Publ. Math. Debrecen 52 / 3-4 (1998), 419–427

On the stability of the square-norm equation

By ATTILA GILÁNYI (Debrecen)

Dedicated to Professors Zoltán Daróczy and Imre Kátai on the occasion of their 60th birthday

Abstract. The main result of this paper is the following: if $\alpha \ge 0$, $\alpha \ne 2$ and a real function f satisfies

$$f(x+2y) - 2f(x+y) + f(x) - 2f(y) = o(y^{\alpha})$$

((x,y) \rightarrow (0,0), x < 0 < x + 2y),

then there exists a real function q such that

$$q(x+2y) - 2q(x+y) + q(x) - 2q(y) = 0 \quad (x, y \in \mathbb{R})$$

and

$$f(x) - q(x) = o(|x|^{\alpha}) \quad (x \to 0).$$

1. Introduction

In the present paper we consider the square-norm functional equation

$$q(x+y) + q(x-y) - 2q(x) - 2q(y) = 0 \qquad (x, y \in \mathbb{R})$$

for real functions q and we call its solutions quadratic functions. We write this equation in the form

$$q(x+2y) - 2q(x+y) + q(x) - 2q(y) = 0 \qquad (x, y \in \mathbb{R})$$

Mathematics Subject Classification: Primary 39B22, Secondary 26A24.

Research supported by OTKA No. T-016846 and FKFP No. 0310/1997.

 $Key\ words\ and\ phrases:$ stability of functional equations, square-norm equation, interval-derivative.

Attila Gilányi

and we prove the following stability theorem: If, for $\alpha \geq 0$ $\alpha \neq 2$, a real function f satisfies

$$\lim_{\substack{(x,y)\to(0,0)\\x\le 0\le x+2y}}\frac{f(x+2y)-2f(x+y)+f(x)-2f(y)}{y^{\alpha}}=0,$$

that is

$$f(x+2y) - 2f(x+y) + f(x) - 2f(y) = o(y^{\alpha})$$

((x,y) \rightarrow (0,0), x \le 0 \le x + 2y),

then there exists a quadratic function $q:\mathbb{R}\to\mathbb{R}$ for which

$$f(x) - q(x) = o(|x|^{\alpha}) \qquad (x \to 0).$$

By giving some counterexamples we also prove that the statement is not valid for $\alpha = 2$.

The study of the stability of functional equations in the sense above was inspired by some works of A. DINGHAS, A. SIMON and P. VOLKMANN on the Dinghas interval-derivative ([1], [6], [7], [9]). For some results concerning the stability of monomial and polynomial functional equations in this sense we refer to [2], [3], [4], [6] and [7], a similar consideration of the square-norm equation to what we have here is given in [8].

2. Stability

Lemma 1. Let δ be a positive real number and $f : (-\delta, \delta) \to \mathbb{R}$ be a function. If, for a nonnegative real number $K \ge 0$,

(1)
$$|f(x+2y) - 2f(x+y) + f(x) - 2f(y)| \le K$$
$$(x \in (-\delta, 0], \ y, x+2y \in [0, \delta))$$

then there exist a $\overline{K} \geq 0$ and a quadratic function $q : \mathbb{R} \to \mathbb{R}$, for which

$$|f(x) - q(x)| \le \bar{K} \qquad (x \in (-\delta, \delta)).$$

PROOF. We prove that (1) implies the existence of a real number $K_1 \ge 0$, such that

(2)
$$|f(x+2y) - 2f(x+y) + f(x) - 2f(y)| \le K_1$$

for all $x, y, x + 2y \in (-\delta, \delta)$. By Corollario 1 in [8] this property yields our statement.

