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On an equation of ring homomorphisms
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Dedicated to Professors Zoltán Daróczy and Imre Kátai
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Abstract. We deal with a functional equation

(∗) f(x + y) + f(xy) = f(x) + f(y) + f(x)f(y)

considered by J. Dhombres (Relations de dépendance entre les équations fonctionnelles
de Cauchy, Aequationes Mathematicae 35 (1988), 186–212) for functions f mapping a
given ring into another one. Neither divisibility hypothesis nor the existence of the unit
elements is assumed. Some alterations are also examined to answer the questions posed
by Ludwig Reich and Jaime Garcia-Roig during the 32nd International Sympo-
sium on Functional Equations (Gargnano, Italy, June 12–19, 1994) in connection with
author’s results on (∗) presented overthere.

1. Introduction

Given a homomorphism between two rings X and Y we deal with a
map f : X −→ Y satisfying the system

(H)

{
f(x + y) = f(x) + f(y)

f(xy) = f(x)f(y)

Mathematics Subject Classification: 39B52, 39B62.
Key words and phrases: ring homomorphism, additivity, quadratic mappings, multi-

plicativity, Mikusiński’s functional equation.
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of two Cauchy equations for every x, y ∈ X. Summing up these two equa-
tions side by side we derive the functional equation

(1) f(x + y) + f(xy) = f(x) + f(y) + f(x)f(y)

valid for all x, y ∈ X. How far are the solutions of (1) from a ring homo-
morphism? Such a question was asked in 1988 by J. Dhombres [1] who
proved, among others, the following

Theorem. Let X and Y be rings with unit elements and let the divi-

sion by 2 be performable in X. Then each solution f : X → Y of equation

(1) such that f(0) = 0 yields a ring homomorphism between X and Y , i.e.

f yields a solution of the system (H).

The proof presented by J. Dhombres relies very heavily upon the
existence of the units in both of the rings considered and the 2-divisibility
of the domain. The crucial part of this proof is to get the oddness of a
solution f : X → Y of equation (1). Except for the assumption that f

vanishes at zero (which eliminates nonzero constant solutions f(x) = c,
x ∈ X, with c2 = 0 in the case where the ring Y admits such elements) the
omission of any of the hypotheses mentioned above makes the investigation
of (1) difficult indeed. On the other hand even in the very simple case of
unitary rings X = Z (the integers) and Y = R (the reals) equation (1)
admits non-odd (actually even) and hence nonhomomorphic solutions of
the form

f(x) =
{ 0 for x ∈ 2Z
−1 for x ∈ 2Z+ 1.

Last but not least numerous important rings are not unitary. Note that in
such a case the usual embedding of that ring into a ring with a unit does
not allow to extend the unknown function onto the new domain with the
preservation of the equation.

In what follows we examine equation (1) under possibly mild assump-
tions upon the underlying rings. In the last section we answer some related
questions asked by Ludwig Reich and Jaime Garcia-Roig during the 32nd
International Symposium on Functional Equations (Gargnano, Italy, June
12–19, 1994).
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2. Preliminary results

We begin with a purely technical

Lemma 1. Let X and Y be any rings. If Y has no elements of order 2

and f : X → Y is a solution of equation (1), then putting

n(x) := f(x)− f(−x), p(x) := f(x) + f(−x), x ∈ X,

for every x, y ∈ X one has:

(i) p(x)n(y) = n(y)p(x);

(ii) p(x + y)− p(x− y) = n(x)n(y)− 2n(xy);

(iii) n(x + y) + n(x− y) = n(x)p(y) + 2n(x);

(iv) 2[n(x + y)− n(x)− n(y)] = p(x)n(y) + p(y)n(x);

(v) p(x + y) + p(x− y)− 2p(x)− 2p(y) = p(x)p(y)− 2p(xy);

(vi) p(xy)n(x) = p(yx)n(x) = 0;

(vii) n(x + xy) + n(x− xy) = 2n(x).

Proof. Ad (i). Fix arbitrarily x, y ∈ X and put

Cf (x, y) := f(x + y)− f(x)− f(y).

