G)2 are central in V (RG).

Corollary. Let G be a p-group with finite commutator subgroup and

let F be a field of characteristic p. Then the factors ζi+1(V (FG))/ζi(V (FG))
of the upper central series

1 ⊂ ζ1(V (FG)) ⊂ ζ2(V (FG)) ⊂ · · · ⊂ ζs(V (FG)) = V (FG)

of the nilpotent group V (FG) are elementary abelian p-groups for all i ≥ 1.

The previous results suggest the following conjecture: If G is a finite
p-group, F is a field of characteristic p and N is a normal subgroup of
V (FG) then Np ⊆ N ′ · ζ(V (FG)) where N ′ is the commutator subgroup
and ζ(V (FG)) is the center.

The next theorem may be true for groups G generated by torsion
elements.

Theorem. Let R be an infinite commutative local ring which has no

zero divisors and let G be a torsion group. If ∆(G) is a FC-center of G

and the characteristic of R does not divide the order of any element of the

subgroup ∆(G) then

1. if the characteristic of R does not equal two then every abelian normal

subgroup of U(RG) is central;

2. if the characteristic of R does not divide 6 then every solvable normal

subgroup of U(RG) is central.
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10. Generators of the group of units

Let G be a finite p-group. We gave an algorithm describing a con-
struction of a generating system for the group V (FpG) which coincides
with Sandling’s basis when the p-group G is abelian. Until now, the non-
abelian case has not been studied, with the exception of the 2-groups of
order at most 32 (Sandling [5] and Rao [1]).

Recall that the dimension subgroups Dn of FpG form a central series.
Let

Di/Di+1 =
di∏

j=1

〈uijDi+1〉

be the direct decomposition into a product of cyclic groups of order p.
Now we begin the construction of a generating system for the group

V (FpG). For this, we will choose a special dimension basis {uij | j =
1, . . . , di, i = 1, 2, . . . , s} of the group G. Simultaneously, we define a
sequence of integers `1, `2, . . . , `s with the property that for j ≤ `i the
element uij is a p-th power of an element ukm for some k < i. We do this
in the following way:

Step 1: Choose the elements u11, u12, . . . , u1d1 ∈ D1 so that their
cosets form a basis for D1/D2 and set `1 = 0.

Step 2: By a property of dimension subgroups we know that the
elements up

1i belong to D2 (i = 1, . . . , d1), but some of them can belong to
a smaller group Dk. For k ≥ 2, let us choose the elements {uk1, uk2, . . . }
so that {uk1Dk+1, uk2Dk+1, . . . } is a maximal linearly independent subset
of {up

1iDk+1 | up
1i ∈ Dk}. We denote by `2 the number of elements in

the set {u21, u22, . . . }. Usually these elements form only a part of a basis
for D2/D3. We supplement {u21, u22, . . . , u2`2} arbitrarily with elements
u2(`2+1), u2(`2+2), . . . , u2d2 such that the corresponding cosets form a basis
for D2/D3.

Step 3: We know that

{up2

1i | i = 1, . . . , d1} ∪ {up
2i | i = 1, 2, . . . , d2} ⊆ D3,

but some of these elements can belong to a smaller subgroup Dk (k ≥ 3).
For k ≥ 3 we complement the subset {uk1, uk2, . . . } constructed in Step 2
with some elements from

({
up2

1i | i = 1, . . . , d1

}
∪ {up

2i | i = 1, 2, . . . , d2}
)
∩Dk
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so that their cosets form a maximal independent subset of Dk/Dk+1. In
particular, for k = 3 we obtain the elements {u31, u32, . . . , u3`3}. If this
set happens to be empty we let `3 = 0. Again, we complement this set
with u3(`3+1), u3(`3+2), . . . , u3d3 so that the cosets obtained form a basis
for D3/D4.

In general, in Step t we do the following. Consider all the elements

Bt =
{

upt−i

ij | 1 ≤ j ≤ di, 1 ≤ i ≤ t− 1
}

.

For k ≥ t we complement the subset {uk1, uk2, . . . } constructed in Step
(t−1) with some elements from Bt∩Dk so that their cosets form a maximal
linearly independent system.

Again, we complement {ut1, . . . , ut`t
} with ut,`t+1, . . . , ut,dt

so that
the obtained cosets form a basis for Dt/Dt+1.

The basis {ui,j} so constructed will be called a dimension p-basis.
If the element

(1) w =
s∏

k=1

dk∏

j=1

(ukj − 1)ykj (0 ≤ ykj < p)

has indices of its factors in the lexicographic order then we call it regular.
Let w be a regular element of the form (1). Suppose w is expressed in

terms of a dimension p-basis of a finite group G. If w contains at least one
nonzero exponent ykj with index j greater than the number `k determined
in the p-basis then we call w an α-regular element.

Let us compare our construction with that of Sandling, when G is
an abelian p-group. Then G = 〈u11〉 × 〈u12〉 × · · · × 〈u1d1〉 and G = D1,
Gp = D2 = . . . = Dp, Gp2

= Dp+1 = . . . =Dp2 , . . . . Let {uij} be a dimen-

sion p-basis of the group G. If i > 1, then `i = di and uij = upr(i,j)

1k for some
k. Therefore if w is of the form (1) and α-regular then y1j 6= 0 for some j.
Thus we may write it in the form (u11 − 1)β1(u12 − 1)β2 . . . (u1d1 − 1)βd1

which has the following properties: 0 ≤ βi < o(u1i) and p does not divide
βj . These are precisely the elements from Sandling’s basis for V (FpG)
which we have defined before.

Theorem. Let G be a finite p-group and let v1, v2, . . . , vn be all α-reg-

ular elements contained in a dimension p-basis, constructed as above, for
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a group G. Then {1 + vi | i = 1, 2, . . . , n} is a generating system for the

group V (FpG). Moreover, if G is abelian then this system is minimal.

In the next step, using commutator calculations, we give a new algo-
rithm to exclude some elements from this generating system.

We apply this algorithm to some 2-groups and metacyclic p-groups.

Theorem. Let G be one of the following noncommutative groups:

1. D2n = 〈a, b | a2n

= b2 = 1, b−1ab = a−1〉;
2. Q2n = 〈a, b | a2n

= 1, b2 = a2n−1
, b−1ab = a−1〉;

3. D−
2n = 〈a, b | a2n

= b2 = 1, b−1ab = a2n−1−1〉.
Then V (F2G) is generated by the units

{
a, b, 1 + (a + 1)4k+1(b + 1)

∣∣ 0 ≤ k ≤ 2n−2 − 1
}

.

It is a very difficult question to determine when the group of units
V (FG) is finitely generated. Krempa in [1] gives an overview of this ques-
tion. We recall only Mirowicz’s [1] results: Let D∞ be an infinite dihedral
group. Then the groups of units U(F2D∞) and U(F3D∞) are not finitely
generated.

11. Involutions in group rings

Let R be a commutative ring and the mapping x 7→ x∗ an anti-
isomorphism of RG of order 2, i.e. a bijective mapping with

(x + y)∗ = x∗ + y∗, (xy)∗ = y∗x∗ and (x∗)∗ = x

for any x, y ∈ RG, called an involution of RG.

Examples of involutions:
1. Let f be a homomorphism of G into the unit group U(R) of the

commutative ring R with identity. Then the mapping defined by

x =
∑

g∈G

αgg 7→ xf =
∑

g∈G

αgf(g)g−1

is an involution of RG. In particular, if f(g) = 1 for all g ∈ G, then
the mapping x =

∑
g∈G αgg 7→ x∗ =

∑
g∈G αgg

−1 is an involution
of RG.
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2. Let G be a finite 2-group and let C be the center of G such that G/C

is a direct product of two groups of order two and the commutator
subgroup G′ = 〈e | e2 = 1〉 is of order two. Then the mapping
¯ : G → G, defined by

g¯ =
{

g if g ∈ C,

ge if g /∈ C

is an anti-automorphism of order two. If x =
∑

g∈G αgg ∈ F2G, then
u 7→ u¯ =

∑
g∈G αgg

¯ is an involution.