Let $\delta > 0$, and $f : (-\delta, \delta) \to \mathbb{R}$ satisfy (1). If we write x = y = 0in (1), we obtain $|2f(0)| \leq K$, furthermore, with x = -y we get

(3)
$$|f(y) - f(-y)| \le 2K$$
 $(y \in (0, \delta)).$

Let \bar{x} and \bar{y} be fixed real numbers with the property \bar{x} , \bar{y} , $\bar{x} + 2\bar{y} \in (-\delta, \delta)$. Then we have one of the following relations:

 $\begin{array}{lll} \text{(A)} & \bar{x} \in (-\delta, 0], \ \bar{y} \in [0, \delta), \ \bar{x} + 2\bar{y} \in [0, \delta); \\ \text{(B)} & \bar{x} \in [0, \delta), \ \bar{y} \in [0, \delta), \ \bar{x} + 2\bar{y} \in [0, \delta); \\ \text{(C)} & \bar{x} \in (-\delta, 0], \ \bar{y} \in [0, \delta), \ \bar{x} + 2\bar{y} \in (-\delta, 0]; \\ \text{(D)} & \bar{x} \in (-\delta, 0], \ \bar{y} \in (-\delta, 0], \ \bar{x} + 2\bar{y} \in (-\delta, 0]; \\ \text{(E)} & \bar{x} \in [0, \delta), \ \bar{y} \in (-\delta, 0], \ \bar{x} + 2\bar{y} \in [0, \delta); \\ \text{(F)} & \bar{x} \in [0, \delta), \ \bar{y} \in (-\delta, 0], \ \bar{x} + 2\bar{y} \in (-\delta, 0]. \end{array}$

In case (A) the statement is trivial. In case (B) writing $x = -\bar{x} - 2\bar{y}$ and $y = \bar{x} + \bar{y}$ in (1) we obtain

$$|f(\bar{x}) - 2f(-\bar{y}) + f(-\bar{x} - 2\bar{y}) - 2f(\bar{x} + \bar{y})| \le K.$$

The addition of this inequality to $|f(\bar{x} + 2\bar{y}) - f(-\bar{x} - 2\bar{y})| \le 2K$ and $|2f(-\bar{y}) - 2f(\bar{y})| \le 4K$ gives

(4)
$$|f(\bar{x}+2\bar{y})-2f(\bar{x}+\bar{y})+f(\bar{x})-2f(\bar{y})| \le 7K$$
 $(\bar{x},\bar{y},\bar{x}+\bar{y}\in[0,\delta)).$

In case (C) from (3) we get

$$|f(\bar{x}+2\bar{y}) - f(-(\bar{x}+2\bar{y})) - 2f(\bar{x}+\bar{y}) + 2f(-(\bar{x}+\bar{y})) + f(\bar{x}) - f(-\bar{x}) - 2f(\bar{y}) + 2f(\bar{y})| \le 8K,$$

which together with (4) yields (2). In case (D) inequalities (3) and (4) similarly imply (2). In case (E) we get (2) by writing $x = \bar{x} + 2\bar{y}$ and $y = \bar{y}$ in (4). Finally (1) and (3) give (2) in case (F).

Attila Gilányi

Theorem 1. Let $\alpha \geq 0$, $\alpha \neq 2$ be a real number. If a function $f : \mathbb{R} \to \mathbb{R}$ satisfies

(5)
$$f(x+2y) - 2f(x+y) + f(x) - 2f(y) = o(y^{\alpha})$$
$$((x,y) \to (0,0), \ x \le 0 \le x + 2y)$$

then there exists a quadratic function $q: \mathbb{R} \to \mathbb{R}$, such that

$$f(x) - q(x) = o(|x|^{\alpha}) \qquad (x \to 0).$$

PROOF. For $\alpha > 2$ the statement was proved in Theorem 4 in [4].

Now let $\alpha \in [0, 2)$. By (5) there exist positive real numbers δ and K, such that

$$\begin{split} |f(x+2y) - 2f(x+y) + f(x) - 2f(y)| &\leq K \\ (x \in (-\delta, 0], \ y, x+2y \in [0, \delta)), \end{split}$$

therefore, by Lemma 1 there exist a $\bar{K}\geq 0$ and a quadratic function $q:\mathbb{R}\to\mathbb{R}$ with the property

$$|f(x) - q(x)| \le \bar{K} \qquad (x \in (-\delta, \delta)).$$

For the function $\varepsilon : (-\delta, \delta) \to \mathbb{R}$, $\varepsilon(x) = f(x) - q(x)$ Theorem 1 in [4] implies $\varepsilon(0) = 0$ and

