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On the stability of the square-norm equation
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Abstract. The main result of this paper is the following: if α ≥ 0, α 6= 2 and a
real function f satisfies

f(x + 2y)− 2f(x + y) + f(x)− 2f(y) = o(yα)

((x, y) → (0, 0), x ≤ 0 ≤ x + 2y),

then there exists a real function q such that

q(x + 2y)− 2q(x + y) + q(x)− 2q(y) = 0 (x, y ∈ R)

and
f(x)− q(x) = o(|x|α) (x → 0).

1. Introduction

In the present paper we consider the square-norm functional equation

q(x + y) + q(x− y)− 2q(x)− 2q(y) = 0 (x, y ∈ R)

for real functions q and we call its solutions quadratic functions. We write
this equation in the form

q(x + 2y)− 2q(x + y) + q(x)− 2q(y) = 0 (x, y ∈ R)
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and we prove the following stability theorem: If, for α ≥ 0 α 6= 2, a real
function f satisfies

lim
(x,y)→(0,0)
x≤0≤x+2y

f(x + 2y)− 2f(x + y) + f(x)− 2f(y)
yα

= 0,

that is

f(x + 2y)− 2f(x + y) + f(x)− 2f(y) = o(yα)
((x, y) → (0, 0), x ≤ 0 ≤ x + 2y),

then there exists a quadratic function q : R→ R for which

f(x)− q(x) = o(|x|α) (x → 0).

By giving some counterexamples we also prove that the statement is not
valid for α = 2.

The study of the stability of functional equations in the sense above
was inspired by some works of A. Dinghas, A. Simon and P. Volkmann
on the Dinghas interval-derivative ([1], [6], [7], [9]). For some results con-
cerning the stability of monomial and polynomial functional equations in
this sense we refer to [2], [3], [4], [6] and [7], a similar consideration of the
square-norm equation to what we have here is given in [8].

2. Stability

Lemma 1. Let δ be a positive real number and f : (−δ, δ) → R be a
function. If, for a nonnegative real number K ≥ 0,

|f(x + 2y)− 2f(x + y) + f(x)− 2f(y)| ≤ K(1)
(x ∈ (−δ, 0], y, x + 2y ∈ [0, δ))

then there exist a K̄ ≥ 0 and a quadratic function q : R→ R, for which

|f(x)− q(x)| ≤ K̄ (x ∈ (−δ, δ)).

Proof. We prove that (1) implies the existence of a real number
K1 ≥ 0, such that

(2) |f(x + 2y)− 2f(x + y) + f(x)− 2f(y)| ≤ K1
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for all x, y, x + 2y ∈ (−δ, δ). By Corollario 1 in [8] this property yields
our statement.

Let δ > 0, and f : (−δ, δ) → R satisfy (1). If we write x = y = 0
in (1), we obtain |2f(0)| ≤ K, furthermore, with x = −y we get

(3) |f(y)− f(−y)| ≤ 2K (y ∈ (0, δ)).

Let x̄ and ȳ be fixed real numbers with the property x̄, ȳ, x̄+2ȳ ∈ (−δ, δ).
Then we have one of the following relations:

(A) x̄ ∈ (−δ, 0], ȳ ∈ [0, δ), x̄ + 2ȳ ∈ [0, δ);

(B) x̄ ∈ [0, δ), ȳ ∈ [0, δ), x̄ + 2ȳ ∈ [0, δ);

(C) x̄ ∈ (−δ, 0], ȳ ∈ [0, δ), x̄ + 2ȳ ∈ (−δ, 0];

(D) x̄ ∈ (−δ, 0], ȳ ∈ (−δ, 0], x̄ + 2ȳ ∈ (−δ, 0];

(E) x̄ ∈ [0, δ), ȳ ∈ (−δ, 0], x̄ + 2ȳ ∈ [0, δ);

(F) x̄ ∈ [0, δ), ȳ ∈ (−δ, 0], x̄ + 2ȳ ∈ (−δ, 0].

In case (A) the statement is trivial. In case (B) writing x = −x̄− 2ȳ and
y = x̄ + ȳ in (1) we obtain

|f(x̄)− 2f(−ȳ) + f(−x̄− 2ȳ)− 2f(x̄ + ȳ)| ≤ K.

The addition of this inequality to |f(x̄ + 2ȳ) − f(−x̄ − 2ȳ)| ≤ 2K and
|2f(−ȳ)− 2f(ȳ)| ≤ 4K gives

(4) |f(x̄ + 2ȳ)− 2f(x̄ + ȳ) + f(x̄)− 2f(ȳ)| ≤ 7K (x̄, ȳ, x̄ + ȳ ∈ [0, δ)).