Description of involutions of group rings is a very interesting problem.
In their papers Rosenbaum [1] and Mahrhold–Rosenbaum [1] investigated
involutions of group algebras of finite groups in the case when the group
algebra is semisimple. In the modular case this problem is still open.

12. Unitary units and subgroups

The element u ∈ U(RG) is called unitary , if u−1 = u∗ε, where ε is
a unit of R. Evidently, unitary elements form a subgroup, denoted by
U∗(RG) and called the unitary subgroup of U(RG). In case U∗(RG) =
U(RG) the group U(RG) is called unitary.

In the case of the first involution of the above examples the unitary
subgroup is denoted by Uf (ZG).

In the study of U(RG) the set of symmetric units

S∗(RG) = {x ∈ V (RG) | x∗ = x}

plays an important role. Notice that this set does not always form a
subgroup.

The interest in Uf (ZG) arouse from algebraic topology and K-theory.
Its significance was noticed by S. Novikov. The study and description
of Uf (ZG) in certain cases is known as Novikov’s problem. Results on
this topic are treated in Bovdi’s book [6] “The multiplicative group of an
integral group ring”.

Below we shall study the unitary subgroup for finite modular commu-
tative group algebras when the involution is of the form

x =
∑

g∈G

αgg 7→ x∗ =
∑

g∈G

αgg
−1.
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The problem of the description of invariants and a basis of V∗(FpG) was
raised by S. Novikov, its solution will be discussed below. Note that this
problem was solved also for other involutions by Szakács, V. Bovdi and
Rozgonyi [1].

Theorem (A. Bovdi, Szakács [1]). Let G be a finite abelian p-group

and let Fp be the field of p (p > 2) elements. Then in the direct decom-

position of V∗(FpG) into a direct product of cyclic groups the number of

cyclic factors of order pi (i = 1, 2, . . . ) is

fi(V∗) =
1
2

(∣∣Gpi−1 ∣∣− 2
∣∣Gpi∣∣ +

∣∣Gpi+1∣∣
)

.

Let G = 〈a1〉 × 〈a2〉 × · · · × 〈an〉 be the decomposition of the finite
abelian p-group into a direct product of cyclic groups, and let ai be of
order qi. Above we have already defined the set L(G) as the set of all the
vectors α = (α1, α2, . . . , αn) with αi ∈ {0, 1, . . . , qi − 1}, and with at least
one of the components αj not divisible by p.

Theorem (A. Bovdi, Szakács [1]). Let G be a finite abelian p-group

and let Fp be the field of p (p > 2) elements.

Let uα = 1 + (a1 − 1)α1(a2 − 1)α2 . . . (an − 1)αn and L1(G) = {α ∈
L(G) | α1 + α2 + · · · + αn is odd }. Then B(V∗) = {vα = uα

∗uα
−1 | α ∈

L1(G)} is a basis for V∗(FpG), i.e. V∗(FpG) =
∏

α∈L1(G)〈uα
∗uα

−1〉.
For a finite abelian 2-group G the description of V∗(F2G) is more

difficult. This question was solved by A. Bovdi and Szakács in [1, 2]. For
a 2-group G we shall use the following notations: let

H = 〈a1〉 × · · · × 〈as〉 and C = 〈as+1〉 × · · · × 〈an〉

and let qi be the order of the element ai (i = 1, . . . , n).
Suppose that qi ≥ 4 for i = 1, . . . s, qs+1 = · · · = qn = 2 (if s < n)

and G = H × C. Denote

N(H) = {α = (α1, . . . , αs) | αi ∈ {0, qi − 1}}.

Let G[2] be a subgroup of G generated by all elements of order 2. The
subgroup W (F2G) = {x∗x−1 | x ∈ V (F2G)} can be presented as a direct
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product H2 × B(F2G), and fj(B) = dj−1 − 2dj + dj+1 − fj+1(H), where
dj = 1

2

(∣∣G2j ∣∣−
∣∣G2j

[2]
∣∣). Then

D(F2G) =
{

1 +
∑

γ∈N(H)
γ 6=(0,...,0)

tγ(1 + a1)γ1 · · · (1 + as)γs

∣∣∣ tγ ∈ F2C

}

is a group of exponent 2, |D(F2G)| = 2|C|(|H[2]|−1) and

V∗(F2G) = H × V (F2C)×B(F2G)×D(F2G).

Therefore the invariants of V∗(F2G) can be found easily from the above
decomposition.

By Sandling’s result we can find the basis of V (F2C). It is easy to
prove that if α = (α1, . . . , αs, αs+1, . . . , αn) then the elements of the set
{xα | α ∈ L(G) and (α1, . . . , αs) ∈ {N(H) \ (0, . . . , 0)}} form a basis for
D(F2G).

An explicit basis for B(F2G) has not been found but Bovdi and
Szakács [2] were able to give an algorithm for constructing a basis, which
has been improvement by Szakács recently. By induction on s Szakács has
constructed the following subset L∗(G) ⊂ L(G).

In case s = 1, let

L∗(G) =
{
α = (α1, α̃) | α1 ≡ 1 (mod 4), α 6= (1, 0, . . . , 0)

}

∪ {
α = (α1, α̃) | α1 ≡ 3 (mod 4), α1 6= q1 − 1, α̃ ∈ L(C)

}
.

(Here (α1, α̃) we mean the vector with first component α1, and with
the other component forming the vector α̃.)

Suppose that s > 1 and H̃ = 〈a2, . . . , as〉, G̃ = H̃ × C and q1 = 2t.
Let L∗(G) be the set of all elements α = (α1, α̃) ∈ L(G) for which one of
the conditions (1)–(5) holds:
(1) α1 ∈ {0, 2i − 1, 2i | i > 1} and α̃ ∈ L∗

(
G̃

)
;

(2) α1 ≡ 1 (mod 4), α 6= (1, 0, . . . , 0);
(3) α1 ≡ 3 (mod 4), α1 6= 2i − 1 (i > 1) and α̃ ∈ L

(
G̃

)
;

(4) α1 = 2i−1 (1 < i < t), C 6= 1, α̃ ∈ N
(
H̃

)×L(C) (a cartesian product
of sets);

(5) α has the form (α1, 0, . . . , 0, 1, 0, . . . , 0), where there is 1 in the j-th
(j = 2, . . . , s) position and α1 ∈ {2i − 1, 2i | i > 1}.
Then the set {

(xα)∗(xα)−1 | α ∈ L∗(G)
}

is a basis of V∗(F2G), and therefore a basis of V∗(KG) is found for p = 2.
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13. Complement in the unitary subgroup

We know few facts on V∗(FpG) for noncommutative G. A. Bovdi [7]
describing when the group V (FG) is unitary, i.e. V (FG) = Vf (FG).

The next very interesting problem arises: when does G have a normal
complement in V∗(FpG)? Since G is a subgroup of V∗(FpG), if G has a
normal complement in V (FpG) it clearly has one also in V∗(FpG).

A. Bovdi and Erdei show that if G is a 2-group of maximal class, then
G has no normal complement in V∗(F2G) if and only if G is the dihedral
group D2n (n ≥ 4) or the semidihedral group D−

2n (n ≥ 4). They [1]
describe V∗(F2G) for groups G of order 16 and they give a presentation
for those unitary subgroups. Those groups G have a normal complement
in V∗(F2G).

