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Translation equation and some new geometries

By W. BENZ (Hamburg)

Dedicated to his friend Zoltán Daróczy
on the occasion of his 60th birthday

Abstract. All translation groups T with an axis which satisfy the translation
equation over a (left) vector space X are determined. The group {T ∪L} generated by
T and a group L of bijective linear transformations of X leads to a geometry (X, {T∪L})
which in most cases turns out to be new. However, euclidean and hyperbolic geometries
may be constructed this way.

1. It is well-known that the group I(n,R) of euclidean isometries of
Rn is the product of the orthogonal group O(n,R) and of (Rn, +). If e 6= 0
is a fixed element of Rn and if Tn is the group of translations of the form
x → x + te with t ∈ R, then already

(1) O(n,R) ∪ Tn

generates I(n,R).

The idea now, we would like to propose in this note, is to replace Tn

in (1) by a suitable group T of bijections

x → T (x, t), t ∈ R,
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of Rn satisfying the translation equation (see J. Aczél [1], pp. 245–253)

T (x, t + s) = T
(
T (x, t), s

)

with x ∈ Rn and real t and s. The geometry

(2)
(
Rn, {O(n,R) ∪ T}

)

(and also generalizations, see Section 2) then will be of interest, where
{K} denotes (see [3], p. 10) the group generated by K. For many details
of a theory of geometries (S,G), where G is a group of permutations of
the set S 6= ∅, and for many connections of this theory with functional
equations, see W. Benz [2]. In Section 2 we will prove a theorem which
characterizes a reasonable large class of groups T useful for the definition
of new geometries, and, on the other hand, not too far away from the
classical case. In Section 3 we will show that a certain group T even leads
to n-dimensional hyperbolic geometry. By means of some non-trivial entire
Cremona transformations we define in Section 4 a concrete example of a
new geometry (2). This geometry is a Cremona geometry in the sense
of [2], p. 271. Some general statements about geometries (2) in the case of
our translation groups T are also included in Section 4. An open problem
will finally be posed.

2. Suppose that X is a (left) vector space over a (commutative or non-
commutative) field F of (finite or infinite) dimension dimF X at least 2.
Let

T : F → PermX

be a mapping of F into the group of all permutations of X, and let e 6= 0
be a fixed element of X. We will call T a translation group of X with axis
(or direction) e if, and only if, the following properties hold true.

(i) Tt+s = Tt · Ts for all t, s ∈ F .

(ii) For all x, y ∈ X satisfying y − x ∈ Fe there exists exactly one t ∈ F

with Tt(x) = y.

(iii) Tt(x)− x is in Fe for all x ∈ X and all t ∈ F .

Here Tt designates the image of t ∈ F under T , and Tt(x) denotes the
image of x ∈ X under the permutation Tt of X. Property (i) is the
translation equation.
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If we put

(3) Tt(x) := x + te

we obviously get the classical example of a translation group with axis
e 6= 0.
Other examples in R2 with axis (1, 0) are

Tt(x1, x2) =

{
(x1 + t, x2) for x2 6= 0

(x1 − t, x2) for x2 = 0
or

Tt(x1, x2) =
(
( 3
√

x1 + t)3 , x2

)
.

Theorem 1. Let H be a maximal subspace of X with

H ⊕ Fe = X

and let % : H × F → F satisfy

(∗) For all h ∈ H and ξ ∈ F there exists exactly one

t = t(h, ξ) in F with % (h, t) = ξ.

Then for all h ∈ H and all t, τ ∈ F

(4) Tt

(
h + % (h, τ)e

)
:= h + %(h, τ + t)e

defines a translation group of X with axis e. There are no other such
groups.

Remark. If we define %(h, t) := t for h ∈ H and t ∈ F , then, obviously,
we get the classical case.

Theorem 1 consists of two statements. Concerning the first part we
have to show that (4) leads to a translation group with axis e. We observe
that for x ∈ X

x = h + te with h ∈ H and t ∈ F

implies that h ∈ H and t ∈ F are uniquely determined since H ⊕ Fe is a
direct sum. First of all we have to show that Tt must be a bijection of X
for every given t ∈ F . Suppose that

x = h1 + %(h1, τ)e, y = h2 + %(h2, σ)e
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hold true together with Tt(x) = Tt(y) for h1, h2 ∈ H and τ, σ ∈ F . Then

h1 + %(h1, τ + t)e = h2 + %(h2, σ + t)e

yields h1 = h2 and hence τ + t = σ + t with (∗), i.e. x = y. The mapping
Tt must thus be injective. It is also surjective: let

y = h2 + %(h2, σ)e

be given. We have to solve Tt(x) = y with respect to x. If there exists
such an

x = h1 + %(h1, τ)e,

then (4) leads to

h1 + %(h1, τ + t) e = h2 + %(h2, σ)e,

i.e. to h1 = h2 and hence to τ = σ − t. On the other hand we have

Tt

(
h2 + %(h2, σ − t)e

)
= h2 + %(h2, σ)e,

in view of (4).

