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What to do until (and when) the
functional equationist arrives

By JÁNOS ACZÉL (Waterloo)

Dedicated to Professors Zoltán Daróczy and Imre Kátai
on their 60th birthday

Abstract. Using recent results as examples, the paper presents remarks on how
to (and how not to) apply functional equations in the social and behavioral sciences.
The examples concern a.o. visual space, memoryless processes, choice (selection) proba-
bilities, dimensional analysis, consistent aggregation, utility, gambles, Cauchy equations
and smoothing.

1. What kind of problems lead to functional equations? It often hap-
pens that theories in empirical sciences are formalized by equations in-
volving unknown functions. For instance, the theorist may be reluctant to
make specific assumptions regarding the form of the functions involved in a
mathematical model. The equations themselves often reduce the possibil-
ities, however, and occasionally the restrictions are so severe as to restrict
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all forms to but a few. A celebrated case involves the connection between
Weber’s law and the so-called Fechner problem in psychophysics. The re-
strictions there are such as to yield a logarithm as the only possible form
for a function, which Fechner interpreted as measuring the magnitude of
the sensation evoked by a stimulus (J.-C. Falmagne, 1985).

What are functional equations and what is their role? Chil-
dren learn most (and annoy their parents most) with two questions: “why?”
and “what makes it tick?” (usually while taking the device apart). In sci-
ence, whether natural, behavioral or social, these are the questions asked
by researchers of mathematics, in particular of axiomatics and of func-
tional equations. Usually there is a formula, equation, function, used in
practice among others because it has properties favorable for the purpose.
The “why” or “what makes it tick” question here is whether these func-
tional properties (functional equations and/or inequalities) determine the
function (“formula”): Is it the only one having these properties? If there
are others, could they also be used for the same purpose? If not, the
reason is probably that they lack some important property or properties
which we overlooked. Maybe if we add these we have the function char-
acterized. On the other hand, if there is more than one function (usually
a whole family or families of functions) possessing all the qualities which
can be reasonably expected for purposes of the application, so much the
better: we have gained choice and flexibility; but again it is useful to know
all possibilities. Functional equations can also be used to determine the
exact conditions under which a situation favourable for purposes of an
application can prevail. A recent example of such ongoing research aims
at finding the conditions under which the inputs and also the outputs of
several producers in an industry can be consistently aggregated into a fic-
tive “representative” producer’s inputs and output. Another strives to
characterize the so-called Luce choice model in the framework of selection
probabilities. Other, even more recent ones deal with distinct ways of
measuring gains and utilities (or gambles with several useful properties).
At present, we work on functional equations motivated by the problem in
psychophysics of describing how we see the physical space.

In what follows we concentrate on finding the functional equations for
the applied problems and on the conditions and domains. In some cases
we furnish the (short) technical details of the solution process; in every
case we give references.
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Figure 1: Vieth–Müller circles and hyperbolæ of Hillebrand. The
left eye is centered at L, the right eye at R.

Example 1. Visual space – physical space. There are several the-
ories on this subject.

In particular, according to R.K. Luneburg (1947), we see as equidis-
tant – not the points on concentric circles but – the points on “Vieth–
Müller (V-M) circles” going through the points L and R, where the left
and right eye are centered, respectively (centre of each circle on the vertical
axis), see Figure 1.

We also see under constant direction – not points of rays through a
point but – points on “Hildebrand (H) hyperbolas” going through L and R

(centre on the vertical axis); the intersection with each V-M circle appears
under constant angle from the intersection of the V-M circle with the
negative vertical axis, see Figure 1.

If the straight lines from L or R to a point bend from the vertical left
by β and α, respectively, (if they bend to the right they are considered
negative) then α and β are the bipolar coordinates of the point (α, β). For



250 János Aczél

Figure 2: The bipolar coordinates α, β denote the monocular di-
rections with respect to the right and the left eye. The bipolar
parallax ψ = α − β associated to a stimulus is the angle sub-
tended by the visual axis when the eyes converge on the stimulus.
The bipolar latitude ϕ = (α + β)/2 describes the lateral deviation
of a stimulus from the x-axis.

each V-M circle ψ = α−β is constant, for each H hyperbola (ϕ = (α+β)/2
or) θ = α + β is constant. See α, β, ψ and ϕ in Figure 2.

So it is natural to introduce the following order:

(α, β) -ρ (α′, β′) ⇔ α− β ≥ α′ − β′(Lρ)

(α, β) -θ (α′, β′) ⇔ α + β ≥ α′ + β′(Lθ)

As a consequence, %ρ and %θ are defined too. Furthermore
∼ρ means %ρ and -ρ (i.e.: on the same V-M circle) and

∼θ means %θ and -θ (i.e.: on the same H hyperbola)
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Figure 3: Locus of equidistant points according to the Luneburg
theory and in two observed cases (Foley, J.M., 1966)

Experiments show qualitative agreement but quantitative deviations
(consistently: the observer notes points equidistant to her always some-
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what to the right or somewhat above (etc.) the V-M circle), see Figure 3.

Therefore J. Heller (1997) proposed that, in place of α− β, α + β,
we take f(α)− g(β), f(α) + g(β), respectively, with strictly increasing f ,
g mapping I = ] − π/2, π/2[ (we denote open intervals by ]·, ·[) onto real
intervals (so f, g are continuous). This leads to the following definitions:

(α, β) -ρ (α′, β′) ⇔ f(α)− g(β) ≥ f(α′)− g(β′),(Dρ)

(α, β) -θ (α′, β′) ⇔ f(α) + g(β) ≥ f(α′) + g(β′).(Dθ)

Notice that -ρ goes over into -θ if g is replaced by −g. Therefore we
usually state just one of the two parallel definitions or (in)equations. We
want to preserve some of the following invariance properties of (Lρ) and
(Lθ) for the more general (Dρ) and (Dθ).