V. Bovdi and Rozgonyi [1] give a complete characterization of the
unitary subgroup for the following group algebras: let G be a finite 2-group
which contains an abelian normal subgroup A of index two. Suppose that
there exists an element b ∈ G \A of order 4 such that b−1ab = a−1 for all
a ∈ A. Then the unitary subgroup V∗(F2G) is the semidirect product of
G and a normal subgroup H. The subgroup H is the semidirect product
of the normal elementary abelian 2-group W = {1 + (1 + b2)zb | z ∈ F2A}
and the abelian subgroup L, where V∗(F2A) = A× L. The abelian group
W is the direct product of 1

2 |A| copies of the additive group of the field F2.
It is easy to see that the structure of normalizer NV (FG)(V∗(FG)) of

the unitary subgroup is given by

{y ∈ V (FG) | yy∗ is a central element in V (FG)}.
V. Bovdi, Kovács [1] describing when the subgroup V∗(FG) is normal

in V (FG):

Theorem. Let F be a field of characteristic p and let G be a non-
abelian locally finite p-group. The subgroup V∗(FG) is normal in V (FG)
if and only if p = 2 and G is the direct product of an elementary abelian
group with a group H for which one of the following holds:

1. H has no direct factor of order 2, but it is a semidirect product of a
group 〈h〉 of order 2 and an abelian 2-group A with h−1ah = a−1 for
all a in A;

2. H is an extraspecial 2-group or the central product of such a group
with a cyclic group of order 4.

Recall that a p-group is extraspecial if its center, commutator sub-
group and Frattini subgroup are all equal and have order p (we do not
require the group itself to be finite).
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14. Exponent of the group of units

Let G be an abelian p-group and let G[pn] = {g ∈ G | gpn

= 1}.
Denote by I(G[pn]) be the ideal in FG generated by elements of the form
g − 1 with g ∈ G[pn]. Then 1 + I(G[pn]) consists of all units of V (FG) of
order dividing pn.

Now let G be a nonabelian finite p-group and u ∈ V (FG) an element
of order pn.

Question. Give a necessary condition that u be of order pn, using the
support and the support subgroup of u.

In the dissertation of Patay the study of the exponent of V (FpG) was
initiated. For a finite nonabelian p-group G, by a result of Coleman and
Passman exp(V (FpG)) ≥ p2. By the theorem of Passman on polynomial
identities for every p 6= 2 there exists a sequence G1, G2, . . . , Gm, . . . of
finite p-groups, each of exponent p, such that exp(V (FpGm)) → ∞ as
m → ∞. For example, we may choose Gm as the free nilpotent group of
class 2 and exponent p with n generators. Therefore, one cannot expect
general inequalities of the form exp(V (FpG)) ≤ f(exp(G)) for a fixed
function f : N→ N.

Let R be a ring of characteristic p and let the m-th Lie power R(m)

be zero. If m = 1 + (p− 1)pe−1, then R satisfies the indentity

(1) (x + y)pe

= xpe

+ ype

.

As a corollary, Shalev [5] obtains that if exp(G) = pe and (FG)(m) = 0 then
exp(V (FpG)) = exp(G). For finite p-groups G with p > 5 and exp(G)3 >
|G| this is true as well. Therefore, for those groups the exponent of the
unitary subgroup V∗(FG) equals exp(G).

The exponent of V (FpG) is determined by Shalev [5] for every p-group
of order pn, where n ≤ 5 and p > 5 and by A. Bovdi and Lakatos [1] for a
2-group G which contains an abelian subgroup of index 2.

A. Bovdi and Lakatos [1] proved that if G is a finite p-group, p 6= 2
and the commutator subgroup of G is cyclic then the exponents of G
and V (FpG) are distinct if and only if the exponents of G and of the
commutator subgroup coincide. Then the exponent of V (FpG) is p·exp(G).

It is likely that the exponents of G and V∗(FpG) always coincide.

Question. Describe finite p-groups G for which (1) is an identity in
the group algebra FG.
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15. Exponent units over the center

Sehgal [4] proposed the following problem: When every u ∈ V (FG)
satisfies un ∈ ζ(V ) for some (or fixed) n, where ζ(V ) is the center of
V (FG). For a fixed n we write this as V (FG)n ⊆ ζ(V ).

This problem was considered by Cliff and Sehgal [3] for solvable groups,
and they obtained an answer with certain restrictions on the exponent n.
Coelho [1] continued this investigation in the cases when G is a locally
finite group, and when G is either a solvable or an FC non-torsion group.

Theorem. Let F be a field of characteristic p and let G be a locally

finite group. Then V (FG)n ⊆ ζ(V ) for some n if and only if Gl ⊆ ζ(G)
for some l and the following conditions hold:

1. G contains a normal p-abelian subgroup of finite index;

2. either every p′-element of G is central, or G is of bounded exponent

and F is finite.

Theorem. Let F be a field of characteristic p and let G be either a

solvable or an FC non-torsion group. Then V (FG)n ⊆ ζ(V ) for some n if

and only either FG is Lie m-Engel for some m or if Gl ⊆ ζ(G) for some l

and the following conditions hold:

1. if A is a non-central abelian subgroup of G, then F is finite, A is of

bounded exponent and for every g ∈ G and every a ∈ A there exists

an integer r such that g−1ag = apr

, where [F : Fp] | r;
2. if there exist a non-finite subgroup P of G of bounded exponent cen-

tralizing A, then G contains a normal p-abelian subgroup of finite

index.

16. The torsion part of units

In this section we consider when the set of all units of finite order
T (V (FG)) in V (FG) is a subgroup.

First this question was investigated by Polcino Milies [3], Coelho and
Polcino Milies [2] and later A. Bovdi [5] generalized this result the following
way.

We now define for an arbitary group G the normal subgroup Λ(G) =
{g ∈ G | [H : CH(g)] < ∞} for every finitely generated subgroup H of G.
Of course, the torsion part Λ+(G) of Λ(G) is a normal subgroup and the
factor group Λ(G)/Λ+(G) is torsion free and abelian (Passman [2]).
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Theorem. Suppose that either the group of units of the field F of char-
acteristic p or the group G has an element of infinite order and T (V (FG))
is a subgroup. Then T (G) is a subgroup and the p-Sylow subgroup P of
Λ+(G) is normal in G and A = Λ+(G)/P is an abelian group. Moreover, if
A is noncentral in G/P and G/P is non-torsion then the algebraic closure
L of Fp in F is finite, and for all g ∈ G/P and a ∈ A there exists a natural
number r such that gag−1 = apr

and every such r is divisible by [L : Fp].
If for every finitely generated subgroup H of G the subgroup T (H) is

finite then T (G) = Λ+(G).
Conversely, if T (G) = Λ+(G), G)/Λ+(G) is a right ordered group,

T (G) = Λ+(G) and G satisfies the conditions described before then
T (V (FG)) is a subgroup.

17. Noetherian group of units

We consider the conditions under which the unit group of a group
ring is Noetherian. Krempa [2] studies rings R with Noetherian group of
units U(R). Let S be a radical subring of the ring R. Then the following
conditions are equivalent:

1. the subgroup of units 1 + S is a Noetherian group;
2. the subgroup 1 + S is a finitely generated nilpotent group;
3. the additive group S+ is finitely generated.
As a corollary it is obtained that if I is a radical ideal of R, then U(R)

is Noetherian if and only if the additive group I+ is finitely generated and
U(R/I) is Noetherian.

Let R be a semiprime ring with the group of units U(R) Noetherian.
Then there exists a decomposition of R as a direct sum:

R = I ⊕ S1 ⊕ . . .⊕ Sm,

where the ideal I is a reduced ring (i.e. has no nontrivial nilpotent ele-
ments) and all the ideals Sk are simple finite noncommutative rings.

Krempa [2] proved in another way A. Bovdi’s results [4]: Let G have
a finite subgroup which is not normal. Then U(FG) is a Noetherian group
if and only if G and F are finite.