In order now to prove

Tt+s(x) = Tt

(
Ts(x)

)

for all x ∈ X and all t, s ∈ F , we put

x =: h + ξe with h ∈ H and ξ ∈ F.

Then

Ts(x) = h + %(h, τ + s)e

if τ ∈ F satisfies % (h, τ) = ξ. Hence

Tt

(
Ts(x)

)
= h + %(h, τ + s + t)e,

on account of (4). But
Tt+s

(
x + %(h, τ)e

)

is also equal to h+%(h, τ + t+s)e, in view of (4). The translation equation
is thus satisfied.
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In order to prove (ii) we put

x = h1 + ξe and y = h2 + ηe

with h1, h2 ∈ H and ξ, η ∈ F . Now

y − x ∈ Fe

implies h1 = h2 =: h. With

ξ = %(h, τ) and η = %(h, σ)

for uniquely determined τ, σ ∈ F , then

h + %(h, σ)e = y = Tt(x) = h + %(h, τ + t)e

leads to %(h, σ) = %(h, τ + t), i.e. to the unique solution t = σ− τ , because
of (∗). Property (iii) follows immediately from (4).

The other part of the proof of Theorem 1 is to show that a translation
group of X with axis e 6= 0 can be represented by equation (4) with a
function % satisfying (∗). So suppose that H is a direct summand of Fe.
If h ∈ H and t ∈ F , we define

(5) %(h, t)e := Tt(h)− h

by observing (iii). In order to prove (∗), assume that h ∈ H and ξ ∈ F are
given. Put y := h + ξe. Since y − h ∈ Fe, (ii) yields that there is exactly
one t ∈ F with Tt(h) = y. Hence

%(h, t)e = Tt(h)− h = y − h = ξe.

Assume, furthermore, %(h, t′) = ξ with t′ ∈ F . Then

Tt′(h)− h = %(h, t′)e = ξe,

i.e. Tt(h) = h + ξe = Tt′(h), i.e. t′ = t in view of (ii).
Finally we must prove equation (4). In order to do this we will apply

definition (5) two times:

Tt

(
h + %(h, τ)e

)
= TtTτ (h) = Tt+τ (h) = h + %(h, t + τ)e.

This finishes the proof of Theorem 1.
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Remarks. a) Instead of (4) we also may write

(6) Tt(x) = x +
[
%(h, τ + t)− %(h, τ)

]
e

in the case that x = h + %(h, τ)e with h ∈ H and τ ∈ F .

b) Let τ : H → F be an arbitrary function and let % : H × H → F

satisfy (∗). Then also

%′(h, t) := %
(
h, τ(h) + t

)

satisfies (∗), and % and %′ define, according to (4), the same mapping
T : F → PermX.

If we define τ(h) by %
(
h, τ(h)

)
= 0, then for all h ∈ H

%′(h, 0) = %
(
h, τ(h) + 0

)
= 0.

In addition to (∗) we hence may assume, without loss of generality, that
also %(h, 0) = 0 holds true for all h ∈ H.

c) We already were speaking of a group in connection with the map-
ping T : F → PermX. But, obviously, T is an abelian group, isomorphic
to the additive group of the field F : since T0(x) = x for all x ∈ X in view
of (6), T0 is the identity element of T . If Tt were equal to Tt′ for t 6= t′ we
would get a contradiction to (∗), namely

%(h, τ + t) = %(h, τ + t′),

and this from (6) for all h ∈ H and τ ∈ F .

The general definition of a new geometry in our context is now as
follows. We still would like to work with our vector space X as already
introduced. Let L be a group of bijective and linear mappings of X and
let T be a group of translations of X with a given axis e 6= 0. Then the
geometry

(7)
(
X, {L ∪ T})

in the sense of [2], chapter 1, is of interest. If we assume that L acts
transitively on the set of lines through the origin 0 ∈ X, then we get
translation groups of the form

λTλ−1, λ ∈ L,
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for every line Fa with 0 6= a ∈ X. Given a geometry (7) the problem is to
find invariants, invariant notions, defining invariants, and so on, of this
geometry (see [2], chapter 1).

3. Suppose that our vector space X of Section 2 is now Rn, n a
positive integer. We put

e := (1, 0, . . . , 0)(8)

and

H := {(x1, . . . , xn) ∈ Rn | x1 = 0}.(9)

We define

%
(
(0, x2, . . . , xn), t

)
:= sinh t ·

√
1 + x2

2 + . . . + x2
n.

Obviously, property (∗) is satisfied. We now would like to designate the
corresponding translation group with axis e by ∆.

