Translation equation and some new geometries

By W. BENZ (Hamburg)
Dedicated to his friend Zoltán Daróczy
on the occasion of his 60th birthday

Abstract

All translation groups T with an axis which satisfy the translation equation over a (left) vector space X are determined. The group $\{T \cup L\}$ generated by T and a group L of bijective linear transformations of X leads to a geometry ($X,\{T \cup L\}$) which in most cases turns out to be new. However, euclidean and hyperbolic geometries may be constructed this way.

1. It is well-known that the group $I(n, \mathbb{R})$ of euclidean isometries of \mathbb{R}^{n} is the product of the orthogonal group $O(n, \mathbb{R})$ and of $\left(\mathbb{R}^{n},+\right)$. If $e \neq 0$ is a fixed element of \mathbb{R}^{n} and if T^{n} is the group of translations of the form $x \rightarrow x+t e$ with $t \in \mathbb{R}$, then already

$$
\begin{equation*}
O(n, \mathbb{R}) \cup T^{n} \tag{1}
\end{equation*}
$$

generates $I(n, \mathbb{R})$.
The idea now, we would like to propose in this note, is to replace T^{n} in (1) by a suitable group T of bijections

$$
x \rightarrow T(x, t), \quad t \in \mathbb{R},
$$

[^0]of \mathbb{R}^{n} satisfying the translation equation (see J. Aczél [1], pp. 245-253)
$$
T(x, t+s)=T(T(x, t), s)
$$
with $x \in \mathbb{R}^{n}$ and real t and s. The geometry
\[

$$
\begin{equation*}
\left(\mathbb{R}^{n},\{O(n, \mathbb{R}) \cup T\}\right) \tag{2}
\end{equation*}
$$

\]

(and also generalizations, see Section 2) then will be of interest, where $\{K\}$ denotes (see [3], p. 10) the group generated by K. For many details of a theory of geometries (S, G), where G is a group of permutations of the set $S \neq \emptyset$, and for many connections of this theory with functional equations, see W. Benz [2]. In Section 2 we will prove a theorem which characterizes a reasonable large class of groups T useful for the definition of new geometries, and, on the other hand, not too far away from the classical case. In Section 3 we will show that a certain group T even leads to n-dimensional hyperbolic geometry. By means of some non-trivial entire Cremona transformations we define in Section 4 a concrete example of a new geometry (2). This geometry is a Cremona geometry in the sense of [2], p. 271. Some general statements about geometries (2) in the case of our translation groups T are also included in Section 4. An open problem will finally be posed.
2. Suppose that X is a (left) vector space over a (commutative or noncommutative) field F of (finite or infinite) dimension $\operatorname{dim}_{F} X$ at least 2 . Let

$$
T: F \rightarrow \operatorname{Perm} X
$$

be a mapping of F into the group of all permutations of X, and let $e \neq 0$ be a fixed element of X. We will call T a translation group of X with axis (or direction) e if, and only if, the following properties hold true.
(i) $T_{t+s}=T_{t} \cdot T_{s}$ for all $t, s \in F$.
(ii) For all $x, y \in X$ satisfying $y-x \in F e$ there exists exactly one $t \in F$ with $T_{t}(x)=y$.
(iii) $T_{t}(x)-x$ is in Fe for all $x \in X$ and all $t \in F$.

Here T_{t} designates the image of $t \in F$ under T, and $T_{t}(x)$ denotes the image of $x \in X$ under the permutation T_{t} of X. Property (i) is the translation equation.

If we put

$$
\begin{equation*}
T_{t}(x):=x+t e \tag{3}
\end{equation*}
$$

we obviously get the classical example of a translation group with axis $e \neq 0$.
Other examples in \mathbb{R}^{2} with axis $(1,0)$ are

$$
T_{t}\left(x_{1}, x_{2}\right)= \begin{cases}\left(x_{1}+t, x_{2}\right) & \text { for } x_{2} \neq 0 \\ \left(x_{1}-t, x_{2}\right) & \text { for } x_{2}=0\end{cases}
$$

or

$$
T_{t}\left(x_{1}, x_{2}\right)=\left(\left(\sqrt[3]{x_{1}}+t\right)^{3}, x_{2}\right)
$$

Theorem 1. Let H be a maximal subspace of X with

$$
H \oplus F e=X
$$

and let $\varrho: H \times F \rightarrow F$ satisfy
For all $h \in H$ and $\xi \in F$ there exists exactly one $t=t(h, \xi)$ in F with $\varrho(h, t)=\xi$.