Let G be a finite nonabelian group and let F be infinite. Then U(FG)
is Noetherian if and only if G is a Hamiltonian group and the subgroup
U(FQ) is a Noetherian group, where Q is the quaternion subgroup of
order 8 of G.
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18. The unitary subgroup and B2(FG)

Above we have discussed the problem of constructing a basis for the
commutative unitary subgroup V∗(FpG). For noncommutative groups the
determination of a generator system for V∗(F2G) is an open problem. Ear-
lier we have defined the bicyclic units ua,g = 1+(a−1)gā and the subgroup
B2(FG) they generate. The following result describes the cases when the
unitary subgroup contains B2(FG). This result can be considered as a first
step towards determining a generator system for V∗(F2G).

Theorem (V. Bovdi, Kovács [1]). Let G be a noncommutative p-
group. All bicyclic units of V (FpG) are unitary if and only if p = 2 and
G is a direct product of an elementary abelian 2-group and a subgroup H
which satisfies one of the following conditions:

1. H contains an abelian subgroup A of index 2 and an element b invert-
ing elements of A;

2. H is an extraspecial 2-group or a central product of an extraspecial
2-group with a cyclic group of order 4;

3. H is a direct product of the quaternion group of order 8 and the
cyclic group of order 4 or a direct product of two quaternion groups
of order 8;

4. H is a central product of the group 〈x, y | x4 = y4 = 1, x2 = [y, x]〉
and a quaternion group of order 8 with a nontrivial common element
x2y2;

5. H is isomorphic to H32 or

H245 = 〈x, y, u, v | x4 = y4 = (v, u) = 1, x2 = v2 = (y, x) = (v, y),

y2 = u2 = (u, x), x2y2 = (u, y) = (v, x)〉.

19. Symmetric elements and units

An element s ∈ FG is called symmetric if x∗ = x. Ring theoreti-
cal properties of the group ring is determined to a great extent by the
behaviour of the symmetric elements. For instance, in Giambruno and
Sehgal’s [2] those group algebras are described in which the subset of sym-
metric element is Lie nilpotent.

Above we have seen that the subset S∗(FG) = {x ∈ V (FG) | x∗ = x}
of the symmetric units plays an important role in investigating V (FpG).
Clearly, if V (FpG) contains a non-unitary element x then xx∗ is a non-
trivial symmetric element.
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Lemma. If S∗(FG) is a subgroup of U(FG) then it is a commutative

normal subgroup.

It is natural to ask when S∗(FpG) is a subgroup. To this question
only partial answers are known, but recently V. Bovdi has extended this
result for an arbitary torsion group G.

Theorem (V. Bovdi, Kovács, Sehgal [1]). Let G be a noncommutative

p-group. Then S∗(FpG) is a subgroup of U(FpG) if and only if p = 2 and

G is a direct product of an elementary abelian 2-group and a subgroup H,

which satisfies one of the following conditions:

1. H contains an abelian subgroup of index 2 and an element b of order 4
inverting the elements of A;

2. H is a direct product of a quaternion group of order 8 and a cyclic

group of order 4, or a direct product of two quaternion groups;

3. H is a central product of the group 〈x, y | x4 = y4 = 1, x2 = [y, x]〉
and a quaternion group of order 8, with nontrivial common element

x2y2;

4. H is isomorphic to H32 or H245.

20. Free subgroup and free product

Let R be a commutive ring. The following problem due to Hartley is
a very difficult and interesting one:

When does the group of units U(RG) contain no free group of rank 2?

We would like to deal with this problem only for the group of units
U(FG) of a group algebra FG of characteristic p. Gonçalves [1, 3] gave
necessary and sufficient conditions for this problem in case G is finite
or some infinite solvable group. A. Bovdi [11] extended and generalized
Gonçalves’ theorems. Remember that earlier we defined the subgroup
Λ(G) of G.

Theorem. Let F be a field of characteristic p and suppose that the

nonabelian group U(FG) does not contain a free group of rank two. Then

one of following conditions hold:

1. G is a torsion group and F is algebraic over its prime field Fp;

2. The p-Sylow subgroup P of Λ+(G) is normal in G and A = Λ+(G)/P

is an abelian group. Moreover,
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a. if F is not algebraic over its prime field Fp then the centralizer

CG(A) contains all elements of finite order of G/P ;

b. if A is noncentral in G/P and G/P is non-torsion then the al-

gebraic closure L of Fp in F is finite, and for all g ∈ G/P and

a ∈ A there exists a natural number r such that gag−1 = apr

.

Furthermore, each such r is divisible by [L : Fp].

Corollary 1. Let F be a field of characteristic p and let G be a group

such that T (G) = Λ+(G) and G/T (G) is a unique product group. Then

U(FG) contains no free group of rank two if and only if G contains no free

group of rank two and one of the statements 1–2 of the theorem holds.

Corollary 2. Let F be a field of characteristic 0 or p and let G be a

solvable group such that T (G) = Λ+(G) and G/T (G) are unique product

groups. Then either U(FG) contains a free group of rank two or U(FG)
has a normal p-subgroup N such the factor group U(FG)/N is solvable.

Clearly, if G is a locally nilpotent group then T (G) = Λ+(G). If
U(FG) does not contain a free group of rank two and U(F) has an ele-
ment of infinite order we assume that T (G) = Λ+(G). The last question
is very difficult and was answered affirmatively by Gonçalves [3] in the
following case: G is a solvable-by-finite group without p-elements and F is
not algebraic over its prime subfield Fp, and if p = 2 then the degree of
transcendence of F over F2 is at least 2.

Vikas Bist [1] obtains necessary and sufficient conditions for the com-
mutator subgroup of the group of units U(FG) of the group algebra FG to
be torsion, if G is a locally finite or a locally FC-group. As a consequence
of the theorem, we have also the following result.

Corollary 3. Let F be a field of characteristic p and let G be a group

such that T (G) = Λ+(G). Then the commutator subgroup of the non-

abelian group U(FG) is torsion if and only if one of the following conditions

holds:

1. G is a torsion group and F is algebraic over its prime subfield Fp;

2. the p-Sylow subgroup P of T (G) is normal in G and A = T (G)/P is

an abelian group;

a. if F is not algebraic over its prime field Fp, then A is a central

subgroup of G/P ;

b. if A is noncentral in G/P and G/P is non-torsion, then the al-

gebraic closure L of Fp in F is finite and for all g ∈ G/P and
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a ∈ A there exists a natural number r such that gag−1 = apr

.

Furthermore, each such r is divisible by [L : Fp].

An answer to the next question would be very useful for applications:
Let F be a field of characteristic p. When does U(FG) contain a free
product of two cyclic subgroups of order p?

For example in A. Bovdi’s paper [5] the following assertion is proved.
Let H be a finite group and assume that its commutator subgroup is not
a p-group. If G is a direct product of H and an infinite cyclic group then
U(FpG) contains a free product of two cyclic subgroups of order p.

The following results of Gonçalves and Passman [1] are very inter-
esting: Let F be nonalgebraic over its prime field Fp and let the ele-
ment λ be transcendental over Fp. Suppose that G has an element a

of order n and the element b which does not normalize 〈a〉, and the sub-
group 〈a, b−1ab〉 has no p-elements. We define the following elements:
ā = (1 + a + a2 + . . . an−1), u = (1− a)bā and v = āb−1(1− a(−1)p

). Then
the subgroup 〈1 + λu, 1 + λbab, 1 + λ(1− b)aba(1 + b)〉 of U(FG) is a free
product of three cyclic subgroups of order p.

Note that the assumption that 〈a, b−1ab〉 has no p-elements cannot be
removed.

21. Solvability of the group of units

The study of finite groups G with solvable group of units U(FG) was
initiated independently by Motose and Tominaga [2] and Bateman [1].
Some oversights of Bateman’s paper were corrected by Motose and Ni-
nomiya [1] and an alternative characterization was given by Bovdi and
Khripta [2]. A nice exposition of these results was later given by Bovdi
and Khripta [4], Passman [1] and Taylor [1].