(6)
$$\varepsilon(2z) - 2^2 \varepsilon(z) = o(|z|^{\alpha}) \quad (z \to 0).$$

Using these results our proof is similar to some reasoning in the proof of Théorème 2 in [7]. It is easy to see that (6) is equivalent to the following property: there exist a positive real number δ_1 and a continuous, increasing function $h: [0, \delta_1] \to \mathbb{R}$, such that $\lim_{z \searrow 0} h(z) = 0$ and

$$|\varepsilon(2z) - 4\varepsilon(z)| \le |z|^{\alpha} h(|z|) \qquad (z \in [-\delta_1, \delta_1]).$$

For

$$\bar{\varepsilon}(z) = \begin{cases} \frac{\varepsilon(z)}{|z|^{\alpha}}, & \text{if } z \in [-\delta_1, \delta_1], \ z \neq 0, \\ 0, & \text{if } z = 0 \end{cases}$$

we have

$$\left| |z|^{\alpha} \overline{\varepsilon}(z) - 2^{\alpha-2} |z|^{\alpha} \overline{\varepsilon}(2z) \right| \leq \frac{1}{4} |z|^{\alpha} h(|z|) \qquad (z \in [-\delta_1, \delta_1]),$$

that is

$$|\bar{\varepsilon}(z) - 2^{\alpha - 2}\bar{\varepsilon}(2z)| \le \frac{1}{4}h(|z|) \qquad (z \in [-\delta_1, \delta_1]).$$

For the real numbers

$$s_k = \sup\left\{ |\bar{\varepsilon}(z)| \mid \frac{\delta_1}{2^k} \le |z| \le \frac{\delta_1}{2^{k-1}} \right\} \quad (k \in \mathbb{N})$$

we get

$$s_{k+1} \le 2^{\alpha-2}s_k + \frac{1}{4}h\left(\frac{\delta_1}{2^k}\right) \qquad (k \in \mathbb{N}),$$

therefore, $\lim_{k\to\infty} s_k = 0$, which implies

$$\varepsilon(z) = o(|z|^{\alpha}) \qquad (z \to 0).$$

3. Instability

Lemma 2. Let δ be a positive real number and $f : [-\delta, \delta] \to \mathbb{R}$ be a continuous, odd function, which is two times differentiable on the interval $(0, \delta)$ and $f''(x) \leq 0$, $(x \in (0, \delta))$. Then we have

(7)
$$f(x+2y) - 2f(x+y) + f(x) \ge 0$$

for $y \in [0, \frac{\delta}{2}]$, $x \in [-2y, -y]$ and

(8)
$$f(x+2y) - 2f(x+y) + f(x) \le 0$$

for $y \in [0, \frac{\delta}{2}]$, $x \in [-y, 0]$.

PROOF. Let $\delta > 0$ be given and $f : [-\delta, \delta]$ satisfy the properties in the Lemma. By the well-known mean value theorem for divided differences (s. a. o. [5], p. 168), for all pairwise different $x_1, x_2, x_3 \in [0, \delta]$ there exists a $\xi \in (0, \delta)$, such that

(9)
$$\frac{f(x_1)}{(x_1 - x_2)(x_1 - x_3)} + \frac{f(x_2)}{(x_2 - x_1)(x_2 - x_3)} + \frac{f(x_3)}{(x_3 - x_1)(x_3 - x_2)} = \frac{f''(\xi)}{2!} \le 0.$$

Attila Gilányi

For y = 0 inequalities (7) and (8) are trivial.

Let $y \in (0, \frac{\delta}{2}]$, $x \in (-2y, -y)$ be fixed and $2x + 3y \neq 0$. If we write $x_1 = x + 2y$, $x_2 = -x - y$ and $x_3 = -x$ in (9), we obtain

(I)
$$\frac{1}{(2x+3y)(2x+2y)y} (yf(x+2y) + (2x+2y)f(-x-y) - (2x+3y)f(-x)) \le 0;$$

putting $x_1 = 0$, $x_2 = x + 2y$ and $x_3 = -x - y$ we get

(II)
$$\frac{1}{(x+2y)(x+y)(2x+3y)} ((-2x-3y)f(0) + (x+y)f(x+2y) + (x+2y)f(-x-y)) \le 0;$$