Then, by means of equation (1), we have f(x)f(y) = f(xy) + Cf (x, y),
whence

p(x)n(y) = Cf (x, y)− Cf (x,−y) + Cf (−x, y)− Cf (−x,−y)

whereas

n(y)p(x) = Cf (y, x) + Cf (y,−x)− Cf (−y, x)− Cf (−y,−x)

and it suffices to make use of the symmetry of the function Cf .

Ad (ii). Since 2f(x) = n(x) + p(x) for all x ∈ X, by (1) we get

2[f(x)f(y)− f(xy)] = 2Cf (x, y) = Cn(x, y) + Cp(x, y)
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and hence, in view of the oddness of n and the evenness of p, we have also

2[f(−x)f(−y)− f(xy)] = −Cn(x, y) + Cp(x, y).

Summing up these two equalities side by side leads to

2[f(x)f(y) + f(−x)f(−y)− 2f(xy)] = 2Cp(x, y)

whence, by replacing here y by −y,

2[f(x)f(−y) + f(−x)f(y)− 2f(−xy)] = 2Cp(x,−y).

Now, subtract the latter two equalities to get

2[n(x)n(y)− 2n(xy)] = 2[Cp(x, y)− Cp(x,−y)] = 2[p(x + y)− p(x− y)]

whence our assertion follows due to the lack of elements of order 2 in the
ring Y .

Ad (iii). Equation (1) says that for all x, y ∈ X one has

n(x + y) + p(x + y) + n(xy) + p(xy)

= n(x) + p(x) + n(y) + p(y) + [n(x) + p(x)]f(y).

Replace here y by −y and subtract the resulting equation from the latter
one to obtain

n(x + y)− n(x− y) + p(x + y)− p(x− y) + 2n(xy)

= 2n(y) + n(x)n(y) + p(x)n(y).

Now, an appeal to (ii) proves that

(2) n(x + y)− n(x− y) = 2n(y) + p(x)n(y)

whence, by interchanging the roles of x and y, we infer that

(3) n(x + y) + n(x− y) = 2n(x) + p(y)n(x),

which is nothing else but (iii) because of (i).

Ad (iv). It sufficies to add the equalities (2) and (3) side by side.
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Ad (v). Replace y by −y in equation (1) and add the resulting equa-
tion to (1) side by side to get

f(x + y) + f(x− y) + p(xy) = 2f(x) + p(y) + f(x)p(y).

Putting here −x in place of x gives

f(−x + y) + f(−x− y) + p(xy) = 2f(−x) + p(y) + f(−x)p(y).

Now (v) results by adding the latter equation to the former.

Ad (vi). On account of (iii) and (i), for every x, y ∈ X, we get

n(x + y) + n(x− y)− 2n(x) = p(y)n(x)

whence, by setting here y − x instead of y, we derive the equation

n(y) + n(2x− y)− 2n(x) = p(x− y)n(x).

Replacing here y by −y and adding the resulting equation to the former
leads to

n(2x + y) + n(2x− y)− 4n(x) = [p(x + y) + p(x− y)]n(x).

On the other hand, in view of (iii) and (i), one has

n(2x + y) + n(2x− y)− 2n(2x) = p(y)n(2x),

whence by subtraction

2[n(2x)− 2n(x)] = [p(x + y) + p(x− y)]n(x)− p(y)n(2x).

Now, equation (iv) applied for y = x gives

2n(x)p(x) = [p(x + y) + p(x− y)]n(x)− p(y)n(2x)

and, consequently, by setting y = x in (i),

[p(x + y) + p(x− y)− 2p(x)]n(x) = p(y)n(2x)
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or, equivalently, by (i)

[p(x + y) + p(x− y)− 2p(x)− 2p(y)]n(x) = p(y)[n(2x)− 2n(x)](4)

= [n(2x)− 2n(x)]p(y).

Thus, on account of (v) and (iv), we get

[p(x)p(y)− 2p(xy)]n(x) = n(x)p(x)p(y)

and finally, by a double application of (i), 2p(xy)n(x) = 0 which was to be
shown because Y has no elements of order 2.