After these results for a long time there was no progress in the study of
group algebras with solvable group of units. The methods are not suitable
for infinite groups. In 1972 Passi, Passman and Sehgal [1] obtained the
following deep result:

Theorem. Let FG be a noncommutative group algebra over the field

F. Then FG is Lie solvable if and only if one of the following conditions is

satisfied:

1. F is of characteristic p, the commutator subgroup of G is a finite

p-group;
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2. F is of characteristic 2, the group G has a subgroup H of index 2 such

that its commutator subgroup H ′ is a finite 2-group.

Using the Lie solvability property of group algebras, Bovdi and
Khripta [3] found a new method to investigate group algebras of torsion
groups.

Let t = 2n, r = 2n−1 and y1, y2, . . . , yt ∈ U(FG). Define by in-
duction the following group commutators: (y1, y2)o = y−1

1 y−1
2 y1y2, and

(y1, y2, . . . , yt)o = ((y1, y2, . . . , yr)o, (yr+1, yr+2, . . . , yt)o). Similarly we
define for Lie commutators: [y1, y2, . . . , yt]o.

Let z1, z2, . . . , zt be arbitrary elements of FG. Suppose that
v1, v2, . . . , vt are nilpotent elements, which satisfy the following conditions:
vs+1

i = 0 for all i; vivj = vjvi for all i, j and vizj = zjvi for all i, j.
Then zivi is a nilpotent element and yi = 1 − zivi is a unit for all i.

It is easy to see that the group commutator

(y1, y2) = 1 +
s∑

m=0

s∑

k=0

(v1z1)m(v2z2)k[z1, z2]v1v2.

Using this formula we can conclude the following statement:
There exists a polynomial f(x1, x2, . . . , xt) over the group algebra FG

of the form

c1x1x2 . . . xt +
∑

γα1,α2,...,αtx
α1
1 xα2

2 . . . xαt
t

with the properties
1. c1 = [z1, z2, . . . , zt]o is the Lie commutator defined before;
2. all coefficients γα1,α2,...,αt commute with every vi, and γα1,α2,...,αt does

not depend on v1, v2, . . . , vt;
3. 1 ≤ αi for every i and t + 1 ≤ α1 + α2 + · · ·+ αt ≤ ts;
4. the group commutator (y1, y2, . . . , yt)o = 1 + f(v1, v2, . . . , vt).

Suppose that U(FG) is a solvable group of derived length n. If t = 2n,
then (y1, y2, . . . , yt)o = 1 + f(v1, v2, . . . , vt) = 1. Therefore, we conclude
that f(v1, v2, . . . , vt) = 0 for arbitary elements z1, z2, . . . , zt of FG and
v1, v2, . . . , vt satisfies the conditions, which we have defined before.

Suppose that FG is not Lie solvable. Then there exists elements
g1, g2, . . . , gt such that c1 = [g1, g2, . . . , gt]o 6= 0. Put z1 = g1, z2 = g2, . . . ,
zt = gt. Define the subgroup H =

⋂t
i=1 CG(gi) and suppose that H
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has an infinite abelian p-subgroup A. Using properties of the polynomial
f(x1, x2, . . . , xt), we obtain that c1 = [g1, g2, . . . , gt]o 6= 0 has the property
c1(a− 1) = 0 for infinite number of elements a from A. It is easy too see
that this is impossible. Bovdi and Khripta showed that if p > 3 then the
group U(FG) is solvable if and only if FG is Lie solvable. The result for
torsion groups is the following:

Theorem. Let F be a field of characteristic p > 2 and let P be a
nontrivial p-Sylow subgroup of the torsion group G. The nonabelian group
U(FG) is solvable if and only if the commutator subgroup of G is a finite
p-group or F is the field of three elements, the 3-Sylow subgroup P is a
finite normal subgroup and the factor group Ḡ = G/P satisfies one of the
following conditions:

1. Ḡ is an extension of an elementary abelian 2-group A by a group 〈b〉
of order 2;

2. Ḡ is an extension of an abelian group A of exponent 4 by a group
〈bA〉 of order 2 and bab−1 = a−1 for all a ∈ A;

3. Ḡ is an extension of an abelian group A of exponent 8 by a group 〈b〉
of order 2 and bab = a3 for all a ∈ A;

4. Ḡ is a direct product of the group

〈a, b | a4 = b4 = 1, (a, b)2 = 1, (a, b, a) = (a, b, b) = 1〉
of order 32 and the elementary abelian 2-group.

Theorem. Let F be a field of characteristic 2 and assume that 2-Sylow
subgroup of the torsion group G is nontrivial. The nonabelian U(FG) is
solvable if and only if there exists a finite normal 2-subgroup N such that
the factorgroup Ḡ = G/N satisfies one of the following conditions:

1. Ḡ is abelian;
2. Ḡ is a direct product of an abelian group W having no element of

order 2, and a 2-group B with following property:
a) B has an abelian normal subgroup of index 2;
b) B/ζ(B) is a group of finite exponent, where ζ(B) is the center

of B;
3. |F| = 2 and Ḡ is an extension of an abelian group A by a group 〈b〉

of order 2, where A is a direct product of a bounded abelian 2-group
of finite exponent and an elementary 3-group W and bab = a3 for all
a ∈ W .

The problem of the solvability of U(FG) has been settled when G
is any nilpotent group by A. Bovdi [8], but for locally nilpotent G the
problem is still open.



222 Adalbert Bovdi

Theorem. Let F be a field of characteristic p and let P be a nontrivial

p-Sylow subgroup of the non-torsion nilpotent group G. The nonabelian

group U(FG) is solvable if and only if G satisfies one of the following

conditions:

1. the commutator subgroup of G is a finite p-group;

2. p = 2 and there exists a subgroup H in G of index 2 and a finite normal

2-subgroup N such that the group H/N is abelian, and G/ζ(G) is a

2-group of finite exponent;

3. the torsion subgroup of G is the direct product of the finite p-Sylow

subgroup P and an abelian subgroup A. If A is a not central in

G then the torsion subgroup of U(F) has order pt − 1 and for any

g ∈ G \ CG(A) and a ∈ A there exists r such t | r and gag−1 = apr

.

Since we do not know the answer for the Mal’cev–Kaplansky problem
on the triviality of the group of units for torsion-free groups G for solvable
groups this problem is extremely difficult.

Modular group algebras with polycyclic group of units were described
by Bovdi and Khripta [6].

22. The derived length of the group of units

By Smirnov and Zalesskii’s result [1], a Lie solvable ring R has a
nilpotent ideal I such that R/I is a Lie centrally metabelian ring (i.e. the
identity [x1, x2, [x3, x4], x5] = 0 holds).

We know only a few facts concerning the Lie derived length of a Lie
solvable group ring and the derived length of a solvable group of units.
The first result in this direction has been obtained by Levin and Rosen-
berger [1]:

Theorem. Let F be a field and let G be a noncommutative group

such that FG is strong Lie metabelian. Then G is nilpotent of class 2,

and either |G′| = 3 if F has characteristic 3, or G′ is elementary abelian of

order 2 or 4 if F has characteristic 2.

Denote by dl(R) the derived length of the associated Lie algebra of
the ring R.

Let F be a field of characteristic p > 2. Then FG is Lie solvable if
and only if G′ is a finite p-group. Clearly the augmentation ideal of FG′

is a nilpotent and denote by t(G′) its nilpotency index. If {δn(FG)} is
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the derived series of FG then δn(FG) ⊆ IF(G′)2
n−1

, so that the inequality
dl(FG) ≤ [log2(2t(G′))] hold, where [c] the upper integral part of real
number c.