Then for all $h \in H$ and all $t, \tau \in F$

$$
\begin{equation*}
T_{t}(h+\varrho(h, \tau) e):=h+\varrho(h, \tau+t) e \tag{4}
\end{equation*}
$$

defines a translation group of X with axis e. There are no other such groups.

Remark. If we define $\varrho(h, t):=t$ for $h \in H$ and $t \in F$, then, obviously, we get the classical case.

Theorem 1 consists of two statements. Concerning the first part we have to show that (4) leads to a translation group with axis e. We observe that for $x \in X$

$$
x=h+t e \quad \text { with } h \in H \text { and } t \in F
$$

implies that $h \in H$ and $t \in F$ are uniquely determined since $H \oplus F e$ is a direct sum. First of all we have to show that T_{t} must be a bijection of X for every given $t \in F$. Suppose that

$$
x=h_{1}+\varrho\left(h_{1}, \tau\right) e, \quad y=h_{2}+\varrho\left(h_{2}, \sigma\right) e
$$

hold true together with $T_{t}(x)=T_{t}(y)$ for $h_{1}, h_{2} \in H$ and $\tau, \sigma \in F$. Then

$$
h_{1}+\varrho\left(h_{1}, \tau+t\right) e=h_{2}+\varrho\left(h_{2}, \sigma+t\right) e
$$

yields $h_{1}=h_{2}$ and hence $\tau+t=\sigma+t$ with $(*)$, i.e. $x=y$. The mapping T_{t} must thus be injective. It is also surjective: let

$$
y=h_{2}+\varrho\left(h_{2}, \sigma\right) e
$$

be given. We have to solve $T_{t}(x)=y$ with respect to x. If there exists such an

$$
x=h_{1}+\varrho\left(h_{1}, \tau\right) e,
$$

then (4) leads to

$$
h_{1}+\varrho\left(h_{1}, \tau+t\right) e=h_{2}+\varrho\left(h_{2}, \sigma\right) e,
$$

i.e. to $h_{1}=h_{2}$ and hence to $\tau=\sigma-t$. On the other hand we have

$$
T_{t}\left(h_{2}+\varrho\left(h_{2}, \sigma-t\right) e\right)=h_{2}+\varrho\left(h_{2}, \sigma\right) e,
$$

in view of (4).
In order now to prove

$$
T_{t+s}(x)=T_{t}\left(T_{s}(x)\right)
$$

for all $x \in X$ and all $t, s \in F$, we put

$$
x=: h+\xi e \quad \text { with } h \in H \text { and } \xi \in F .
$$

Then

$$
T_{s}(x)=h+\varrho(h, \tau+s) e
$$

if $\tau \in F$ satisfies $\varrho(h, \tau)=\xi$. Hence

$$
T_{t}\left(T_{s}(x)\right)=h+\varrho(h, \tau+s+t) e,
$$

on account of (4). But

$$
T_{t+s}(x+\varrho(h, \tau) e)
$$

is also equal to $h+\varrho(h, \tau+t+s) e$, in view of (4). The translation equation is thus satisfied.

In order to prove (ii) we put

$$
x=h_{1}+\xi e \quad \text { and } \quad y=h_{2}+\eta e
$$

with $h_{1}, h_{2} \in H$ and $\xi, \eta \in F$. Now

$$
y-x \in F e
$$

implies $h_{1}=h_{2}=: h$. With

$$
\xi=\varrho(h, \tau) \quad \text { and } \quad \eta=\varrho(h, \sigma)
$$

for uniquely determined $\tau, \sigma \in F$, then

$$
h+\varrho(h, \sigma) e=y=T_{t}(x)=h+\varrho(h, \tau+t) e
$$

leads to $\varrho(h, \sigma)=\varrho(h, \tau+t)$, i.e. to the unique solution $t=\sigma-\tau$, because of (*). Property (iii) follows immediately from (4).

