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Periodical scheduling
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and LAJOS RÓNYAI (Budapest)

Dedicated to Professors Zoltán Daróczy and Imre Kátai
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Abstract. We solve a bandwidth-optimization problem for a broadcasting task
in which certain messages are expected to be transmitted periodically. We determine
the minimal feasible bandwidth with the aid of an integer making argument. We present
a fast and simple greedy algorithm for the scheduling of the messages.

1. Description of the problem

On a communication channel an information provider broadcasts n

messages M1, . . . , Mn. The messages are updated from time to time and
the updated versions have to be sent out periodically. One may think
of stock quotations, currency exchange rates, weather reports etc., as the
messages Mi.

The i-th message Mi consists of ti blocks and it (its most recent
version) has to be sent once between times kpi and (k+1)pi for k = 0, 1, . . . .
The number pi is called the period of Mi. We assume that the length ti
of the messages does not change, and we refer to the updated versions of
Mi as copies of Mi.
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An optimal communication scheme tells us what the minimal band-
width of the channel is which makes the periodical resending of messages
possible. Moreover, it describes a scheduling algorithm for sending the
blocks of messages. Here the bandwidth of the channel is measured by the
number of blocks that can be transmitted in one unit of time.

The ith message divides the time to intervals of length pi. Consider
the case, when the period lengths pi are integers. Let p denote the least
common multiple of the pi. Then time p is a common endpoint of some
intervals for i = 1, . . . , n. Starting from time p the intervals look exactly
as they did from time 0. Therefore it is sufficient to consider the time
interval [0, p], and look for a good communication scheme there. Then
that scheme can be repeated as many times as it is necessary.

In a schedule for the time interval [0, p] we are required to transmit
p/pi copies of the i-th message. Adding these up, we obtain that the
number of blocks sent is

∑
i tip/pi. Clearly, this requires that m =

∑
i ti/pi

blocks be transmitted during one unit of time, so the bandwidth is at least
m. In this paper we consider the case when this “target bandwidth” m is
also an integer. The easy (but somewhat technical) considerations needed
to cover the more general settings will be treated elsewhere.

With this simplifying assumption we show that this bandwidth is
always sufficient. The problem of sending the messages can be formulated
as a scheduling problem. For the rudiments of scheduling terminology
we refer to [3]. One can consider the periodically appearing copies of
Mi as different jobs to be completed, with their own release dates and
deadlines (describing the corresponding time interval). The problem is to
find a feasible preemptive schedule for these tasks. With this approach
the number of tasks would increase from n to

∑
i p/pi. We show that this

increase in the problem size can be avoided. With the aid of an “integer-
making lemma” we establish first, that bandwidth m is sufficient.

2. An integer-making lemma

Let a1, . . . , am be real numbers and let F = {X1, . . . , Xs} be a family
of subsets of {1, 2, . . . , m}. We want to approximate the numbers ai with
integers ãi, in such a way that |ai− ãi| < 1, and for X ∈ F the error on X,
defined as |∑i∈X(ai − ãi)|, remains small.
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The version, when the numbers arranged in a rectangular matrix
and F consists of the columns and the rows of the matrix was consid-
ered by Baranyai [1]. He showed that for this case there is a solution in
which the error on every X ∈ F is smaller than 1.

The general problem was investigated by Beck and Fiala [2]. Their
result states that if each ai is covered by at most d elements of F , then it
can be achieved that the error is at most d− 1 on every X ∈ F .

When each ai is covered by at most 2 sets (d = 2), the error bound 1
is tight [2]. For our purposes we need that the error is strictly smaller
than one in a situation when F consists of the blocks of two partitions of
{1, 2, . . . , m}. This is slightly more general than the setting considered by
Baranyai.

For simplicity, we assume that the sum
∑

i∈X ai is an integer for every
X ∈ F .

Lemma 2.1. Let a1, . . . , am be real numbers, and
⋃k1

i=1X1i =
⋃k2

i=1X2i

= {1, . . . ,m} be two partitions of {1, . . . , m}. Assume, that for each of
the sets Xtj , the numbers

∑
i∈Xtj

ai are integers. Then there are integers
ãi, such that

|ai − ãi| < 1, 1 ≤ i ≤ m

and ∑

i∈Xtj

ai =
∑

i∈Xtj

ãi, 1 ≤ j ≤ kt, t = 1, 2

Proof. Set first ãi = ai. Consider a graph on nodes {1, . . . ,m}. If
ãi is an integer, then node i will be isolated. Between the rest of the nodes
there will be blue and red edges, corresponding to the two partitions: i
and j (when ãi and ãj are not integers) are connected by a blue edge,
if there is a block X1` of the first partition which contains both i and j.
Similarly, there is a red edge between i and j, if there is an X2` which
contains both. Since the numbers corresponding to a set Xt` add up to
an integer, a non-isolated node is incident to at least one blue and at least
one red edge. Hence if not all the nodes are isolated, then there is an
alternating blue–red cycle in the graph. Along this cycle the values of the
corresponding numbers can be increased and decreased alternately with
the same amount ε. This way the set-sums do not change. The value of ε
is chosen in such a way, that |ai− ãi| < 1 hold with the modified values of
ãi, and ãj is an integer for at least one j along the cycle.

We repeat this process until all the nodes become isolated, i.e. the
values ãi are integers.
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Remark. The proof above is an adaptation of Baranyai’s argument.
We could have used the Beck–Fiala approach [2] as well.