Definition. - on S is (cf. Figure 2):

ψ-shift invariant if

(α, β) - (α′, β′) ⇔ (α + τ, β − τ) - (α′ + τ, β′ − τ);

ϕ-shift invariant if

(α, β) - (α′, β′) ⇔ (α + τ, β + τ) - (α′ + τ, β′ + τ);

α-shift invariant if (α, β) - (α′, β′) ⇔ (α + τ, β) - (α′ + τ, β′);

β-shift invariant if (α, β) - (α′, β′) ⇔ (α, β + τ) - (α′, β′ + τ)

All pairs are in S = {(α, β) ∈ I2 | α > β} where

I = ]− π/2, π/2[.

For instance, ψ-shift invariance for (Dρ) means

f(α)− g(β) ≥ f(α′)− g(β′) ⇔
f(α + τ)− g(β − τ) ≥ f(α′ + τ)− g(β′ − τ).

Thus we have

(i) f(α + τ)− g(β − τ) = H[f(α)− g(β), τ ]

which, finally, is a functional equation.
We get similarly the equations (ii)–(iv) and (i′)–(iv′) (see Table 1).

Thus the question, when the relations remain invariant under these shifts,
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Invariance applied to Equation No.

ψ-shift -ρ H[f(α)− g(β), τ ] = f(α + τ)− g(β − τ) (i)

-θ H[f(α) + g(β), τ ] = f(α + τ) + g(β − τ) (i’)

ϕ-shift -ρ H[f(α)− g(β), τ ] = f(α + τ)− g(β + τ) (ii)

-θ H[f(α) + g(β), τ ] = f(α + τ) + g(β + τ) (ii’)

α-shift -ρ H[f(α)− g(β), τ ] = f(α + τ)− g(β) (iii)

-θ H[f(α) + g(β), τ ] = f(α + τ) + g(β) (iii’)

β-shift -ρ H[f(α)− g(β), τ ] = f(α)− g(β + τ) (iv)

-θ H[f(α) + g(β), τ ] = f(α) + g(β + τ) (iv’)

Table 1
Functional equations induced by the shift invariance properties

leads to functional equations. Notice that in each equation H is strictly
increasing in its first variable. This helps in the solution of these equations
to which we will return later.

2. The domains of the equations (not the same as the domains of the
unknown functions) are important, for instance in Example 1 it is im-
portant that −π/2 < β < α < π/2 and −π/2 < β − τ < α + τ < π/2.
Another example (J. Aczél, 1987) is the following

Example 2. Solutions of the basic Cauchy equation

(1) g(x + y) = g(x) + g(y)
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for x, y ∈ R (the set of all real numbers) bounded on a (no matter how
small) proper interval J ⊂ R are of the form

(2) g(x) = cx

for all x ∈ R. The same is true if (1) is supposed only for, say, x, y, x+y ∈
[0, 1] (of course, then J ⊂ [0, 1] and (2) holds for x ∈ [0, 1]). But we have
to be careful: Suppose (1) holds for x, y ∈ [2, 3]. What does

g(x + y) = g(x) + g(y) for x ∈ [2, 3], y ∈ [2, 3]

(domain of the equation: [2, 3]2) mean for the domain of g? Certainly [2, 3]
should be in the domain. But if x ∈ [2, 3], y ∈ [2, 3] then x + y ∈ [4, 6] and
g(x + y) stands on the left hand side of the equation. So the domain of g
should be (at least)

(3) [2, 3] ∪ [4, 6].

On this domain

g(x) =
{

x + 5 if x ∈ [2, 3]

x + 10 if x ∈ [4, 6]

is a bounded solution (check) which is not of the form (2) (cf. Z. Daróczy
and L. Losonczi, 1967).

Maybe this was caused by the separate domains for x, y and for x +
y (see (3))? No: another example is the following. Define g on T =
{0, 2, 3, 4, 5} by

g(x) = x if x = 0, x = 2, x = 4,

= 2.5 if x = 3,

= 4.5 if x = 5.

It is easy to check that g(x + y) = g(x) + g(y), for x, y, x + y ∈ T , but
g is not of the form (2). Incidentally, the finiteness of T and the vacuous
continuity of g are not the issue here. Essentially the same counterexample
is obtained if we define an extension g∗ of g on {0} ∪ [2, 5] by joining by
segment the successive points (i, g(i))(2 ≤ i ≤ 5) of the graph of g. (Thus,
(0, 0) belongs to the graph of g∗ but not the open segment ](0, 0), (2, 2)[)
(J.-C. Falmagne, 1981).

Many equations coming from applications can be reduced to the
Cauchy equation (1).
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Example 3. A memoryless phenomenon. An observer is watching
a display. His or her task is to detect the realization of an event. The
phenomenon is memoryless in the following sense: if the event does not
occur between times 0 and t, the probability that it does not occur between
times t and t + s only depends on s. Formally, let T be a random variable
representing the time elapsed until the occurrence of the event. The lack
of memory is then represented by the equation (J.-C. Falmagne, 1985)

P{T > t + s | T > t} = f(s),

where P represents the probability measure. Thus 0 ≤ P ≤ 1, so

(4) 0 ≤ f(s) ≤ 1.