The other part of the proof of Theorem 1 is to show that a translation group of X with axis $e \neq 0$ can be represented by equation (4) with a function ϱ satisfying $(*)$. So suppose that H is a direct summand of $F e$. If $h \in H$ and $t \in F$, we define

$$
\begin{equation*}
\varrho(h, t) e:=T_{t}(h)-h \tag{5}
\end{equation*}
$$

by observing (iii). In order to prove (*), assume that $h \in H$ and $\xi \in F$ are given. Put $y:=h+\xi e$. Since $y-h \in F e$, (ii) yields that there is exactly one $t \in F$ with $T_{t}(h)=y$. Hence

$$
\varrho(h, t) e=T_{t}(h)-h=y-h=\xi e .
$$

Assume, furthermore, $\varrho\left(h, t^{\prime}\right)=\xi$ with $t^{\prime} \in F$. Then

$$
T_{t^{\prime}}(h)-h=\varrho\left(h, t^{\prime}\right) e=\xi e,
$$

i.e. $T_{t}(h)=h+\xi e=T_{t^{\prime}}(h)$, i.e. $t^{\prime}=t$ in view of (ii).

Finally we must prove equation (4). In order to do this we will apply definition (5) two times:

$$
T_{t}(h+\varrho(h, \tau) e)=T_{t} T_{\tau}(h)=T_{t+\tau}(h)=h+\varrho(h, t+\tau) e .
$$

This finishes the proof of Theorem 1.

Remarks. a) Instead of (4) we also may write

$$
\begin{equation*}
T_{t}(x)=x+[\varrho(h, \tau+t)-\varrho(h, \tau)] e \tag{6}
\end{equation*}
$$

in the case that $x=h+\varrho(h, \tau) e$ with $h \in H$ and $\tau \in F$.
b) Let $\tau: H \rightarrow F$ be an arbitrary function and let $\varrho: H \times H \rightarrow F$ satisfy (*). Then also

$$
\varrho^{\prime}(h, t):=\varrho(h, \tau(h)+t)
$$

satisfies (*), and ϱ and ϱ^{\prime} define, according to (4), the same mapping $T: F \rightarrow$ Perm X.

If we define $\tau(h)$ by $\varrho(h, \tau(h))=0$, then for all $h \in H$

$$
\varrho^{\prime}(h, 0)=\varrho(h, \tau(h)+0)=0 .
$$

In addition to (*) we hence may assume, without loss of generality, that also $\varrho(h, 0)=0$ holds true for all $h \in H$.
c) We already were speaking of a group in connection with the mapping $T: F \rightarrow$ Perm X. But, obviously, T is an abelian group, isomorphic to the additive group of the field F : since $T_{0}(x)=x$ for all $x \in X$ in view of (6), T_{0} is the identity element of T. If T_{t} were equal to $T_{t^{\prime}}$ for $t \neq t^{\prime}$ we would get a contradiction to $(*)$, namely

$$
\varrho(h, \tau+t)=\varrho\left(h, \tau+t^{\prime}\right),
$$

and this from (6) for all $h \in H$ and $\tau \in F$.
The general definition of a new geometry in our context is now as follows. We still would like to work with our vector space X as already introduced. Let L be a group of bijective and linear mappings of X and let T be a group of translations of X with a given axis $e \neq 0$. Then the geometry

$$
\begin{equation*}
(X,\{L \cup T\}) \tag{7}
\end{equation*}
$$

in the sense of [2], chapter 1, is of interest. If we assume that L acts transitively on the set of lines through the origin $0 \in X$, then we get translation groups of the form

$$
\lambda T \lambda^{-1}, \quad \lambda \in L,
$$

for every line $F a$ with $0 \neq a \in X$. Given a geometry (7) the problem is to find invariants, invariant notions, defining invariants, and so on, of this geometry (see [2], chapter 1).
3. Suppose that our vector space X of Section 2 is now \mathbb{R}^{n}, n a positive integer. We put

$$
\begin{equation*}
e:=(1,0, \ldots, 0) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
H:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1}=0\right\} . \tag{9}
\end{equation*}
$$

We define

$$
\varrho\left(\left(0, x_{2}, \ldots, x_{n}\right), t\right):=\sinh t \cdot \sqrt{1+x_{2}^{2}+\ldots+x_{n}^{2}}
$$

Obviously, property $(*)$ is satisfied. We now would like to designate the corresponding translation group with axis e by Δ.