The equality p(yx)n(x) = 0 results from (4) and the fact that due to
the symmetry of the expression p(x+y)+p(x−y)−2p(x)−2p(y) we have
also (see (v))

p(x + y) + p(x− y)− 2p(x)− 2p(y) = p(y)p(x)− 2p(yx)

for all x, y ∈ X.

Ad (vii). Put xy in place of y in (iii) and apply (vi) jointly with (i).

This finishes the proof of the lemma.

Corollary 1. Under the assumptions of Lemma 1 if, moreover,

for every x ∈ X there exists an ex ∈ X such that xex = x,(e)

then

n(2x) = 2n(x) for all x ∈ X.

Proof. Put y = ex in Lemma 1 (vii).

Lemma 2. Under the assumptions of Lemma 1, if f(0) = 0 and con-

dition (e) holds true then

p(4x) = 4p(2x) for all x ∈ X(5)

and

p(x)n(y) = p(2x)n(y) for all x, y ∈ X.(6)
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Proof. Setting y = x in Lemma 1 (ii) and taking into account that
the equality f(0) = 0 forces p to vanish at zero, we infer that

(7) p(2x) = n(x)2 − 2n(x2) for all x ∈ X.

Consequently, for every x ∈ X, in view of Corollary 1 one has

p(4x) = n(2x)2−2n(4x2) = 4n(x)2−8n(x2) = 4[n(x)2−2n(x2)] = 4p(2x),

i.e. relation (5) has been proved.

To show (6) replace x and y in formula (2) by 2x and 2y, respectively,
to get the equality

n(2x + 2y)− n(2x− 2y) = 2n(2y) + p(2x)n(2y)

valid for all x, y ∈ X. By Corollary 1 this means that

2[n(x + y)− n(x− y)− 2n(y)] = 2p(2x)n(y), x, y ∈ X,

whence, using formula (2) once again, we obtain

2p(x)n(y) = 2p(2x)n(y), x, y ∈ X,

which finishes the proof since the ring Y contains no elements of order 2.

Corollary 2. Under the assumptions of Lemma 2 we have

3p(x)n(y) = 0

for every x, y from X.

Proof. Fix arbitrarily x, y ∈ X. Equation (6) jointly with (5) gives

p(2x)n(y) = p(4x)n(y) = 4p(2x)n(y)

whence 3p(2x)n(y) = 0. It remains to apply (6) once more to finish the
proof.

Corollary 3. Under the assumptions of Lemma 2 the function 3n is

additive.

Proof. “Multiply” both sides of equation (iv) in Lemma 1 by 3 and
apply Corollary 2.
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3. Main results

The assertions of Propositions 1 and 2 below look somewhat heavy.
This is caused by the fact that we have tried to avoid additional assump-
tions upon the target ring. Once we suppose that it does not admit zero
divisors or contains no elements of order 3, the results become much more
agreeable (see Theorems 1 and 2 below).

Proposition 1. Let X and Y be two rings such that

(e) for every x ∈ Xthere exists an ex ∈ X with xex = x.

If Y has no elements of order 2 and f : X → Y is a solution of the equation

(1) f(x + y) + f(xy) = f(x) + f(y) + f(x)f(y)

such that f(0) = 0, then either 3f is even and 3f(2x) = 0 for all x ∈ X,

or there exists a c ∈ Y \ {0} such that

(Hc)

{
c[f(x + y)− f(x)− f(y)] = 0

c[f(xy)− f(x)f(y)] = 0.

Proof. We preserve the notation used in Lemma 1. Corollary 3
states that the map N := 3n is additive. In view of Corollary 2 we have
also p(x)N(y) = 0 for all x, y ∈ X. Let us distinguish two cases:

– N vanishes on the whole of X;

– N(y) 6= 0 for some y ∈ X.