The non-occurrence of the event in two distinct time intervals is indepen-
dent. Therefore

P{T > t + r + s | T > t}
= P{T > t + r | T > t}P{T > t + r + s | t + r},

that is,

(5) f(r + s) = f(r)f(s).

As lengths of time, the variables r, s may be supposed positive or nonneg-
ative. If (5) (and (4)) is supposed to hold for all positive r, s, then there
are just two kinds of solutions:

f(s) ≡ 0 and f(s) = e−ks (s ≥ 0)

for some nonnegative constant k. But if the domain is s, t ≥ 0 then there
are three kinds of solutions:

f(s) =
{ 1 if s = 0

0 if s > 0
, f(s) ≡ 0 and f(s) = e−ks (s ≥ 0)

(k again a nonnegative constant). We again see the importance of the
domain.
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3. Reduction to known equations. If, instead of (4), we suppose 0 <

f(s) ≤ 1 then we can take, in Example 3, logarithms on both sides of (5)
and we get with g(s) = log f(s)

g(r + s) = g(r) + g(s),

the Cauchy equation (1). The domains are again r, s > 0 or r, s ≥ 0 but
now the value of the function f cannot be 0. Then

g(s) = cs, f(s) = ecs = e−ks = P{T > s | T > 0}

(k ≥ 0) and so
P{T ≤ s} = 1− e−ks.

Sometimes we get, however, more from the original equation without
reduction.

Example 1a. In Example 1 (the physical space – visual space problem),
applying (i) twice, we get the translation equation

(T ) H[H(z, σ), τ ] = H(z, σ + τ).

The domains are given by

z ∈ Z =
{

f(α)− g(β)
∣∣ −π

2
< β < α <

π

2

}
,

σ, σ + τ ∈ I(z)

=
⋃ {]β − α

2
, min

(π

2
− α, β +

π

2

)[ ∣∣∣ f(α)− g(β) = z

}
,

τ ∈ I[H(z, σ)].

On such domains there were no result at hand for (T) but Heller (1997)
added the following condition (cf. Figure 4).

(C) For all (α, β) ∈ S there exists γ with

(α, β) ∼ρ (γ,−γ) ∈ S

i.e. with f(α)− g(β) = f(γ)− g(−γ), γ ∈ ]0, π
2 [.
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Figure 4: Condition (C) postulates that (in bipolar coordinates) to
each point (α, β) there exists a γ > 0 such that (α, β) ∼ρ (γ,−γ).

This leads to H(z, τ) = h[h−1(z) + τ ] (h strictly monotonic, continu-
ous), which transforms (i) into

(I)
h−1[f(α + τ)− g(β − τ)] = h−1[f(α)− g(β)] + τ

((α, β), (α + τ, β − τ) ∈ S).

Applying known results we get as the general strictly increasing solutions
f , g, mapping ]− π

2 , π
2 [ onto intervals,

(I1) f(α) = aα + b, g(β) = cβ + d (a > 0, c > 0)

and

(I2)
f(α) = aekα + b, g(β) = −ce−kβ + d

(a > 0, c > 0, k > 0 or a < 0, c < 0, k < 0).

But the condition (C) is satisfied only if a = c in (I1) resp. a = c > 0 in
(I2) (the former being the Luneburg case).



258 János Aczél

However, (i) and the other equations can be solved directly (actually,
by reduction to a result not involving the translation equation) and we get
the same solutions (I1), (I2) without assumption (C) (J. Aczél, Z. Boros,

J. Heller and C.T Ng, 1998). So: relate also your intermediate

steps.

4. What if our equation is not sufficient to get the result we hope for? As
mentioned before, either there are more functions solving our problem than
we thought (for example (I2) above, not only (I1)) or further conditions,
appropriate for the problem, have to be added. Some of them may again
be functional equations. This is the case in the following example.

Example 4. Selection probabilities. (J. Aczél, Gy. Maksa,
A.A.J. Marley and Z. Moszner, 1997).

The probability P (e : E) of selecting options (elements) from a set
E (selection or choice probability) is aggregated from m component (or
individual) probabilities Pi(e : E) (i = 1, . . . , m) obtained in different
contexts or according to different benchmarks or from different individuals:
For E = {e1, . . . , en} there exist n functions (H1, . . . , Hn) : Γm

n → Γn such
that

(6)
P (ej : E) = Hj [P1(e1 : E),

. . . , P1(en : E), . . . , Pm(e1 : E), . . . , Pm(en : E)].

Note that, since probabilities here are positive and add up to 1,

Γn =
{
(p1, . . . , pn)

∣∣ pj > 0; j = 1, . . . , n;
∑
j

pj = 1
}
.

It is supposed that the probabilities depend upon the options ej ∈ E

through ratio scale (invariant under linear transforms) values v1(ej), . . . ,
vm(ej), v(ej) (j = 1, . . . , n):

Pi(ej : E) = Fj [vi(e1), . . . , vi(en)],(7)

P (ej : E) = Fj [v(e1), . . . , v(en)](8)

(same Fj for P1, . . . Pm, P ; i = 1, . . . ,m; j = 1, . . . , n; (F1, . . . , Fn): Rn
++

→ Γn). The “overall” scale value is also obtained by accumulation:

(9) v(ej) = G[v1(ej), . . . , vm(ej)]
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with the same G : Rm
++ → R++(= ]0,∞[) for all j.