Theorem 2. The geometry

$$
\begin{equation*}
\left(\mathbb{R}^{n},\{O(n, \mathbb{R}) \cup \Delta\}\right) \tag{10}
\end{equation*}
$$

is isomorphic to the n-dimensional hyperbolic geometry.
Proof. In view of (4) we get

$$
T_{t}(x)=\left(x_{1} \cosh t+\sqrt{1+x^{2}} \sinh t, x_{2}, x_{3}, \ldots, x_{n}\right)
$$

written by means of the euclidean scalar product, i.e. with

$$
x^{2}=x_{1}^{2}+\ldots+x_{n}^{2} .
$$

Replacing

$$
x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
$$

by its Weierstraa coordinates

$$
\omega(x)=\left(x_{1}, \ldots, x_{n}, \sqrt{1+x^{2}}\right)
$$

we may write for $x \rightarrow T_{t}(x)$

$$
\omega(x) \rightarrow \omega(x) \cdot H(t)
$$

with the Lorentz boost

$$
H(t)=\left(\begin{array}{ccccc}
\cosh t & & & & \sinh t \\
& 1 & & & \\
& & \ddots & & \\
& & & 1 & \\
\sinh t & & & & \cosh t
\end{array}\right)
$$

which is represented as a $(n+1) \times(n+1)$-matrix. To an element of $O(n, \mathbb{R})$ we assign its induced Lorentz matrix. The group

$$
\{O(n, \mathbb{R}) \cup \Delta\}
$$

is then isomorphic to the group Π of all linear and orthochronous Lorentz transformations of \mathbb{R}^{n+1}. We hence get with this group isomorphism and with the mapping ω that (10) is isomorphic (see [2], p. 32) to the hyperbolic geometry (S, Π) with

$$
S=\left\{x \in \mathbb{R}^{n+1} \mid x_{n+1}=\sqrt{1+x_{1}^{2}+\ldots+x_{n}^{2}}\right\}
$$

and with Π as defined above (see [2], pp. 60-63).
4. We again would like to work with $X:=\mathbb{R}^{n}$ and with (8) and (9).

Put

$$
\varrho\left(\left(0, x_{2}, \ldots, x_{n}\right), t\right):=t \cdot\left(1+x_{2}^{2}+\ldots+x_{n}^{2}\right) .
$$

Property $(*)$ is then satisfied. In view of (4) we hence get

$$
T_{t}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}+t \cdot\left[1+x_{2}^{2}+\ldots+x_{n}^{2}\right], x_{2}, \ldots, x_{n}\right)
$$

These are entire Cremona transformations of \mathbb{R}^{n} for every $t \in \mathbb{R}$ and they are, obviously, in all cases $t \neq 0$ non-trivial examples of those transformations. It would be nice to draw up more intensively the corresponding geometry

$$
\begin{equation*}
\left(\mathbb{R}^{n},\{O(n, \mathbb{R}) \cup T\}\right) \tag{11}
\end{equation*}
$$

and to determine some of its defining invariants and invariant notions.
Suppose now that an arbitrary geometry (2) is given such that T is a translation group with axis (8) and with maximal subspace (9) according to Theorem 1. Denote by G^{n} the group

$$
\{O(n, \mathbb{R}) \cup T\} .
$$

Proposition 1. G^{n} acts transitively on \mathbb{R}^{n}.
Proof. Let $x \neq 0$ be an element of \mathbb{R}^{n}. We have to show that there exists γ in G^{n} with $\gamma(0)=x$. Since T acts transitively on the line $\mathbb{R} \cdot e$, in view of (ii), there exists