Since 6f = N + 3p the first case implies that 6f is even. Consequently, so
is 3f because Y has no elements of order 2. Obviously, by (1), we have

3f(x + y) + 3f(xy) = 3f(x) + 3f(y) + 3f(x)f(y)

for every x, y in X and, due to the evenness of the map 3f , we get also

3f(x− y) + 3f(xy) = 3f(x) + 3f(y) + 3f(x)f(y)

for all x, y ∈ X. Therefore

3f(x + y) = 3f(x− y) for every x, y ∈ X.
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In particular, by setting here y = x, one obtains

3f(2x) = 0 for all x ∈ X,

because f is supposed to vanish at zero.
In the second case, for a fixed y ∈ X such that N(y) 6= 0, we have also

c := 2N(y) = 6n(y) 6= 0 whence, by means of Corollary 2 and Lemma 1
(i),

cf(x) = n(y)N(x) + 3n(y)p(x) = n(y)N(x) for all x ∈ X,

which proves that cf is additive because, clearly, so is the map n(y)N .
Consequently, the first equation of system (Hc) is satisfied. To see that
the other one is also fulfilled it sufficies to multiply both sides of (1) by c

from the left and to apply the additivity of cf . This completes the proof.

Proposition 2. Under the assumptions of Proposition 1 the map f

yields a solution of the system

(8)

{
81[f(2x + 2y)− f(2x)− f(2y)] = 0

81[f(2x · 2y)− f(2x)f(2y)] = 0

for every x, y ∈ X.

Proof. Using the notation stated in Lemma 1 put, as previously,
N := 3n and define

q(x) := p(2x), x ∈ X.

Since p(0) = 2f(0) = 0, setting y = x in Lemma 1 (ii) we get (7). Con-
sequently, a simple calculation shows that, because of the additivity of N

(see Corollary 3), both N2 and N((·)2) are quadratic maps, i.e. both of
them are solutions to the functional equation

(9) F (x + y) + F (x− y) = 2F (x) + 2F (y) for all x, y ∈ X.

This implies that the map Q := 9q is quadratic as well, because of (7) and
the fact that

Q(x) = 9p(2x) = 9[n(x)2 − 2n(x2)] = N(x)2 − 6N(x2)

for all x ∈ X.
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On the other hand, on account of Lemma 1 (ii), one has

Q(x + y)−Q(x− y) = 9[p(2x + 2y)− p(2x− 2y)]

= 9[n(2x)n(2y)− 2n(4xy)] = N(2x)N(2y)− 6N(4xy)

= 4[N(x)N(y)− 6N(xy)] = 36[n(x)n(y)− 2n(xy)]

for every x, y ∈ X. Thus, since Q yields also a solution to (9), we infer
that

2Q(x + y) = 2Q(x) + 2Q(y) + 36[n(x)n(y)− 2n(xy)], x, y ∈ X,

whence, in view of the assumption that Y possesses no elements of order 2,

Q(x + y)−Q(x)−Q(y) = 18[n(x)n(y)− 2n(xy)], x, y ∈ X.

Now, bearing Corollary 2 in mind, we derive the validity of the equation

[Q(x + y)−Q(x)−Q(y)]Q(z) = 0

for all triples (x, y, z) from the set X3. In particular, [Q(2x) − 2Q(x)]
Q(z) = 0 holds true for all x, z ∈ X. Consequently, since every quadratic
map F : X → Y has the property F (2x) = 4F (x), x ∈ X, we conclude
that 2Q(x)Q(z) = 0 for every x, z ∈ X, and, subsequently,

Q(x)Q(z) = 0 for every x, z ∈ X.

An appeal to property (v) from Lemma 1 gives now the relationship

0 = 9[Q(x + y) + Q(x− y)− 2Q(x)− 2Q(y)]

= Q(x)Q(y)− 18Q(2xy) = −72Q(xy)

for all x, y ∈ X, showing that 81q(xy) = 0, x, y ∈ X. This applied for
y = ex (recall that condition (e) has been assumed) leads to the equality

81p(2x) = 81q(x) = 0

valid for every x ∈ X.
Finally, since

81 · 2f(2x) = 81n(2x) + 81p(2x) = 27N(2x) = 2 · 27N(x), x ∈ X,
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yielding

81f(2x) = 27N(x), x ∈ X,

we derive the additivity of the map X 3 x 7→ 81f(2x) ∈ Y , i.e. the first
equation of system (8). The other one results now from the first with the
aid of equation (1) “multiplied” side by side by the factor 81 and applied
for 2x and 2y instead of x and y, respectively. This completes the proof.