We suppose that for all xij ∈ R++ there exist ej with xij = vi(ej)
(n-nonatomicity). From (8), (9), (6), (7) we get a system of functional
equations and inequalities:

(10)

Fj [G(x11, . . . , xm1), . . . , G(x1n, . . . , xmn)]

= Hj [F1(x11, . . . , x1n), . . . , Fn(x11, . . . , x1n), . . . ,

F1(xm1, . . . , xmn), . . . , Fn(xm1, . . . , xmn)]

(in vector form we get the generalized bisymmetry equation, see Section 6,

F[G(x11, . . . , xm1), . . . , G(x1n, . . . , xmn)]

= H[F(x11, . . . , x1n), . . . ,F(xm1, . . . , xmn)];

F = (F1, . . . , Fn), H = (H1, . . . ,Hn)). We list also the consequences of
F : Rn

++ → Γn, H : Γm
n → Γn.

∑

j

Fj = 1,(11)

0 < Fj < 1,(12)
∑

j

Hj = 1,(13)

0 < Hj < 1.(14)

The scales are ratio scales (i.e. (7), (8), (9) are invariant – really:
covariant – under linear transformations). So there exist M , N such that

G(α1y1, . . . , αmym) = M(α1, . . . , αm)G(y1, . . . , ym)(15)

Fj(αz1, . . . , αzn) = N(α)Fj(z1, . . . , zn) (j = 1, . . . , n)(16)

(since there is just one scale in each Fj but m scales in G). From (11) and
(16), N(α) ≡ 1 and so

(17) Fj(αz1, . . . , αzn) = Fj(z1, . . . , zn) (j = 1, . . . , n)

Z. Moszner determined the general solution of (10)–(16) (or –(17)) by
an abstract construction; the result seems too general for applications.
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A.A.J. Marley wanted to characterize Luce’s choice model
(R.D. Luce, 1959, 1977), where

P (ej : E) =
v(ej)∑
k v(ek)

, Pi(ej : E) =
vi(ej)∑
k vi(ek)

, v(ej) =
∏

i

vi(ej)ai

(∑

i

ai = 1; ai > 0, i = 1, . . . , m; j, k = 1, . . . , n

)
,

and
P (ej : E) =

∏

i

Pi(ej : E)ai
/ ∑

k

∏

i

Pi(ek : E)ai ,

that is,

(18)





Fj(z1, . . . , zn) =
zj∑
k zk

, G(y1, . . . , ym) =
∏

i

yai
i

(∑

i

ai = 1; ai > 0

)
,

Hj(x11, . . . , x1n, . . . , xm1, . . . , xmn) =

∏
i xai

ij∑
k

∏
i xai

ik

,

or its generalization

(19)

Fj(z1, . . . , zn) =
zγ
j∑

k zγ
k

, G(y1, . . . , yn) =
∏

i

yai
i ,

Hj(x11, . . . , xmn) =

∏
i xai

ij∑
k

∏
i xai

ik

For this (6)–(9) are not enough by far . So we required also that new
‘scales’, depending on probabilities P1, . . . , Pm,

(20) v̄(ej : E) = Φ[P1(ej : E), . . . , Pm(ej : E)]

satisfy (8), that is,

(21) P (ej : E) = Fj(v̄(ei : E), . . . , v̄(en : E))
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(same Fj as in (7), (8)). Thus

P (ej : E) = Fj(Φ[P1(e1 : E), . . . , Pm(e1 : E)], . . . ,

Φ[P1(en : E), . . . , Pm(en : E)]),

Fj [G(x11, . . . , xm1), . . . , G(x1n, . . . , xmn)]

= Fj(Φ[F1(x11, . . . , x1n), . . . , F1(xm1, . . . , xmn)], . . .(22)

. . . , Φ[Fn(x11, . . . x1n), . . . , Fn(xm1, . . . , xmn)]).

An even stronger supposition is Φ = G (the Φ in (20) is the same as G in
(9)). We have also regularity conditions: If G is bounded locally (= in a
neighbourhood) then, from (15), G(y11, . . . , ym) = b

∏
i yai

i . If G is strictly
monotonic in each variable and

G(y, . . . , y) = y(23)

then, as in (18),

G(y1, . . . , ym) =
∏

i

yai
i

(∑

i

ai = 1, ai > 0

)
.(24)

From (17)

(25) Fj(z1, . . . , zn) = fj

(
z1∑
k zk

, . . . ,
zn∑
k zk

)
.

Here f = (f1, . . . , fn) : Γn → Γn. Suppose this is injective: f(t) = f(u) ⇒
t = u (t,u ∈ Γn); then (22) is equivalent to

G(x1j , . . . , xmj)∑
k G(x1k, . . . , xmk)

=
Φ[Fj(x11, . . . , x1n), . . . , Fj(xm1, . . . , xmn)]∑
k Φ[Fk(x11, . . . , x1n), . . . , Fk(xm1, . . . , xmn)]

.

Put xi` = x` (i = 1, . . . ,m; ` = 1, . . . , n), ϕ(x) = Φ(x, . . . , x) then,
by (23),

xj∑
k xk

=
ϕ[Fj(x1, . . . , xn)]∑
k ϕ[Fk(x1, . . . , xn)]

.
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There are still many solutions.
Under the additional condition Φ = G we get ϕ(x) = x and, by (11)

(
∑

k Fk = 1):

Fj(x1, . . . , xn) =
xj∑
k xk

(j = 1, . . . , n).

Thus, with

G(y1, . . . , ym) =
m∏

i=1

yai
i

(∑

i

ai = 1, ai > 0

)
,(24)

we have characterized the Luce choice model (18) (the form of Hj follows
by substitution into (10))

So: think of all relevant conditions (or of as many as you can).
If an unwanted solution (for instance (I2) in Example 1a, space percep-
tion) cannot be eliminated, maybe a condition (ψ-shift invariance) is not
sufficiently relevant.