In case (C) from (3) we get

|f(x̄ + 2ȳ)− f(−(x̄ + 2ȳ))− 2f(x̄ + ȳ) + 2f(−(x̄ + ȳ))

+f(x̄)− f(−x̄)− 2f(ȳ) + 2f(ȳ)| ≤ 8K,

which together with (4) yields (2). In case (D) inequalities (3) and (4)
similarly imply (2). In case (E) we get (2) by writing x = x̄+2ȳ and y = ȳ

in (4). Finally (1) and (3) give (2) in case (F).
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Theorem 1. Let α ≥ 0, α 6= 2 be a real number. If a function

f : R→ R satisfies

f(x + 2y)− 2f(x + y) + f(x)− 2f(y) = o(yα)(5)

((x, y) → (0, 0), x ≤ 0 ≤ x + 2y)

then there exists a quadratic function q : R→ R, such that

f(x)− q(x) = o(|x|α) (x → 0).

Proof. For α > 2 the statement was proved in Theorem 4 in [4].
Now let α ∈ [0, 2). By (5) there exist positive real numbers δ and K,

such that

|f(x + 2y)− 2f(x + y) + f(x)− 2f(y)| ≤ K

(x ∈ (−δ, 0], y, x + 2y ∈ [0, δ)),

therefore, by Lemma 1 there exist a K̄ ≥ 0 and a quadratic function
q : R→ R with the property

|f(x)− q(x)| ≤ K̄ (x ∈ (−δ, δ)).

For the function ε : (−δ, δ) → R, ε(x) = f(x) − q(x) Theorem 1 in [4]
implies ε(0) = 0 and

(6) ε(2z)− 22ε(z) = o(|z|α) (z → 0).

Using these results our proof is similar to some reasoning in the proof of
Théorème 2 in [7]. It is easy to see that (6) is equivalent to the following
property: there exist a positive real number δ1 and a continuous, increasing
function h : [0, δ1] → R, such that limz↘0 h(z) = 0 and

|ε(2z)− 4ε(z)| ≤ |z|αh(|z|) (z ∈ [−δ1, δ1]).

For

ε̄(z) =

{
ε(z)
|z|α , if z ∈ [−δ1, δ1], z 6= 0,

0, if z = 0
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we have
∣∣ |z|αε̄(z)− 2α−2|z|αε̄(2z)

∣∣ ≤ 1
4
|z|αh(|z|) (z ∈ [−δ1, δ1]),

that is
|ε̄(z)− 2α−2ε̄(2z)| ≤ 1

4
h(|z|) (z ∈ [−δ1, δ1]).

For the real numbers

sk = sup
{
|ε̄(z)|

∣∣∣ δ1

2k
≤ |z| ≤ δ1

2k−1

}
(k ∈ N)

we get

sk+1 ≤ 2α−2sk +
1
4
h

(
δ1

2k

)
(k ∈ N),

therefore, limk→∞ sk = 0, which implies

ε(z) = o(|z|α) (z → 0).

3. Instability

Lemma 2. Let δ be a positive real number and f : [−δ, δ] → R be a
continuous, odd function, which is two times differentiable on the interval
(0, δ) and f ′′(x) ≤ 0, (x ∈ (0, δ)). Then we have

(7) f(x + 2y)− 2f(x + y) + f(x) ≥ 0

for y ∈ [0, δ
2 ], x ∈ [−2y,−y] and

(8) f(x + 2y)− 2f(x + y) + f(x) ≤ 0

for y ∈ [0, δ
2 ], x ∈ [−y, 0].

Proof. Let δ > 0 be given and f : [−δ, δ] satisfy the properties in
the Lemma. By the well-known mean value theorem for divided differences
(s. a. o. [5], p. 168), for all pairwise different x1, x2, x3 ∈ [0, δ] there exists
a ξ ∈ (0, δ), such that

f(x1)
(x1 − x2)(x1 − x3)

+
f(x2)

(x2 − x1)(x2 − x3)
+

f(x3)
(x3 − x1)(x3 − x2)

(9)

=
f ′′(ξ)

2!
≤ 0.
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For y = 0 inequalities (7) and (8) are trivial.
Let y ∈ (0, δ

2 ], x ∈ (−2y,−y) be fixed and 2x + 3y 6= 0. If we write
x1 = x + 2y, x2 = −x− y and x3 = −x in (9), we obtain

1
(2x + 3y)(2x + 2y)y

(
yf(x + 2y)(I)

+(2x + 2y)f(−x− y)− (2x + 3y)f(−x)
) ≤ 0;

putting x1 = 0, x2 = x + 2y and x3 = −x− y we get

1
(x + 2y)(x + y)(2x + 3y)

(
(−2x− 3y)f(0)(II)

+(x + y)f(x + 2y) + (x + 2y)f(−x− y)
) ≤ 0;

x1 = 0, x2 = x + 2y and x3 = −x gives

1
x(x + 2y)(2x + 2y)

(
(−2x− 2y)f(0)(III)

+xf(x + 2y) + (x + 2y)f(−x)
) ≤ 0;

x1 = 0, x2 = −x− y and x3 = −x implies

(IV)
1

x(x + y)y
(
yf(0) + xf(−x− y) + (−x− y)f(−x)

) ≤ 0.