The following two theorems are simple consequences of the proposi-
tions that have just been proved.

Theorem 1. Let X and Y be two rings such that

(e) for every x ∈ X there exists an ex ∈ X with xex = x.

Assume that Y has no elements of order 2 and does not admit zero divisors.
If f : X → Y is a solution of the equation

(1) f(x + y) + f(xy) = f(x) + f(y) + f(x)f(y)

such that f(0) = 0, then either 3f is even and 3f(2x) = 0 for all x ∈ X,
or f yields a homomorphism between X and Y .

Proof. The factor c 6= 0 occurring in the assertion of Proposition 1
may be cancelled.

Corollary 4. Under the assumptions of Theorem 1 if, moreover, Y has
no elements of order 3, then either f is even or f yields a homomorphism
between X and Y .

Our next result explains the role of the 2-divisibility hypothesis as-
sumed by J. Dhombres (cf. the Introduction) upon the ring being the
domain of the underlying map.

Theorem 2. Let X and Y be two rings. Assume (e) and suppose
that Y neither has elements of order 2 nor elements of order 3. If f :
X → Y is a solution of equation (1) such that f(0) = 0, then f |2X yields
a homomorphism between the rings 2X and Y .

Proof. The “factor” 81 = 34 occurring in the assertion of Proposi-
tion 2 may be cancelled. In the case where 3f , and hence f itself, is even,
Proposition 2 now says that f(2x) = 0 for all x ∈ X; in other words, the
restriction f |2X yields a (trivial) homomorphism as well.

Corollary 5. Under the assumptions of Theorem 2 if, moreover, the
division by 2 is always performable (not necessarily uniquely) in the ring X,
then f yields a homomorphism between X and Y .
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4. Even solutions

As we have seen (see e.g. Corollary 4) nonhomomorphic solutions (if
any) of equation (1) may occur only among even mappings. Therefore, in
the present section, we examine the behaviour of solutions of that kind.

Theorem 3. Let X and Y be any rings. If f : X → Y is an even

solution of the equation

(1) f(x + y) + f(xy) = f(x) + f(y) + f(x)f(y)

such that f(0) = 0, then each element of the ring 2X yields a period of f ;

in particular, f(2x) = 0 for all x ∈ X.

If, moreover, Y contains no elements of order 2 and

(q) x + x2 ∈ 2X for all x ∈ X,

then:

(a) −f is multiplicative;

(b) both f and −f satisfy the functional equation of Mikusiński

f(x + y) [f(x + y)− f(x)− f(y)] = 0, x, y ∈ X;

(c) f(x2) = f(x) for all x ∈ X;

(d) f(x) + f(x)2 = 0 for all x ∈ X;

(e) the set Z := {x ∈ X : f(x) = 0} yields a two-sided ideal of the ring

X and 2X ⊂ Z;

(f) f(x)f(y) = f(y)f(x) for all x, y ∈ X.

Conversely, for any 2X-periodic and multiplicative solution g : X→Y

of the Mikusiński’s equation such that g(x2) = g(x), x ∈ X, and

g(x)g(y) = g(y)g(x) for x, y ∈ X, the function f := −g is a solution

to equation (1).

Proof. Replace y by −y in (1) and subtract the resulting equation
from (1) to get the equality

f(x + y) = f(x− y),
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valid for all x, y ∈ X. Setting here x + y in place of x gives

f(x + 2y) = f(x) for every x, y ∈ X,

i.e. for each y ∈ X the element 2y turns out to be a period for the map f .
In particular, since f(0) = 0, function f has to vanish on the whole of the
ring 2X, as claimed.

Ad (a). Fix arbitrarily elements x, y and z from X. Equation (1)
gives then

f(xy + z) + f(xyz) = f(xy) + f(z) + f(xy)f(z)

as well as

f(x + yz) + f(xyz) = f(x) + f(yz) + f(x)f(yz).

Subtracting these two equalities leads now to the relationship

f(xy + z)− f(x + yz)(10)

= f(xy) + f(z) + f(xy)f(z)− f(x)− f(yz)− f(x)f(yz).