5. Reduction of the number of variables and of unknown functions.

Some reductions are quite easy. Consider the following (see e.g. Aczél,
1966).

Example 5. The simplest problem of classical (naive) dimensio-

nal analysis, independent ratio scales for the independent variables
(xk 7→ rkxk; k = 1, 2, . . . , n) resulting in ratio scales for the dependent
variable (u 7→ Ru), gives the functional equation

(26) u(r1x1, r2x2, . . . , rnxn) = R(r1, r2, . . . , rn)u(x1, x2, . . . , xn)

(the domain for r1, r2, . . . , rn, x1, x2, . . . , xn is, say, the set R++ of positive
reals). The number of unknown functions is easily reduced.

Substitute x1 = · · · = xn = 1. With u(1, . . . , 1) = a we get

(27) u(r1, r2, . . . , rn) = aR(r1, r2, . . . , rn).

By the nature of the problem, u is positive, so a = u(1, 1, . . . , 1) > 0.
Thus (26) with (27) yields

(28) R(r1x1, r2x2, . . . , rnxn) = R(r1, r2, . . . , rn)R(x1, x2, . . . , xn)
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which contains only one unknown function (though the “wrong” one, R,
but then (27) will give u in which we are interested). The number of
variables can also be reduced simply: Put into (28) x1 = r2 = r3 = · · · =
rn = 1 and get

R(r1, x2, . . . , xn) = R(r1, 1, . . . , 1)R(1, x2, . . . , xn)

and, by repeating the process,

R(r1, r2, . . . , rn)

= R(r1, 1, . . . , 1)R(1, r2, 1, . . . , 1) . . . R(1, . . . , 1, rn)

= R1(r1)R2(r2) . . . Rn(rn).

From (28) we see also that

Rk(rkxk) = Rk(rk)Rk(xk) (k = 1, . . . , n).

If we know, for example, that u is increasing (not necessarily strictly)
in each variable then we get (for instance by reduction to (5))

Rk(rk) = rck

k , R(r1, r2, . . . , rn) = rc1
1 rc2

2 · · · rcn
n ,

and
u(x1, . . . , xn) = axc1

1 xc2
2 · · ·xcn

n ,

with constant ck ≥ 0 (k = 1, . . . , n) as the general increasing solution
of (26). So some reductions can be safely done.

6. Interpretation after solution. Art of the possible. Can we do

better?

Example 6. Consistent aggregation (for instance of inputs of mate-
rial, capital, labor and output of products in economics, or two-way average
of averages per subjects and per number of repetitions of responses, say
reaction times, to stimuli in psychology) means that aggregates of microe-
conomical (maximal) outputs depend only upon aggregates of microeco-
nomical inputs through a macroeconomical relation (production function).
This, see Table 2, is equivalent to the functional equation of rectangular
(m× n) generalized bisymmetry

(Bmn)
G(F1(x11, . . . , x1n), . . . , Fm(xm1, . . . , xmn))

= F (G1(x11, . . . , xm1), . . . , Gn(x1n, . . . , xmn)).



264 János Aczél

Producers Inputs (goods and serices) (Maximal) outputs
1 · · · k · · · n (production functions)

1 x11 · · · x1k · · · x1n y1 = F1(x11, . . . , x1n)
..
.

..

.
..
.

..

.
..
.

j xj1 · · · xjk · · · xjn yj = Fj(xj1, . . . , xjn)
...

...
...

...
...

m xm1 · · · xmk · · · xmn ym = Fm(xm1, . . . , xmn)

agg- z1 = · · · zk = · · · zn = z = G(y1, . . . , ym) =
regates G1(x11, Gk(x1k, Gn(x1n, G(F1(x11, . . . , x1n),

. . . , xm1) . . . , xmk) . . . , xmn) . . . , Fm(xm1, . . . , xmn))
?
= y = F (z1, . . . , zn) =
F (G1(x11, . . . , xm1),
. . . , Gn(x1n, . . . , xmn))

Table 2
Consistent aggregation of inputs and outputs

Nevertheless, the two topics evolved from 1946 on up to now rather inde-
pendently, except for a “close encounter” in W.M. Gorman, 1968. In that
work the continuous and monotonic solutions of (Bm,n) have been deter-
mined through set theoretical – combinatorial arguments by reduction to
the functional equation

H(K(x, y), z) = L(x,M(y, z))

of generalized associativity. As another, maybe more appropriate starting
point one can find the equally well known functional equation of (2 × 2)
generalized bisymmetry

(B2,2) G(F1(x11, x12), F2(x21, x22)) = F (G1(x11, x21), G2(x12, x22)),

which is clearly the m = n = 2 case of (Bm,n). It seems natural to solve
(Bm,n) by using results on (B2,2) and applying induction with respect to
both m and n.

On the other hand, there is no compelling reason why inputs, outputs,
etc. have to be measured by money or other real valued measures. The
following result (J. Aczél and Gy. Maksa, 1996) describes the facts for
quite general sets, so one can take for instance the set consisting of each
and every input of j-th kind for the k-th producer as Xjk through which



What to do until (and when) the functional equationist arrives 265

xjk in (Bm,n) goes. We then specialize the result to continuous functions
on real intervals and give an interpretation.