Shalev [8] described the derived length of FG for some metabelian
groups G and proved, if dl(FG) is at most n and p > 2n, then G is an
abelian group.

Shalev determined the minimal derived length for a non-commutative
FG group algebra of characteristic p > 2: dl(FG) ≥ [log2(p + 1)]. This
bound is actually the correct one when the commutator subgroup of G is
central of order p.

Shalev [11] obtain for a finite nilpotent group G of class two that
1. if the commutator subgroup is cyclic of order pk then

dl(FG) = [log2(p
k + 1)];

2. if G is p-group which is abelian-by-cyclic then

dl(FG) = [log2(t(G
′) + 1)].

Question (Shalev). Whether the Lie derived length of FG is approxi-
mately log2 t(G′) for odd characteristic.

Most recent related results concerning the Lie derived length of group
algebras are the following: in [1] Sharma and Srivastava, and in [2] Kül-
shammer and Sharma described Lie centrally metabelian group rings of
characteristic p > 3 and p = 3, respectively; in [1] Sahai determined group
algebras of derived length 3 for p > 2 (to our best knowledge, the previous
two problems for p = 2 are still open).

Let R be a nil-ring over the field F of characteristic 2 and |F| > 2.
Smirnov [2] has obtained that if R is a Lie centrally metabelian ring and
R satisfies the identity x4 = 0 then the adjoint group (R, ◦) is a centrally
metabelian group. Riley and Tasic [1] constructed an example of a finite
dimensional nilpotent algebra R which is Lie centrally metabelian such
that R satisfies the indentities x2p = 0 when p > 2 and x8 = 0 when p = 2
and the adjoint group of R is not centrally metabelian.

As we have seen before it is natural to ask:
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Question. Describe Lie centrally metabelian group rings of character-
istic 2. Is the group of units of such a group ring a centrally metabelian
group?

The following result of Smirnov [1] can be used to obtain some bound
for the derived length of the group of units of a group ring.

Theorem. Let R be a Lie solvable ring such that if 2r =0 then r =0.
Then the group of units U(R) is solvable and

dl(U(R) ≤ 4 · dl(R) + 3,

if dl(R) > 2 and dl(U(R) ≤ 3 for dl(R) = 2.

Shalev [6] first characterized group algebras of finite groups with
metabelian groups of units for p > 2. For characteristic p > 2 the unit
group U(FG) is metabelian if and only if one of the following conditions
holds:

1. G is abelian;
2. p = 3 and G is nilpotent with |G′| = 3.

For p = 2 this question was solved by Kurdics [1] and also Coleman
and Sandling independently in [1]:

Theorem. Let G be a finite group and let F be a field of character-
istic 2. The group of units U(FG) is metabelian if and only if one of the
following conditions holds:

1. G is abelian;
2. G is nilpotent of class 2 and has an elementary abelian commutator

subgroup of order 2 or 4;
3. F = F2, the field of two elements, and G is an extension of an elemen-

tary abelian 3-group H by the group 〈b〉 of order 2 with b−1ab = a−1

for every a ∈ H.

23. Engel properties and group of units

If for any x, y ∈ R there exists a positive integer n = n(x, y) such that
[x, y, n] = 0 then we say that R is Engel. If [x, y, n] = 0 is an identity in
R then we call R n-Engel, in which case we also say that R is of Engel
length n. R is called bounded Engel if it is n-Engel for some positive
integer n.

The determination of the structure of Engel group algebras is very
difficult. Only bounded Engel group algebras were described by Sehgal [4,
Theorem V.6.1]
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Theorem. Let F be a field of characteristic p ≥ 0 and let G be a

group. Then FG is bounded Engel if and only if one of the following

conditions is satisfied:

1. G is abelian;

2. p > 0, G is nilpotent and there exists a normal subgroup A of G such

that A′ and G/A are of p-power orders.

The first information on the Engel length of a bounded Engel group
algebra was obtained by Rips and Shalev [1].

Theorem. Let F be a field of characteristic p and G a group such that

FG is n-Engel. Then

1. if n < p then G is abelian;

2. if n = p then G′ is of order 1 or p;

3. if n ≤ 2p− 2 then G′ is finite.

Kurdics [2] extends this result and describes group algebras of Engel
length 3.

Theorem. Let F be a field of characteristic p, G an arbitrary group.

Then the group algebra FG is 3-Engel if and only if one of the following

conditions holds:

1. G is abelian;

2. p = 2 and G is nilpotent of class 2 with an elementary abelian com-

mutator subgroup of order 2 or 4;

3. p = 2 and G is nilpotent of class 2 such that its commutator subgroup

is an elementary abelian 2-group of either finite order greater than 4
or of infinite order, and there exists an abelian subgroup of index 2
in G;

4. p = 3 and G is nilpotent with a commutator subgroup of order 3.

It is well-known that 3-Engel Lie algebras are nilpotent except for the
characteristic 2 and 5 cases. If G is of type 3. in the previous theorem
with infinite commutator subgroup and F is a field of characteristic 2 then
FG is 3-Engel but not Lie nilpotent.

The problem of characterization of group algebras with Engel or
bounded Engel groups of units, raised by Sehgal [4], was in particular
solved by A. Bovdi and Khripta [8, 9].
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Theorem. Let T (G) be the set of all elements of finite order of the

group G and let the characteristic of the field F not divide the orders of the

elements of T (G). If the group U(FG) is Engel then T (G) is a subgroup

of the Engel group G and one of the following conditions holds:

1. T (G) is subgroup of the center of G, or

2. F is a prime field of characteristic p = 2t−1, T (G) is an abelian group

of exponent that divides p2 − 1 and g−1ag = ap for all a ∈ t(G) and

for every g ∈ G \ CG(T (G)).

Theorem. Let F be a field of characteristic p and let G be a solvable

group with a nontrivial p-Sylow subgroup P . Then U(FG) is Engel if and

only if G is locally nilpotent and G′ is a p-group.

Theorem. Let F be a field of characteristic p and let G be a group

with a nontrivial p-Sylow subgroup P . If U(FG) is n-Engel and P is finite

then T (G) is a subgroup, the commutator subgroup G′ is a p-group and

G/ζ(G) is a p-group of finite exponent, where ζ(G) is the center of G.

Moreover:

1. if G is a solvable group with a nontrivial finite p-Sylow subgroup P

then U(FG) is n-Engel if and only if G is nilpotent and the commu-

tator subgroup G′ is a finite p-group;

2. if G is a solvable group with an infinite p-Sylow subgroup P then

U(FG) is n-Engel if and only if the following conditions hold:

a) G is nilpotent and it has a normal subgroup H such that

|G : H| = pm;

b) the commutator subgroup of H is a finite p-group and G/ζ(G) is

a p-group of finite exponent.

Shalev [10] obtains the following interesting result: Let A be an
n-Engel associative algebra over a field of prime characteristic. Then U(A)
is m-Engel for some m depending on n.

Let f(n) be the smallest possible such m in the last statment. For
group algebras it is easy to see f(2) = 2 and Kurdics [2] proved that if FG

is a 3-Engel group algebra then the group of units U(FG) is also 3-Engel.
It would be interesting to assess the values f(n) for greater n. Kurdics

obtains [3] the following lower bounds on the Engel length of the group of
units:
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Theorem. Let F be a field of characteristic p > 2 and let G be a
locally nilpotent nonabelian group with a nontrivial p-Sylow subgroup.

1. The group of units U(FG) is p-Engel if and only if G is nilpotent with
the commutator subgroup of order p;

2. U(FG) is not (p− 2)-Engel, and U(FG) is (p− 1)-Engel if and only if
G is nilpotent with G′ = Tp(G) of order p, where Tp(G) is the set of
all p-elements of G.