$$
\tau \in T<G^{n}
$$

with $\tau(0)=\|x\|$ e. Because of $\|\tau(0)\|=\|x\|$ there furthermore exists $\delta \in O(n, \mathbb{R})$ with

$$
\delta(\tau(0))=x
$$

Now put $\gamma:=\delta \tau$.
The stabilizer of G^{n} in 0 needs not to be the group $O(n, \mathbb{R})$ as in the classical case or in the hyperbolic case of Section 3. If we take for instance that example of the beginning of this section in the case $n=2$, then for

$$
\pi:=T_{-\frac{1}{\sqrt{2}}} \cdot R\left(-\frac{\pi}{2}\right) \cdot T_{-\frac{\sqrt{2}}{3}} \cdot R\left(\frac{\pi}{4}\right) \cdot T_{1}
$$

we have $\pi(0)=0$ and $\pi(1,0)=\left(\frac{1}{\sqrt{2}}, 0\right)$, and hence $\pi \notin O(2, \mathbb{R})$, where $R(\alpha)$ designates the rotation (in the positive sense) about 0 with angle α.

Proposition 2. Assume that the stabilizer of G^{n} in 0 is $O(n, \mathbb{R})$. Then to every $\gamma \in G^{n}$ there exist $\alpha, \beta \in O(n, \mathbb{R})$ and $\tau \in T$ with $\gamma=\alpha \tau \beta$.

Proof. Suppose that $\gamma(0)=a \neq 0$. Take α in $O(n, \mathbb{R})$ and $\tau \in T$ with $\alpha(\|a\| e)=a$ and $\tau(0)=\|a\| e$. Hence

$$
\tau^{-1} \alpha^{-1} \gamma(0)=0
$$

and thus $\beta:=\tau^{-1} \alpha^{-1} \gamma \in O(n, \mathbb{R})$.

Proposition 3. Suppose that

$$
\begin{equation*}
G^{n}=O(n, \mathbb{R}) \cdot T \cdot O(n, \mathbb{R}) . \tag{12}
\end{equation*}
$$

The stabilizer of G^{n} in 0 is then $O(n, \mathbb{R})$.
Proof. Assume that $\gamma(0)=0$ for $\gamma \in G^{n}$. Since γ is of the form $\alpha \tau \beta$ with $\tau \in T$ and α, β in $O(n, \mathbb{R})$, we get

$$
\tau \beta(0)=\alpha^{-1}(0),
$$

i.e. $\tau(0)=0$, i.e. $\tau=T_{0}$, in view of (ii). Hence $\gamma=\alpha \beta$ must be in $O(n, \mathbb{R})$.

Remark. In the case (12), the stabilizer of G^{n} in every $x \in \mathbb{R}^{n}$ must be, of course, isomorphic to $O(n, \mathbb{R})$, in view of Proposition 1.

The problem we finally would like to pose is the following. Given two functions ϱ_{1} and ϱ_{2} satisfying ($*$), and given their corresponding translation groups T_{1} and T_{2}. Find necessary and sufficient conditions in ϱ_{1} and ϱ_{2} such that the geometries

$$
\left(\mathbb{R}^{n},\left\{O(n, \mathbb{R}) \cup T_{i}\right\}\right), \quad i=1,2,
$$

are isomorphic.

References

[1] J. Aczél, Lectures on functional equations and their applications, Academic Press, New York, London, 1966.
[2] W. Benz, Real Geometries, BI-Wissenschaftsverlag, Leipzig, Wien, Zürich, 1994.
[3] M. Hall, The theory of groups, Chelsea Publ. Comp., New York, 1976.
W. BENZ

UNIVERSITY OF HAMBURG
DEPARTMENT OF MATHEMATICS
BUNDESSTR. 55
D-20146 HAMBURG
GERMANY
E-mail: benz@math.uni-hamburg.de

[^0]: Mathematics Subject Classification: 39B40, 39B50, 39B70, 51B99, 51M10, 51M99.
 Key words and phrases: translation equation, translation group, parameter group, geometry of a group acting on a set, hyperbolic geometry, Lorentz boosts, entire Cremona transformations.