The conditions under which we solve (Bm,n) are of the following types.
Injectivity: The equation F (s, z0

2 , . . . , z0
n) = y has at most one solution s;

similar requirements for the second, third, . . . variable and for G. Sur-
jectivity: The equation Fj(tj , u0

2, . . . , u0
n) = yj has at least one solution

tj (j = 1, . . . ,m); similarly for the second, third, . . . variable and for Gk

(k = 1, . . . , n). (Injectivity and surjectivity together is bijectivity). Under
such conditions the solutions of (Bm,n) are of the form

y = F (z1, . . . , zn) = ϕ−1(α1(z1) + · · ·+ αn(zn)),(P )

z = G(y1, . . . , ym) = ϕ−1(γ1(y1) + · · ·+ γm(ym)),(A)

yj = Fj(xj1, . . . , xjn) = γ−1
j (βj1(xj1) + · · ·+ βjn(xjn))(Pj)

(j = 1, . . . , m),

zk = Gk(x1k, . . . , xmk) = α−1
k (β1k(x1k) + · · ·+ βmk(xmk))(Ak)

(k = 1, . . . , n).

Here the βjk are surjections, the αk, γj and ϕ are bijections, and + is
an abelian group operation (commutative, associative and there exist unit
and inverse elements). If the underlying sets are real intervals and F , G,
Gk are continuous then + is the usual addition of real numbers and ϕ, ak,
γj , βjk are also continuous (j = 1, . . . , m; k = 1, . . . , n).

A possible interpretation of (A) and (Ak) is the following. The inputs
xjk and the outputs yj are “rightly” measured by βjk(xjk) and by γj(yj),
respectively (j = 1, . . . ,m; k = 1, . . . , n). Then aggregation is by addition
resulting in

αk(zk) = β1k(x1k) + · · ·+ βmk(xmk) (k = 1, . . . , n)

and

ϕ(z) = γ1(y1) + · · ·+ γm(yn).

We give as examples the CD (Cobb–Douglas) production functions,
defined by

(CD) F (z1, . . . , zn) = azc1
1 zc2

2 · · · zcn
n (a, c1, . . . , cn > 0 const.)
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on ]0,∞[n = Rn
++, and the CES (Constant Elasticity of Substitution)

production functions, defined by

(CES)
F (z1, . . . , zn) = (c1z

b
1 + · · ·+ cnzb

n)1/b

(c1, . . . , cn > 0, b 6= 0 const.),

which can be extended to

(CES)

F (z1, . . . , zn) = ϕ−1
b (c1ϕb(z1) + · · ·+ cnϕb(zn))

(
ϕb(z) =

{ |z|b sign z (z 6= 0)

0 (z = 0)

)

on Rn. Surprisingly, these are incompatible with aggregation by addition
(except for b = 1) but compatible with aggregation by multiplication or by

Gk(x1k, . . . , xmk) = (xb
1k + · · ·+ xb

mk)1/b,

respectively (meaning inputs should “rightly” be measured by log xjk or
xb

jk, outputs by log yj or yb
j , respectively!).

Representativity: Can aggregates be considered as a (fictive) represen-
tative “producer”’s inputs and outputs connected by a “macroeconomical”
production function F “of the same form” as the “microeconomical” ones
F1, . . . , Fm? Yes and no: F (z1, . . . , zn) = ϕ−1(α1(z1) + · · · + αn(zn)) is
“of similar structure” as Fj(u1, . . . , un) = γ−1

j (βj1(u1) + · · · + βjn(un))
(j = 1, . . . , n) but ϕ, αk can be chosen independently of γj , βj1, . . . , βjn.
E.g. the aggregate of CES (CD) producers need not have CES (CD) pro-
duction functions.

The surjectivity and injectivity conditions in the above results im-
ply overall bijectivity in the following sense. For any fixed z0

2 , . . . , z0
n, the

equation F (s, z0
2 , . . . , z0

n) = y has exactly one solution s in the domain Z1

for the first variable in F , for each y in the codomain (set of values) T

of F , all variables considered and the same holds for the second, third,
. . . variable for the same T . This is satisfied for (CD) but not for (CES)
on Rn

++. It is satisfied for the extended (CES) functions on Rn. On real
intervals, however, we had the additional condition of continuity . The
(CES) functions are continuous on Rn if b > 0 but not if b < 0. Even for
b < 0 they are continuous on Rn

++ but, as just said, not bijective in the
above sense. Not long ago weaker conditions have been found (J. Aczél,
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Gy. Maksa, and M.A. Taylor, 1997), which are satisfied also by the
(CES) functions but still guarantee the above result (notice that (CES) is
of the form (P )). They require the functions to be continuous on subin-
tervals (like the subinterval R++ of R) and that the sets of function values
on the subintervals assigned to different variables have points in common
(they are not supposed to be the same anymore).

Furthermore, we were able to weaken the surjectivity conditions for
general sets (in particular for real intervals) also in that sense that we
require only that they hold for certain fixed values of the variables and for
certain fixed function values.

However, even these weakened surjectivity conditions exclude such
simple and important aggregation functions as the arithmetic mean
G1(x1, . . . , xm) = (x1 + · · · + xm)/m on Rm

++. Gy. Maksa (1998) re-
cently achieved a result where no surjectivity condition has been assumed
at all. It thus holds also for arithmetic means and, more generally, quasi-
linear means

G1(x1, . . . , xm) = g−1(q1g(x1) + · · ·+ qmg(xm))
(

qj > 0; j = 1, . . . , m;
m∑

j=1

qj = 1
)

,

which are rather important in some applications.