 $x_1 = 0, x_2 = x + 2y$ and $x_3 = -x$ gives

(III)
$$\frac{1}{x(x+2y)(2x+2y)} \left((-2x-2y)f(0) + xf(x+2y) + (x+2y)f(-x) \right) \le 0;$$

 $x_1 = 0, x_2 = -x - y$ and $x_3 = -x$ implies

(IV)
$$\frac{1}{x(x+y)y} (yf(0) + xf(-x-y) + (-x-y)f(-x)) \le 0.$$

In the case when 2x + 3y < 0 we have

(I')
$$yf(x+2y) + (2x+2y)f(-x-y) - (2x+3y)f(-x) \le 0;$$

(II')
$$(-2x - 3y)f(0) + (x + y)f(x + 2y) + (x + 2y)f(-x - y) \le 0;$$

(III')
$$(-2x - 2y)f(0) + xf(x + 2y) + (x + 2y)f(-x) \le 0;$$

(IV')
$$yf(0) + xf(-x-y) + (-x-y)f(-x) \le 0.$$

The addition of these inequalities yields

$$2(x+y)(f(x+2y) + 2f(-x-y) - f(-x)) \le 0,$$

thus x + y < 0 gives

$$f(x+2y) + 2f(-x-y) - f(-x) \ge 0,$$

and f being odd (7) is implied. If 2x + 3y > 0 then instead of (II') we get

(II")
$$(2x+3y)f(0) - (x+y)f(x+2y) - (x+2y)f(-x-y) \le 0,$$

and the addition of (II"), (III') and (IV') yields (7). Finally, since f is continuous, we have (7) also for x = -y, x = -2y and $x = -\frac{3}{2}y$.

For $y \in (0, \frac{\delta}{2}]$, $x \in (-y, 0)$ and $2x + y \neq 0$ we prove (8) in a similar way by replacing

(I)
$$x_1 = x + 2y, x_2 = x + y, x_3 = -x;$$

(II)
$$x_1 = 0, x_2 = x + 2y, x_3 = x + y;$$

- (III) $x_1 = 0, x_2 = x + 2y, x_3 = -x;$
- (IV) $x_1 = 0, x_2 = x + y, x_3 = -x$

in (9). The continuity of f gives (8) for x = 0 and $x = -\frac{y}{2}$.

Theorem 2. Let $\delta \in (0,1)$ and $\beta > 0$ be real numbers. For the function $f_{\beta} : [-\delta, \delta] \to \mathbb{R}$

(10)
$$f_{\beta}(x) = \begin{cases} x^2 \ln(-\ln(|x|^{\beta})), & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$$

we have

(11)
$$f_{\beta}(x+2y) - 2f_{\beta}(x+y) + f_{\beta}(x) - 2f_{\beta}(y) = o(y^2)$$
$$((x,y) \to (0,0), \ x \le 0 \le x + 2y),$$

but there exists no quadratic function $q: \mathbb{R} \to \mathbb{R}$, such that

$$f_{\beta}(x) - q(x) = o(|x|^2) \qquad (x \to 0).$$

PROOF. Let $\delta \in (0, 1)$ and $\beta > 0$ be given and we define the function $f = f_{\beta} : [-\delta, \delta] \to \mathbb{R}$ by (10).

We prove that (11) holds for this function. Let

$$F(x,y) = \frac{f(x+2y) - 2f(x+y) + f(x) - 2f(y)}{y^2}$$
$$\left(y \in \left(0, \frac{\delta}{2}\right], \ x \in [-2y, 0]\right).$$