Similarly, applying the associativity of the addition in the ring X,

f(x + y + z) + f((x + y)z) = f(x + y) + f(z) + f(x + y)f(z)

and

f(x + y + z) + f(x(y + z)) = f(x) + f(y + z) + f(x)f(y + z)

whence, by subtraction,

f((x + y)z)− f(x(y + z))

= f(x + y) + f(z) + f(x + y)f(z)− f(x)− f(y + z)− f(x)f(y + z).

Expanding the terms f(x+y) and f(y+z) in the latter equality according
to (1) proves that

f((x + y)z)− f(x(y + z)) = f(x)f(yz) + f(yz)− f(xy)f(z)− f(xy),
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which, jointly with (10), implies that

f(xz + yz)− f(xy + xz)) = f(x + yz)− f(xy + z) + f(z)− f(x).

In particular, for z = y one gets

f(xy + y2)− f(2xy) = f(x + y2)− f(xy + y) + f(y)− f(x),

for every x, y ∈ X. Recalling that f vanishes on 2X and setting x + y
instead of x in the latter equation we infer that

f(xy + 2y2) = f(x + y + y2)− f(xy + y2 + y) + f(y)− f(x + y).

Since both y2 + y and 2y2 are periods for f we arrive at

(11) 2f(xy) = f(x) + f(y)− f(x + y).

Finally, on account of (1), the right hand side of this equality may also be
expressed in the form f(xy)− f(x)f(y), whence

f(xy) = −f(x)f(y),

which states nothing else but the multiplicativity of the map −f .

Ad (b). Equation (11) jointly with the multiplicativity of −f implies
that

f(x + y)− f(x)− f(y) = 2f(x)f(y) for all x, y ∈ X.

Fix arbitrarily elements x, y and z from X. The latter equation and the
associativity of addition in X give immediately the equality

f(x) + f(y + z)− f(x + y)− f(z) = 2f(x + y)f(z)− 2f(x)f(y + z)

and, consequently, by expanding the terms f(y + z) and f(x + y) at the
left hand side with the aid of equation (1) and by the multiplicativity of
−f we arrive at

2f(y)f(z)− 2f(x)f(y) = 2f(x + y)f(z)− 2f(x)f(y + z).

Put here y = x and make use of the fact that Y contains no elements of
order 2 to get

f(x)[f(z)− f(x)] = f(2x)f(z)− f(x)f(x + z) = −f(x)f(x + z),
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because f vanishes on 2X. Thus

f(x)[f(z)− f(x) + f(x + z)] = 0,

whence, by setting here x − z in place of x and bearing in mind that
f(x− z) = f(x + z), we get finally

f(x + z) [f(z)− f(x + z) + f(x)] = 0, x, z ∈ X,

which was to be proved. Clearly, −f satisfies Mikusiński’s equation as
well.

Ad (c). Results directly from (11) by putting y = x, applying the
property that f |2X = 0 and “dividing” by 2.

Ad (d). Results directly from the multiplicativity of −f and the
property (c) just proved.

Ad (e). Obviously, 2X ⊂ Z; in particular, the set Z is nonempty. Fix
arbitrarily points x, y from Z. Then, on account of (b) and the fact that
f(x + y) = f(x− y), one has

0 = f(x− y)[f(x− y)− f(x)− f(y)] = f(x− y)2 = −f(x− y)

because of (d). Thus x− y ∈ Z, as required.
The inclusions: Z ·X ⊂ Z and X ·Z ⊂ Z result immediately from the

multiplicativity of −f .

Ad (f). By (11),

−2f(x)f(y) = 2f(xy) = f(x) + f(y)− f(x + y)

= f(y) + f(x)− f(y + x) = 2f(yx) = −2f(y)f(x)

as claimed, because Y contains no elements of order 2.
Take any 2X-periodic multiplicative map g : X → Y satisfying the

functional equation of Mikusiński and having the properties: g(x)g(y) =
g(y)g(x) for all x, y ∈ X and g(x2) = g(x) for all x ∈ X. Obviously,

g(x + y) = g(x− y) for all x, y ∈ X,
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and, therefore, g(x)[g(x)− g(x + y)− g(y)] = 0 whence

g(x) = g(x2) = g(x)2 = g(x)g(x + y) + g(x)g(y).