Moral: if you obtain results under conditions which exclude some
applications, try harder. Not that one always succeeds. Sometimes it
can be shown that the suppositions cannot be further reduced, at other
times one just is not able to do so (yet).

Example 7. R.D. Luce was led in the quest for conditions under which
measuring the utility of gains (losses) via risky or riskless choices, gains
(losses) alone or trade-offs between gains and losses to several functional
equations among which

(29)
f−1[f(x) + f(y)− f(x)f(y)]z

= f−1[f(xz) + f(yP (x, z))− f(xz)f(yP (x, z))]

(x, y ∈ [0, 1[, z ∈ [0, 1], f : [0, 1[ → [0, 1[ (strictly increasing, onto),
P : [0, 1[×[0, 1] → [0, 1]) proved to be the most difficult nut to crack.
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Actually we (J. Aczél R.D. Luce, and Gy. Maksa, 1996) could solve
(29) only under the supposition that f is differentiable with nonzero de-
rivative on ]0, 1[. This was so much the more annoying since we already
determined P without any differentiability assumption: It satisfies the
functional equation

(30) P (x, zw) = P (x, z)P (xz, w) (x ∈ [0, 1[, z, w ∈ [0, 1])

and the solution is

(31) P (x, z) =
g(x)
g(xz)

(x ∈ ]0, 1[, z ∈ ]0, 1]), P (x, 0) = 0, P (0, z) = z.

This was not quite easy either (the main difficulty was caused by the fact
that x = 1 is not in the domain of (30)). What we needed differentiability
for is the equation

h

(
y

g(x)
g(xz)

)
=

h[H(x, y)z]
h(xz)

,

(h(x) = 1− f(x), H(x, y) = h−1[h(x)h(y)]; x, y ∈ [0, 1[, z ∈ [0, 1]), result-
ing from (29) and (31). Under this condition the general solution of (29)
is

(32) f(x) = 1− (1− xb)a and thus P (x, z) = z
(1− xb)1/b

(1− xbzb)1/b

(a, b arbitrary positive constants). We conjecture that the solution is
the same if instead of differentiability only continuity of f is supposed
(in addition to strict monotonicity) but could not prove it, no matter how
hard we tried. This shows that weakening the conditions may not be

easy or even possible.

7. Wrangling differentiability out of weaker conditions. Actually there
exist several methods for deriving differentiability from weaker conditions.
(Unfortunately, none we know could be applied to the previous example.)
We apply one to the Cauchy equation (1):

Example 2a. The basic Cauchy equation

(1) g(x + y) = g(x) + g(y) (x, y ∈ R)
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is very easy to solve if we know that g is differentiable on a (no matter
how small) proper interval [a, b] (b > a). First, g will then be differentiable
also on [0, b − a] = [0, d]. Indeed, (1) implies g(x) = g(x + a) − g(a) so,
if x ∈ [0, b − a], then x + a is in [a, b], where g is differentiable, thus
g is differentiable also on [0, b − a] = [0, d]. From this we get that g is
everywhere differentiable, by repeated application of

g(x + d) = g(x) + g(d) and g(t− d) = g(t)− g(d).

If, however, g is everywhere differentiable then we simply differentiate (1)
with respect to x:

g′(x + y) = g′(x), that is, g′(x) = constant = c, g(x) = cx + C.

Substituting this into (1) we get C = 0, that is,

(2) g(x) = cx

as the general differentiable solution of (1).
For (1) and many other functional equations, differentiability can be

obtained from much weaker conditions (see, for instance, M. Kac, 1937
and J. Aczél, 1966). One such condition is local integrability on a (small)
interval [a, b] (b > a). By an argument similar to that given above, integra-
bility everywhere follows. We do not go here into the definition of Lebesgue
integrability which is more general than Riemann integrability. The only
property of locally integrable functions which we will need is that their
antiderivatives

GA(x) =
∫ x

A

g(t)dt

are continuous. If g is continuous then GA(x) is differentiable in x for
all A.

So, for locally integrable g, this time we integrate (1) with respect to
y from a to b (> a).

∫ b

a

g(x + y)dy = g(x)(b− a) +
∫ b

a

g(y)dy.
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The last term is a constant, say B. Introducing the new variable t = x+ y

we get

g(x) =
1

b− a

(∫ x+b

x+a

g(t)dt + B

)

=
1

b− a
(GA(x + b)−GA(x + a) + B) .

Since g is integrable, the right hand side is continuous, so also the left hand
side, which is g(x). But for continuous g, the right hand side is differen-
tiable, so also g(x) on the left. Now we can apply the above argument to
get (2) as the general integrable solution of (1).

This method has been applied recently with surprising efficiency to
the following problem.

Example 8. R.D. Luce (1998) reduced the search for all utility mea-

sures over binary gambles that are both additive and separable to the
task of solving the functional equation (done in J. Aczél, R. Ger, and
A. Járai, 1998)

(33) f(v) = f(vw) + f [vQ(w)] (v ∈ [0, k[, w ∈ [0, 1]).

It is natural for the problem to suppose f to be strictly increasing ,
f(0) = 0, f(1) = 1. Somewhat less natural is the condition that Q is
strictly decreasing , Q(0) = 1, Q(1) = 0 and even less so (though tolerable)
that both f and Q map their domain onto intervals (f onto a [0,K[, Q

onto [0, 1]) so they are continuous. It is certainly not natural to suppose
f and Q to be differentiable (compare example 7) but it sure makes the
solution easy:

Differentiate (33) with respect to v or w and get

f ′(v) = wf ′(vw) + Q(w)f ′[vQ(w)],

0 = vf ′(vw′) + vQ′(w)f ′[vQ(w)],

respectively. We multiply the first equation by Q′(w), the second by
Q(w)/v and subtract in order to obtain, with

H(w) =
Q′(w)

wQ′(w)−Q(w)



What to do until (and when) the functional equationist arrives 271

(it is easy to show that the denominator cannot be 0 under the conditions of
our problem), the so called Pexider equation (generalization of an analogue
of (1) and (5))

f ′(vw) = f ′(v)H(w) (v ∈ [0, k[, w ∈ [0, 1]).