3. The minimal feasible bandwidth

We have already seen that a bandwidth of at least m =
∑

i ti/pi

blocks/time unit is necessary to have a feasible schedule. The next theorem
amounts to stating that this bandwidth is also sufficient, hence optimal.

Theorem 3.1. Assume that pi, ti (1 ≤ i ≤ n), and m =
∑

ti/pi are

positive integers. The periodical broadcasting problem where message Mi

has length ti and period pi admits a feasible schedule which sends out m

blocks of information in a unit of time.

Proof. We shall use the lemma. We define a matrix A with n rows
and p columns, where p is the least common multiple of the pi. Row i will
correspond to message Mi and column t to the t-th time unit from the
start. Let every entry in the i-th row be ti/pi. Note that the sum of the
elements in a column is equal to m. The sum of the elements in the i-th
row is equal to pti/pi.

Now we can apply Lemma 2.1. The numbers are the entries of A. The
columns of A give one of the partitions. The other partition is obtained
from the rows, dividing the i-th row into the sets Xik := {ai,kpi+1, . . . ,
ai,(k+1)pi

}. The sum of the values in this set is ti, which, by assumption,
is an integer. The lemma guarantees the existence of a matrix Ã with
integer entries, where the set sums are the same as in A. This Ã provides
a preemptive periodical scheduling: in time unit t we broadcast (the next)
ãi,t blocks from message Mi. This way we send exactly m blocks in every
time unit. Moreover, the constraint on Xik forces that we send a complete
copy (ti blocks) of Mi in the interval [kpi, (k+1)pi] for k = 0, 1, . . . , p/pi−1.
This finishes the proof.

4. The algorithm

For the periodical scheduling problem Theorem 3.1 gives more than
a necessary and sufficient condition. One can also find a feasible schedule
based on that proof. For this purpose, one has to consider the possibly
huge matrix A, and find a good way of rounding its elements, for example
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following the proof of the lemma. A disadvantage of this approach is
apparent when p turns out to be large (perhaps much larger than the time
interval in which we want to use our communication scheme).

Instead of that approach, we show that a simple and fast greedy
method produces a good schedule. It will be more convenient to describe
this method with the time re-scaled. We select as unit time the amount
needed to transmit one block of information. In this new scale the period
of Mi (at bandwidth m) will be qi := mpi.

The algorithm is quite simple: at time unit t = 1, 2, . . . we decide
which block of information is to be transmitted. For each i there is a
current copy of the message Mi. Let Bi be the first block of this copy
which has not been sent yet. We shall select for transmission one of the
blocks Bi. In order to make the decision, compute for each block Bi how
long it can wait: if there are `i as yet unsent blocks of the current copy
of Mi, then Bi can wait wi = dt/qieqi − `i − t + 1 time units and Mi still
be finished by the end of its time period. We set wi = ∞ if we are not
allowed to send Bi yet (in this case Bi is necessarily the first block of Mi).
Now take a block Bi with the smallest wi < ∞, and send this one in time
unit t (and update the quantities wj for the next round).

The following result states that the algorithm provides a schedule at
bandwidth m, if there exist a feasible schedule with bandwidth m at all.
Together with Theorem 3.1 this implies that the algorithm provides an
optimal schedule.

Theorem 4.1. If there is a feasible schedule, then the preceding algo-

rithm finds one.

Proof. A schedule can be described by a sequence (s1, s2, . . . ) where
st describes what happens at time interval [t − 1, t], so st can be either
an i > 0, with the meaning that the next block of Mi is sent, or 0 when
nothing is scheduled for that time interval.

Let A = (s1, s2, . . . ) denote the schedule that our algorithm produces
and let S = (s′1, s

′
2, . . . ) be a feasible schedule which agrees with A on the

longest prefix. We show, that S = A. Assume, that si = s′i for i < t and
st 6= s′t. There are different cases to consider:

s′t = 0, st = j, i.e. S schedules nothing and A schedules Mj for the
tth time unit. Then j also appears in schedule S, and its first occurrence
after t can be moved to time t: let ` > t be the smallest index such that
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s′` = j. In the modified schedule s′t = j and s′` = 0. The schedule obtained
in this way from S is feasible and agrees with A on a longer prefix than S
did.

S and A schedule different blocks for time t, say s′t = i and st = j

with i 6= j, and i, j > 0. Then look for the first j after time t in S; let
it be s′` = j (` > t) and swap the values of s′t and s′`. It is immediate at
once that the new S is feasible for all messages Mk with k 6= i. To see
that Mi is also handled properly, it suffices to verify that t∗ ≥ `, where
t∗ = dt/qieqi is the deadline for the current (at time t) copy of Mi. This is
because we send then as many blocks of Mi in [t− 1, t∗] as we did before,
hence we complete the copy in time. We have on one hand wj ≥ ` − t,
because S is feasible. From the selection rule of the algorithm we infer
that wj ≤ wi. By putting these together we obtain that

t∗ = dt/qieqi = wi + `i + t− 1

≥ wj + `i + t− 1 ≥ `− t + `i + t− 1 ≥ `.

At the last inequality we used `i ≥ 1. This is true because S is a correct
schedule, hence after t − 1 units of time the current copy of Mi was not
transmitted completely. As in the previous case, A and the modified S
agree up to time unit t.

The situation that S schedules a block Bi and A schedules nothing
for the interval [t − 1, t] cannot happen, for if there is an eligible block,
then A always selects one of them.
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