Interchanging here the roles of x and y, we get also

g(y) = g(y)g(y + x) + g(y)g(x) = g(y)g(x + y) + g(x)g(y)

and, consequently,

g(x) + g(y) = g(x)g(x + y) + g(y)g(x + y) + 2g(x)g(y).

On the other hand, for every x, y ∈ X, one has

g(x + y) = g((x + y)2) = g(x + y)2 = g(x + y)g(x) + g(x + y)g(y),

whence

g(x) + g(y) = g(x + y) + 2g(x)g(y) = g(x + y) + g(x)g(y) + g(xy).

In other words,

−f(x)− f(y) = −f(x + y) + f(x)f(y)− f(xy) for all x, y ∈ X,

which is nothing else but (1).

Thus the proof has been finished.

Corollary 6. Let X be an arbitrary ring having the property (q) and

let Y be a ring without zero divisors, with a unit element e and with no

elements of order 2. If f : X → Y is an even solution of equation (1), then

either f = 0 or there exists a two-sided ideal Z of the ring X, of index 2,

such that

f(x) =

{
0 for x ∈ Z

−e for x ∈ X \ Z.

Proof. Theorem 3 states, among others, that f has to satisfy the
functional equation of Mikusiński. Since there are no zero divisors in Y

this means that for every x, y ∈ X we have

f(x + y) = f(x) + f(y) provided that f(x + y) 6= 0.
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Therefore (see e.g. M. Kuczma [4]) either f is additive or there exists a
subgroup (Z, +) of the additive group of the ring X with index 2 and a
constant c ∈ Y \ {0} such that

(12) f(x) =

{
0 for x ∈ Z

c for x ∈ X \ Z.

Any even additive function with values in a ring with no elements of order 2
has to vanish identically. Therefore, the only nontrivial solutions are of
the form (12). An appeal to Theorem 3 again shows that, actually, Z has
to be a two-sided ideal in X and that −f is multiplicative. In particular,
for every x, y /∈ Z we have −f(xy) = f(x)f(y) = c2 6= 0, and so −c = c2,
i.e. c(c + e) = 0 showing that we have to have c = −e.

Conversely, it is not hard to check that every function of the form
(12) with c = −e yields a solution to (1).

4. Some alterations

During the 32nd International Symposium on Functional Equations
(Gargnano, Italy, June 12–19, 1994) where some of author’s results on
equation (1) were presented, the following two related questions were asked
by:

– Ludwig Reich: given two unitary rings X and Y denote by eX and eY

the unit elements in X and Y , respectively. Assume that f : X → Y

is a solution of equation (1) satisfying the conditions f(0) = 0 and
f(eX) = eY . Under what circumstances has f to be a homomor-
phism?

– Jaime Garcia-Roig : let X and Y be two rings; what are the solutions
f : X → Y of a slightly modified version of equation (1), namely

(1’) f(x + y + xy) = f(x) + f(y) + f(x)f(y), x, y ∈ X?

We give the following answers (announced already during the Symposium,
see [3]) to these questions.

Theorem 4. Under the assumptions and denotations occurring in the

statement of L. Reich’s question the lack of elements of order 2 in the
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ring Y forces a solution f : X → Y of equation (1) to be a homomorphism

between X an Y

Proof. Setting y = eX in (1) shows that f(x + eX) = f(x) + eY for
all x ∈ X. Put y + eX instead of y in (1) and apply the relationship just
derived to the resulting equation to obtain

f(xy + x) = f(xy) + f(x) for all x, y ∈ X.

In particular, by taking here y = eX , we infer that f(2x) = 2f(x) for all
x ∈ X. Replace now x and y in (1) by 2x and 2y, respectively, to get

2f(x + y) + 4f(xy) = 2f(x) + 2f(y) + 4f(x)f(y),

or, equivalently,

f(x + y) + 2f(xy) = f(x) + f(y) + 2f(x)f(y),

for every x, y ∈ X (recall that, by assumption, Y contains no elements
elements of order 2). To finish the proof it remains to subtract equation
(1) from the latter one side by side to obtain the multiplicativity of f ;
equation (1) jointly with the multiplicativity of the map f implies its
additivity.