On this domain and under weak conditions easily satisfied in this case, the
general solution is

f ′(v) = AvB , so f(v) = avβ + c.

(We are not interested in H or in the constant or logarithmic solutions f

or in those with β < 0; these are not nonnegative or not strictly increasing;
thus we exclude a = 0 and β ≤ 0; otherwise β is arbitrary). Now, if we
wish, f(0) = 0 and f(1) = 1 give c = 0 and a = 1. Using also (33), we
have as general solution (β > 0)

(34) f(v) = vβ , Q(w) = (1− wβ)1/β (v ∈ [0, k[, w ∈ [0, 1])

What if we do not have differentiability? By an argument similar
to but more sophisticated than that in Example 2a, weak conditions like
continuity (with f nonconstant on ]0, k[) guarantee that the function F

defined by

(35) F (u) =
1
u

∫ u

0

f(t)dt (u 6= 0), F (0) = 0,

is continuously differentiable (the integration in (35) does the “smoothing”)
with F ′ > 0. From (33) we get by integration

F (u) =
1
u

∫ u

0

f(v)dv =
1
u

∫ u

0

f(vw)dv +
1
u

∫ u

0

f [vQ(w)]dv

=
1

uw

∫ uw

0

f(s)ds +
1

uQ(w)

∫ uQ(w)

0

f(t)dt

= F (uw) + F [uQ(w)]

(we substituted s = vw, t = vQ(w)) for u > 0, w > 0 but by continuity
also at u = 0, and/or w = 0. Comparison to (33) furnishes the surprise
that F satisfies the same equation as f but F is differentiable, so the above
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differentiating method gives us F (u) = auβ + c. Moreover, since the limit
of F at 0 is 0, we have c = 0 and β > 0. Now from (35)

f(v) =
d

dv
[vF (v)] =

d

dv
[avβ+1] = a(β + 1)vβ = αvβ .

If also f(1) = 1 is supposed, then we get (34) again.
The miracles do not stop even here: also monotonicity and continuity

follow from the nonnegativity of the function values, which is thus the only
supposition we need for the solution of the functional equation (33), a very
obvious and weak assumption indeed. We do not go into the somewhat
intricate details, only point out that, since vw ≤ v for w ∈ [0, 1] and
f ≥ 0, equation (33) instantly yields f(v) ≥ f(vw), that is, f is increasing
(though not yet strictly).

The message here is the flip side of that in Example 7: Weakening
the conditions may be possible, even if difficult: if you don’t suc-
ceed first, keep trying. “Smoothing” methods are particularly effective
(but not effective enough for Example 7).

Moreover, while there are some broad ideas applicable to several classes
of functional equations, even these may need essential modifications for
individual equations. Compare, for instance, the methods applied in Ex-
amples 2a and 8.

8. There seems to be a widespread disdain for exact conditions and
proofs, mainly among appliers of mathematics to fields other than mea-
surement theory, mathematical psychology and mathematical economics.
However, if a result is used under the wrong conditions, which do not hold
(or we do not know whether they hold) in that situation, trouble lurks,
up to bridges and mine shafts collapsing. In more theoretical fields of en-
deavor it just leads to bad science. For instance, in example 7, the fast
way to “solve”

(30) P (x, zw) = P (x, z)P (xz, w) (x ∈ [0, 1[; z, w ∈ [0, 1]),

and getting the desired (31), P (v, w) = g(v)/g(vw), would be to substitute
x = 1, g(v) = 1/P (1, v) – except that (30) is not (supposed to be) valid for
x = 1. So what? “the goal justifies the means”. Well, the final result is

(32) P (x, v) = v
(1− xb)1/b

(1− xbvb)1/b
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(b > 0) and substituting here x = 1, g(v) = 1/P (1, v) would give the
absurd g(v) = ∞ for all v, hardly a confidence generating process (the
importance of domains also shows again).

This leads to the role of proofs, which some in applications really
find annoying, tedious and/or superfluous. Well, no matter how much
experimental evidence we have, we know that a statement is true

only when we have proved it. Moreover, by analyzing proofs we

can check which conditions were really needed (if a condition is not
used in the proof, dispose of it) thus possibly weakening the suppositions
and making the results more widely applicable.

But this can be done after the functional equationist arrived . . .
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[15] M. Kac, Une remarque sur les équations fonctionnelles, Commentarii Mathematici
Helvetici 9 (1937), 170–171.

[16] R. D. Luce, Individual Choice Behavior, Wiley, New York, 1959.

[17] R. D. Luce, The choice axiom after twenty years, Journal of Mathematical Psy-
chology 15 (1977), 215–233.

[18] R. D. Luce, Coalescing event commutativity and theories of utility, Journal of
Risk and Uncertainty (1998).

[19] R. K. Luneburg, Mathematical Analysis of Binocular Vision, Princeton Univer-
sity Press, Princeton, 1947.

[20] Gy. Maksa, Solution of generalized bisymmetry type equations without surjectiv-
ity assumptions, Aequationes Mathematicae (1998).
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