For $y \in (0, \frac{\delta}{2}]$, $x \in (-2y, 0)$, $x \neq -y$ we have

$$\begin{split} \frac{\partial F}{\partial x}(x,y) &= \frac{1}{y^2} \bigg(2(x+2y) \ln(-\ln(|x+2y|^\beta)) + \frac{\beta(x+2y)}{\ln(|x+2y|^\beta)} \\ &- 4(x+y) \ln(-\ln(|x+y|^\beta)) - 2\frac{\beta(x+y)}{\ln(|x+y|^\beta)} \\ &+ 2x \ln(-\ln(|x|^\beta)) + \frac{\beta x}{\ln(|x|^\beta)} \bigg), \end{split}$$

that is

$$\frac{\partial F}{\partial x}(x,y) = \frac{2}{y^2}(g(x+2y) - 2g(x+y) + g(x)),$$

where

$$g(x) = \begin{cases} x \left(\ln(-\ln(|x|^{\beta})) + \frac{\beta}{2\ln(|x|^{\beta})} \right), & \text{if } x \in [-\delta, \delta], x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$$

This function is continuous, odd, two times differentiable on $(0, \delta)$ and g''(x) < 0, $(x \in (0, \delta))$. Lemma 2 gives

$$\frac{\partial F}{\partial x}(x,y) \ge 0 \qquad (y \in (0,\frac{\delta}{2}], \ x \in (-2y,-y))$$

and

$$\frac{\partial F}{\partial x}(x,y) \le 0 \qquad (y \in (0,\frac{\delta}{2}], \ x \in (-y,0)),$$

therefore, for a fixed $y \in (0, \frac{\delta}{2}]$, F is increasing in its first variable on the interval (-2y, -y) and decreasing in its first variable on (-y, 0). Furthermore, F is continuous in its first variable and

$$\lim_{y \to 0} F(-2y, y) = \lim_{y \to 0} F(-y, y) = \lim_{y \to 0} F(0, y) = 0,$$

which implies (11) for f.

Now we suppose that $q\,:\,\mathbb{R}\,\to\,\mathbb{R}$ is a quadratic function with the property

$$f(x) - q(x) = o(|x|^2) \qquad (x \to 0).$$

The function f is continuous, therefore, there exists a real number $\varepsilon > 0$, such that q is bounded on the interval $(0, \varepsilon)$, thus it has the form q(x) =

 cx^2 , $(x \in \mathbb{R})$ with a $c \in \mathbb{R}$. However, there does not exist a $c \in \mathbb{R}$ for which

$$\lim_{x \to 0} \left(\ln \left(-\ln(|x|^{\beta}) \right) - c \right) = 0.$$

Remark. The construction of the counterexamples in Theorem 2 is based on [7], where the function $f: (0,1) \to \mathbb{R}$, $f(x) = x \ln(-\ln(x))$ was given.

References

- A. DINGHAS, Zur Theorie der gewöhnlichen Differentialgleichungen, Ann. Acad. Sci. Fennicae, Ser. A I 375 (1966).
- [2] A. GILÁNYI, Charakterisierung von monomialen Funktionen und Lösung von Funktionalgleichungen mit Computern, Diss., Univ. Karlsruhe, 1995.
- [3] A. GILÁNYI, A characterization of monomial functions, Aequationes Math. 54 (1997), 289–307.
- [4] A. GILÁNYI, On locally monomial functions, Publ. Math. Debrecen 51 (1997), 343–361.
- [5] E. POPOVICIU, Teoreme de medie din analiza matematică și legătura lor cu teoria interpolării, *Editura Dacia, Cluj*, 1972.
- [6] A. SIMON and P. VOLKMANN, Eine Charakterisierung von polynomialen Funktionen mittels der Dinghasschen Intervall-Derivierten, *Results in Math.* 26 (1994), 382–384.
- [7] A. SIMON and P. VOLKMANN, Perturbations de fonctions additives, Ann. Math. Silesianae 11 (1997), 21–27.
- [8] F. SKOF and S. TERRACINI, Sulla stabilità dell'equazione funzionale quadratica su un dominio ristretto, Atti della Accademia delle Scienze di Torino 121 no. 5-6 (1987), 153–167.
- [9] P. VOLKMANN, Die Äquivalenz zweier Ableitungsbegriffe, Diss., *Freie Univ. Berlin*, 1971.

ATTILA GILÁNYI INSTITUTE OF MATHEMATICS AND INFORMATICS LAJOS KOSSUTH UNIVERSITY H-4010 DEBRECEN, P.O. BOX 12. HUNGARY

E-mail: gil@math.klte.hu

(Received October 31, 1997)