In the case when 2x + 3y < 0 we have

yf(x + 2y) + (2x + 2y)f(−x− y)− (2x + 3y)f(−x) ≤ 0;(I’)

(−2x− 3y)f(0) + (x + y)f(x + 2y) + (x + 2y)f(−x− y) ≤ 0;(II’)

(−2x− 2y)f(0) + xf(x + 2y) + (x + 2y)f(−x) ≤ 0;(III’)

yf(0) + xf(−x− y) + (−x− y)f(−x) ≤ 0.(IV’)

The addition of these inequalities yields

2(x + y)(f(x + 2y) + 2f(−x− y)− f(−x)) ≤ 0,

thus x + y < 0 gives

f(x + 2y) + 2f(−x− y)− f(−x) ≥ 0,
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and f being odd (7) is implied. If 2x + 3y > 0 then instead of (II’) we get

(II”) (2x + 3y)f(0)− (x + y)f(x + 2y)− (x + 2y)f(−x− y) ≤ 0,

and the addition of (II”), (III’) and (IV’) yields (7). Finally, since f is
continuous, we have (7) also for x = −y, x = −2y and x = − 3

2y .
For y ∈ (0, δ

2 ], x ∈ (−y, 0) and 2x + y 6= 0 we prove (8) in a similar
way by replacing

(I) x1 = x + 2y, x2 = x + y, x3 = −x;

(II) x1 = 0, x2 = x + 2y, x3 = x + y;

(III) x1 = 0, x2 = x + 2y, x3 = −x;

(IV) x1 = 0, x2 = x + y, x3 = −x

in (9). The continuity of f gives (8) for x = 0 and x = −y
2 .

Theorem 2. Let δ ∈ (0, 1) and β > 0 be real numbers. For the

function fβ : [−δ, δ] → R

(10) fβ(x) =
{

x2 ln(− ln(|x|β)), if x 6= 0

0, if x = 0.

we have

fβ(x + 2y)− 2fβ(x + y) + fβ(x)− 2fβ(y) = o(y2)(11)

((x, y) → (0, 0), x ≤ 0 ≤ x + 2y),

but there exists no quadratic function q : R→ R, such that

fβ(x)− q(x) = o(|x|2) (x → 0).

Proof. Let δ ∈ (0, 1) and β > 0 be given and we define the function
f = fβ : [−δ, δ] → R by (10).

We prove that (11) holds for this function. Let

F (x, y) =
f(x + 2y)− 2f(x + y) + f(x)− 2f(y)

y2

(
y ∈

(
0,

δ

2

]
, x ∈ [−2y, 0]

)
.
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For y ∈ (0, δ
2 ], x ∈ (−2y, 0), x 6= −y we have

∂F

∂x
(x, y) =

1
y2

(
2(x + 2y) ln(− ln(|x + 2y|β)) +

β(x + 2y)
ln(|x + 2y|β)

− 4(x + y) ln(− ln(|x + y|β))− 2
β(x + y)

ln(|x + y|β)

+ 2x ln(− ln(|x|β)) +
βx

ln(|x|β)

)
,

that is
∂F

∂x
(x, y) =

2
y2

(g(x + 2y)− 2g(x + y) + g(x)),

where

g(x) =

{
x

(
ln(− ln(|x|β)) + β

2 ln(|x|β)

)
, if x ∈ [−δ, δ], x 6= 0,

0, if x = 0.

This function is continuous, odd, two times differentiable on (0, δ) and
g′′(x) < 0, (x ∈ (0, δ)). Lemma 2 gives

∂F

∂x
(x, y) ≥ 0 (y ∈ (0,

δ

2
], x ∈ (−2y,−y))

and
∂F

∂x
(x, y) ≤ 0 (y ∈ (0,

δ

2
], x ∈ (−y, 0)),

therefore, for a fixed y ∈ (0, δ
2 ], F is increasing in its first variable on the

interval (−2y,−y) and decreasing in its first variable on (−y, 0). Further-
more, F is continuous in its first variable and

lim
y→0

F (−2y, y) = lim
y→0

F (−y, y) = lim
y→0

F (0, y) = 0,

which implies (11) for f .
Now we suppose that q : R → R is a quadratic function with the

property
f(x)− q(x) = o(|x|2) (x → 0).

The function f is continuous, therefore, there exists a real number ε > 0,
such that q is bounded on the interval (0, ε), thus it has the form q(x) =
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cx2, (x ∈ R) with a c ∈ R. However, there does not exist a c ∈ R for which

lim
x→0

(
ln

(− ln(|x|β)
)− c

)
= 0.

Remark. The construction of the counterexamples in Theorem 2 is
based on [7], where the function f : (0, 1) → R, f(x) = x ln(− ln(x)) was
given.
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interpolării, Editura Dacia, Cluj, 1972.

[6] A. Simon and P. Volkmann, Eine Charakterisierung von polynomialen Funktio-
nen mittels der Dinghasschen Intervall-Derivierten, Results in Math. 26 (1994),
382–384.

[7] A. Simon and P. Volkmann, Perturbations de fonctions additives, Ann. Math.
Silesianae 11 (1997), 21–27.

[8] F. Skof and S. Terracini, Sulla stabilità dell’equazione funzionale quadratica
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