Corollary. Let F be a field of characteristic p > 2 and let G be
a nonabelian nilpotent group with G′ a finite p-group. Then U(FG) is
nilpotent of class greater than p− 2 and

1. U(FG) is nilpotent of class p−1 if and only if G′ = Tp(G) is of order p;
2. U(FG) is nilpotent of class p if and only if G′ is of order p and G′ 6=

Tp(G).

24. Groups of units of Engel length 2 and 3

Theorem (Kurdics [3]). Let F be a field of characteristic p and let G
be a group with a nontrivial p-Sylow subgroup. Then the group of units
U(FG) is 2-Engel if and only if one of the following conditions holds:

1. G is abelian;
2. p = 2 and G is nilpotent with a commutator subgroup of order 2;
3. p = 2 and G is nilpotent of class 2 with an elementary abelian 2-Sylow

subgroup T2(G) = G′ of order 4;
4. p = 3 and G is nilpotent with G′ = T3(G) of order 3.

Theorem (Kurdics [3]). Let F be a field of characteristic p and G a
group with a nontrivial p-Sylow subgroup. Then the group of units U(FG)
is 3-Engel if and only if one of the following conditions holds:

1. FG is Lie 3-Engel;
2. p = 2 and G is nilpotent of class 2 such that G′ is elementary abelian

of order 8, and T2(G) is of order 8 or 16 and central in G;
3. p = 2 and G is nilpotent of class 2 with G′ elementary abelian of

order 8, and T2(G) = 〈G′, a〉 is of order 16 such that |G : CG(a)| = 2
and C ′G(a) = (a,G);

4. p = 2 and G is nilpotent of class 2 with G′ = T2(G) elementary abelian
of order 16;

5. p = 2 and G is nilpotent with G′ = T2(G) cyclic of order 4;
6. p = 2 and G is nilpotent of class 3 with G′ = T2(G) elementary abelian

of order 4.
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25. Lie nilpotency and the group of units

The lower Lie central series of R is defined by γ1(R) = R and γk(R) =
[γk−1(R), R] for k ≥ 2.

Similarly define the upper Lie central series of R: let ζ1(R) = ζ(R)
and ζk(R) = {r ∈ R | [r,R] ⊆ ζk−1(R)} for k ≥ 2.

It is well-known that [γi(R), γj(R)] ⊆ γi+j(R).
We shall denote by R[k] the associative ideal generated by γk(R),

and by R(k) the associative ideal generated by all Lie products [x, r] with
x ∈ R(k−1) and r ∈ R, where R(1) = R. Clearly, R[k] = γk(R)R, R(k) =
[R(k−1), R]R and R[k] ⊆ R(k) for all k. The values tL(R) = min{i | R[i] =
{0}} and tL(R) = min{i | R(i) = {0}} (which may be infinity) are called
the lower and upper Lie nilpotency indices, respectively.

If tL(R) or tL(R) is finite then R is called Lie nilpotent and strongly
Lie nilpotent, respectively, and in the former case we also say that R is
Lie nilpotent of class tL(R)− 1.

Passi and Sehgal [2] proved that

[R(k), R(l)] ⊆ R(k+l); R(k)R(l) ⊆ R(k+l−1),

and by Gupta and Levin’s [1]

R[k]R[l] ⊆ R[k+l−2].

Let {xi} be a sequence of elements of R. By induction we define the
following Lie commutator: [x1, x2, . . . , xn] = [[x1, x2, . . . , xn−1], xn].

Definition. If for any sequence {xi} of elements of R there exists
some n such that [x1, x2, . . . , xn] = 0 then R will be called Lie hyper-
central.

Clearly, if n exists such that it is independent of the sequence then R

is Lie nilpotent.

Theorem (A. Bovdi, Khripta [5], Passi, Passman, Sehgal [1]). Let

RG be a noncommutative group ring over the commutative ring R. Then

the following statements are equivalent:

1. RG is Lie hypercentral;

2. RG is Lie nilpotent;
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3. the characteristic of R is pt, G is a nilpotent group such that its

commutator subgroup is a finite p-group. Furthermore, in this case

RG is also strongly Lie nilpotent.

A group G is said to be hypercentral if the ascending central series
reaches G after some, possibly infinite, ordinal. Chernikov showed this to
be equivalent to the property that for every sequence a1, a2, . . . , am, . . . of
elements in G, there exists an index m such that the group commutator
(a1, a2, . . . , am) = 1. So in particular, if m can be chosen independently
of the sequence then G is nilpotent.

The problem of classifying group algebras with unit groups satisfying
some generalized nilpotency property has not been studied with the ex-
ception of group algebras whose unit groups are hypercentral which was
inspired by the previous theorem.

Theorem (A. Bovdi and Khripta [6], Khripta [1], Riley [1]). Let FG

be a noncommutative modular group algebra over the field F of character-

istic p. Then the following statements are equivalent:

1. U(FG) is a hypercentral;

2. U(FG) is a nilpotent;

3. G is a nilpotent group such that its commutator subgroup is a finite

p-group.

Bhandari and Passi [2] obtained that if p > 3 then tL(FG) = tL(FG).
It is very likely that this also holds for the characteristic p = 2, 3 cases.

Let R be a radical ring. Then (R, ◦) is a group called the adjoint (or
circle) group of R where x ◦ y = x + y + xy. The following result of Du [1]
verifies a conjecture of Jennings on radical rings:

Theorem. ζi(R, ◦) = ζi(R) (i ≥ 0).

This immediately implies cl(R, ◦) + 1 = tL(R), which has been re-
proved recently by Krasilnikov [1], independently.

Recall that if G is a nilpotent p-group with G′ finite then the group
of units V (FG) with augmentation 1 is isomorphic to the adjoint group of
a radical ring, namely the augmentation ideal IF(G). Hence,

cl(U(FG)) + 1 = tL(FG),
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the value of which is determined by Bhandari and Passi’s theorem in case
p > 3. Moreover, by Gupta and Levin’s [1] γk(U(R)) ⊆ 1 + R[k].

These results enable us to reduce the computation of the class of
U(FG) to computation of the upper and lower Lie nilpotency indices of
group algebras.

The following Lie properties are very useful to study the group of
units:

1. (Levin, Sehgal [1]). For any x, y, z, u, v ∈ R and m ≥ 1

[x, y, y]R[m] ⊆ R[m+2]; [x, y][y, z]R[m] ⊆ R[m+2];

[x, y][y, u, v] ∈ R[4].

2. (Levin, Sehgal [1]). Let x, y, xi, yi, zi ∈ U(R),m ≥ 1, k ≥ 1. Then

k∏

i=1

(
(xi, yi)− 1

)(
(yi, zi)− 1

)
R[m] ⊆ R[m+2k]; ((x, y)− 1)k ∈ R[k+1].

3. (A. Bovdi, Kurdics [1]). Let m ≥ 1. Then the following statements
hold:

(i) [x, γm(R)][x, y] ⊆ R[m+2] for any x, y ∈ R;

(ii) [x, y]kR[m] ⊆ R[m+k] for any x, y ∈ R and k > 1;

(iii) ((x, y)− 1)kR[m] ⊆ R[m+k] for any x, y ∈ U(R) and k > 1;

(iv) (a− 1)R[m] ⊆ R[m+pk] for any a ∈ U(R)′p
k

, if R is of character-
istic p and k ≥ 1;

(v) (a− 1)R[m] ⊆ R[m+2] for any a ∈ γ3(U(R)), if 3 is a unit in R.

Let FG be a modular group algebra and V (FG) a nilpotent group.
Denote by cl(V ), cl(G) respectively the nilpotency class of V (FG) and G.

By Khripta’s result U(FG) is nilpotent if and only if G is nilpotent and
the derived subgroup G′ is a finite group of order pn. Then by Sharma and
Vikast Bist’s [1] cl(V ) ≤ pn. Shalev [9] shows that if G is a finite p-group
and p > 3, then cl(V ) = |G′| = pn if and only if G′ is cyclic.