Theorem 5. Let X and Y be two unitary rings and let eX and eY

denote the unit elements in X and Y , respectively. Assume that f : X → Y

is a solution of equation (1’). Then there exists a unique multiplicative

map h : X → Y such that f(x) = h(x + eX)− eY for all x ∈ X.

Conversely, for every multiplicative map h : X → Y the function

f : X → Y defined by the formula f(x) = h(x + eX) − eY , x ∈ X, yields

a solution to equation (1’).

Proof. Assume that f is a solution to (1’) and put g(x) := f(x)+eY ,
x ∈ X. Then, by (1’),

g(x + y + xy) = g(x)g(y), x, y ∈ X,

whence, on replacing here x and y by x− eX and y− eX , respectively, one
obtains the equation

g(xy − eX) = g(x− eX)g(y − eX), x, y ∈ X,
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stating that the function h : X → Y defined by the formula h(x) :=
g(x − eX) = f(x − eX) + eY , x ∈ X, is multiplicative. The uniqueness is
obvious.

To prove the converse it suffices to put x + eX and y + eX in place of
x and y, respectively, in the multiplicativity equation

h(xy) = h(x)h(y), x, y ∈ X,

and to apply the definition of f .

5. Remarks and examples

We terminate this paper with a brief discussion of the assumptions
that have been adopted and with some general remarks.

Remark 1. Equation (11) written in an equivalent form

f(x + y)− f(x)− f(y) = −2f(xy)

is of the type examined by B.R. Ebanks, P.L. Kannappan and P.K. Sa-

hoo in [2]: the Cauchy difference depends only on the product of argu-
ments. However, the results presented in [2] cannot be applied because
fields are the only possible domains for f that are admissible by the au-
thors.

Remark 2. Mikusiński’s equation happened to play an essential role
while dealing with even solutions of equation (1). Although much has
been said about this and even more general equations of that type (see
e.g. M. Kuczma [4, Chapter XIII, Section 8] and the references therein)
it seems desirable to investigate Mikusiński’s equation for mappins with
ranges in rings with zero divisors. As far as I know, such a question remains
open (no results in this direction till now).

Remark 3. The assumption that the rings considered are unitary
yields a qualitative difference in the scale of difficulties while dealing with
equation (1). This becomes evident when one compares the proofs pre-
sented in Section 4 with those occurring in the previous ones. In the
majority of cases we were adopting assumption (e) for the domain ring.
Clearly, (e) is trivially satisfied in unitary rings. Assumption (e) is, how-
ever, essentially weaker as can easily be seen from the following
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Example 1. Let R be a unitary ring admitting no zero divisors. Con-
sider the ring X(R) of all almost everywhere vanishing sequences with
values in R, with the usual (i.e. pointwise defined) addition and multi-
plication. Then X(R) is not unitary whereas condition (e) is satisfied.
Indeed, denoting by e the unit in R, we see that a constant sequence
u(n) = e, n ∈ N, would be the only possible candidate for a unit in X(R)
but, obviously, u 6∈ X(R). On the other hand, for an arbitarily fixed
element x = (xn)n∈N from X(R) the sequence ex defined by the formula

ex(n) =

{
e whenever xn 6= 0

0 otherwise

belongs to X(R) and satisfies the equality xex = x.

Noteworthy is the fact that, in general, X(R) is not 2-divisible.

Actually, we have got not only one but a family of examples indexed
by suitable rings R. This family may be enlarged considerably on replacing
sequences by almost everywhere vanishing mappings defined on a set D

with a distinguished set-theoretical proper ideal of “small” sets.

Example 2. Since for every x ∈ Z the number x + x2 = x(1 + x) is
even, assumption (q) is satisfied in the ring of all integers although it is
not 2-divisible. Similarly, preserving the notation of Example 1, the ring
X(Z) is not 2-divisible but condition (q) is obviously satisfied.

Plainly, in any ring in which the division by 2 is always performable
(not necessarily uniquely), assumption (q) may simply be disregarded.
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