Theorem 2. The geometry

(10)
(
Rn, {O(n,R) ∪∆}

)

is isomorphic to the n-dimensional hyperbolic geometry.

Proof. In view of (4) we get

Tt(x) =
(
x1 cosh t +

√
1 + x2 sinh t, x2, x3, . . . , xn

)

written by means of the euclidean scalar product, i.e. with

x2 = x2
1 + . . . + x2

n.

Replacing
x = (x1, . . . , xn) ∈ Rn

by its Weierstraa coordinates

ω(x) =
(
x1, . . . , xn,

√
1 + x2

)
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we may write for x → Tt(x)

ω(x) → ω(x) ·H(t)

with the Lorentz boost

H(t) =




cosh t sinh t

1
. . .

1
sinh t cosh t




which is represented as a (n+1)×(n+1)-matrix. To an element of O(n,R)
we assign its induced Lorentz matrix. The group

{O(n,R) ∪∆}

is then isomorphic to the group Π of all linear and orthochronous Lorentz
transformations of Rn+1. We hence get with this group isomorphism and
with the mapping ω that (10) is isomorphic (see [2], p. 32) to the hyperbolic
geometry (S, Π) with

S =
{

x ∈ Rn+1
∣∣∣ xn+1 =

√
1 + x2

1 + . . . + x2
n

}

and with Π as defined above (see [2], pp. 60–63).

4. We again would like to work with X := Rn and with (8) and (9).
Put

%
(
(0, x2, . . . , xn), t

)
:= t · (1 + x2

2 + . . . + x2
n

)
.

Property (∗) is then satisfied. In view of (4) we hence get

Tt(x1, . . . , xn) =
(
x1 + t · [1 + x2

2 + . . . + x2
n

]
, x2, . . . , xn

)
.

These are entire Cremona transformations of Rn for every t ∈ R and they
are, obviously, in all cases t 6= 0 non-trivial examples of those transfor-
mations. It would be nice to draw up more intensively the corresponding
geometry

(11)
(
Rn, {O (n,R) ∪ T}

)



Translation equation and some new geometries 307

and to determine some of its defining invariants and invariant notions.

Suppose now that an arbitrary geometry (2) is given such that T is a
translation group with axis (8) and with maximal subspace (9) according
to Theorem 1. Denote by Gn the group

{O(n,R) ∪ T}.

Proposition 1. Gn acts transitively on Rn.

Proof. Let x 6= 0 be an element of Rn. We have to show that there
exists γ in Gn with γ(0) = x. Since T acts transitively on the line R · e, in
view of (ii), there exists

τ ∈ T < Gn

with τ(0) = ||x||e. Because of ||τ (0)|| = ||x|| there furthermore exists
δ ∈ O (n,R) with

δ
(
τ (0)

)
= x.

Now put γ := δτ . ¤

The stabilizer of Gn in 0 needs not to be the group O(n,R) as in the
classical case or in the hyperbolic case of Section 3. If we take for instance
that example of the beginning of this section in the case n = 2, then for

π := T− 1√
2
·R

(
−π

2

)
· T−√2

3
·R

(π

4

)
· T1

we have π(0) = 0 and π(1, 0) =
(

1√
2
, 0

)
, and hence π 6∈ O(2,R), where

R (α) designates the rotation (in the positive sense) about 0 with angle α.

Proposition 2. Assume that the stabilizer of Gn in 0 is O(n,R). Then

to every γ ∈ Gn there exist α, β ∈ O(n,R) and τ ∈ T with γ = ατβ.

Proof. Suppose that γ(0) = a 6= 0. Take α in O(n,R) and τ ∈ T

with α(||a||e) = a and τ(0) = ||a||e. Hence

τ−1α−1γ(0) = 0

and thus β := τ−1α−1γ ∈ O(n,R). ¤
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Proposition 3. Suppose that

(12) Gn = O(n,R) · T ·O(n,R).

The stabilizer of Gn in 0 is then O(n,R).

Proof. Assume that γ(0) = 0 for γ ∈ Gn. Since γ is of the form
ατβ with τ ∈ T and α, β in O(n,R), we get

τβ(0) = α−1(0),

i.e. τ (0) = 0, i.e. τ = T0, in view of (ii). Hence γ = αβ must be in O(n,R).
¤

Remark. In the case (12), the stabilizer of Gn in every x ∈ Rn must
be, of course, isomorphic to O(n,R), in view of Proposition 1.

The problem we finally would like to pose is the following. Given two
functions %1 and %2 satisfying (∗), and given their corresponding transla-
tion groups T1 and T2. Find necessary and sufficient conditions in %1 and
%2 such that the geometries

(
Rn, {O(n,R) ∪ Ti}

)
, i = 1, 2,

are isomorphic.
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