Question. Which values are attained by the function f(G) = cl(V )−
cl(G)? Determine all groups G for which f(G) = n.

The following result describes groups for which f(G) = 0.
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Theorem (Khripta [1]). Let F be a field of characteristic p and G a

nonabelian nilpotent group with G′ a finite p-group. Then the nilpotency

classes of G and U(FG) coincide if and only if

1. p = 3, G′ = Sylp(G) is of order 3;

2. p = 2, cl(G) = 2, G′ = Sylp(G) is elementary abelian of order 4
3. p = 2, cl(G) = 3, G′ = Sylp(G) is of order 4;

4. p = 2, G′ is of order 2.

Let G be a finite noncommutive p-group. The values of the function
are determined in the following cases:

1. (Baginski [1], Mann and Shalev [1]) cl(V ) = p if and only if |G′| = p.
2. (Shalev [9]) If cl(V ) > p and p > 3, then cl(V ) ≥ 2p−1. The equality

holds if G′ is elementary abelian of order p3 and cl(G) = 2.
3. (Shalev [9]) If cl(V ) > 2p − 1 and p > 3, then cl(V ) ≥ 3p − 2. The

equality holds if G′ is elementary abelian and one of the following
conditions holds:
a) |G′| = p3 and cl(G) = 2;
b) |G′| = p2 and cl(G) = 3.

4. (Shalev [9]) If G′ is a central elementary subgroup of order pn, then
cl(V ) = n(p− 1) + 1.

5. (Konovalov [1]) If G is 2-group of maximal class then cl(V ) = |G′|.
6. (A. Bovdi, Kurdics [1]) If p > 2 and G is an arbitrary nilpotent group

of class greater than 2 with G′ of p-power order then f(G) ≥ p.

Parts of the next theorem were proved by Shalev in [9] for p ≥ 5.

Theorem (A. Bovdi, Kurdics [1]). Let F be a field of characteristic p

and let G be a nilpotent group such that the commutator subgroup G′

is a finite abelian p-group with invariants (pm1 , pm2 , . . . , pms). Then the

following statements hold:

1. tL(G) ≥ t(G′) + 1 = 2 +
∑s

i=1(p
mi − 1);

2. tL(G) = tL(G) = t(G′) + 1 if γ3(G) ⊆ G′p;

3. cl(U(FG)) = t(G′) if G is a p-group and γ3(G) ⊆ G′p.

Let P be a finite abelian p-group,

P = 〈a1〉 × 〈a2〉 × · · · × 〈as〉, |ai| = pmi , m1 ≥ m2 ≥ · · · ≥ ms.

We call {ai} a basis of P . Any g ∈ P can be written uniquely as

g = ak1
1 ak2

2 · · · aks
s and 0 ≤ ki < pmi .
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Let H be a proper subgroup of P with |HP p/P p| = pr, r > 0. Then
the function

ν : H \ P p → {1, 2, . . . , s}, h 7→ ν(h) = min{j | gcd(kj , p) = 1}

takes r distinct values v1 < v2 < · · · < vr. Let

{1, 2, . . . , s} = {u1, u2, . . . , us−r, v1, v2, . . . , vr}.

Then the subgroup A = 〈au1〉 × 〈au2〉 × · · · × 〈aus−r 〉 will be called the
weak complement of H in P relative to the basis {ai}.

It can be proved that the weak complements of H in P , relative to
any basis, are all isomorphic to each other.

Theorem (A. Bovdi, Kurdics [1]). Let F be a field of characteristic

p 6= 3 and let G be a nilpotent group of class greater than 2 such that the

commutator subgroup G′ is a finite abelian p-group

G′ = 〈a1〉 × 〈a2〉 × · · · × 〈as〉, |ai| = pmi , m1 ≥ m2 ≥ · · · ≥ ms,

and |γ3(G)G′p/G′p| = pr, 0 < r < s. Furthermore, let A = 〈au1〉×〈au2〉×
· · · × 〈aus−r 〉, u1 < u2 < · · · < us−r be the weak complement of γ3(G) in

G′ relative to the basis {ai}. Let

{1, 2, . . . , s} = {u1, u2, . . . , us−r, v1, v2, . . . , vr}.

Then

1. tL(G) ≥ t(G′) + t(G′/A) = 2 +
∑s

i=1(p
mi − 1) +

∑r
j=1(p

mvj − 1);

2. tL(G) = tL(G) = t(G′) + t(G′/A) if G is of class 3;

3. cl(U(FG)) = t(G′) + t(G′/A)− 1 if G is a p-group of class 3.

A few facts are known of the nilpotency class of the group of units
when G is not a p-group.

Theorem (A. Bovdi, Kurdics [1]). Let G be a nilpotent group and F
a field of prime characteristic p.

1. Let the commutator subgroup G′ be cyclic of order pn > 2. Then

U(FG) is nilpotent of class pn − 1 if Sylp(G) = G′, and of class pn if

Sylp(G) 6= G′.
2. Let the commutator subgroup G′ be an elementary abelian subgroup

of order p2. Then the following statements hold:
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(i) if G is of class 2 then cl(U(FG)) = 2p−1 provided Sylp(G) 6= G′,
and cl(U(FG)) = 2p− 2 provided Sylp(G) = G′;

(ii) if G is of class 3 then cl(U(FG)) = 3p−2 provided Sylp(G) 6= G′,
and cl(U(FG)) = 3p− 3 provided Sylp(G) = G′.

In [1] Rao and Sandling have characterized modular group algebras
of finite p-groups with unit groups nilpotent of class 3. We extend this
result.

Theorem (A. Bovdi, Kurdics [1]). Let F be a field of characteristic p,

G a nilpotent group with G′ of p-power order. Then U(FG) is nilpotent

of class 3 if and only if one of the following conditions holds:

1. p = 2, cl(G) = 2, G′ is elementary abelian of order 4, G′ 6= Syl2(G);
2. p = 2, cl(G) = 2, G′ = Syl2(G) is elementary abelian of order 8;

3. |G′| = 8, Syl2(G) is elementary abelian of order 16 and central in G,

and the orders of the conjugacy classes in G do not exceed 4;

4. p = 2, G′ = Syl2(G) is cyclic of order 4;

5. p = 2, cl(G) = 3, G′ = Syl2(G) is elementary abelian of order 4;

6. p = 3, G′ is of order 3, G′ 6= Syl3(G).

26. The units of the small group algebra

Let G′ be the commutator subgroup of a locally finite p-group G and
I(G′) be the ideal in FG generated by elements of the form g − 1 with
g ∈ G′. If IF(G) is the augmentation ideal of FG, then IF(G) is locally
nilpotent and G ∩ (1 + IF(G)I(G′)) = (G′)′(G′)p is the Frattini subgroup
of G′.

Definition. The quotient FG/IF(G)I(G′) is called the small group al-
gebra of G over F and the p-Sylow subgroup

S(FG) = V (FG/IF(G)I(G′) ∼= V (FG)/1 + IF(G)I(G′)

of the group of units of the small group algebra is called the group of
normalised units of the small group algebra FG/IF(G)I(G′).

Clearly, if G is a finite p-group and F = Fp is the field of p elements,
then S(FG) is also a finite p-group and has structure which mimics that
of the original group G.
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Denote by Sn(FpG) the n-th term of the lower central series of S(FpG)
and by ζn(S(FpG)) the n-th term of the upper central series of S(FpG).

Let G be a finite p-group and let the Frattini subgroup (G′)′(G′)p of
G′ equal to {1} (i.e. the commutator subgroup of G is elementary abelian).
Baginski and Caranti [1] proved that G and S(FpG) have the same nilpo-
tency class. Moreover, Salim and Sandling [1] conclude that

1. Sn(FpG) = Gn for n ≥ 2;
2. ζn(S(FpG)) = ζn(G) for all n.
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