On the stability of the square-norm equation

By ATTILA GILÁNYI (Debrecen)
Dedicated to Professors Zoltán Daróczy and Imre Kátai on the occasion of their 60th birthday

$$
\begin{aligned}
& \text { Abstract. The main result of this paper is the following: if } \alpha \geq 0, \alpha \neq 2 \text { and a } \\
& \text { real function } f \text { satisfies } \\
& \qquad \begin{array}{c}
f(x+2 y)-2 f(x+y)+f(x)-2 f(y)=o\left(y^{\alpha}\right) \\
((x, y) \rightarrow(0,0), x \leq 0 \leq x+2 y)
\end{array}
\end{aligned}
$$

then there exists a real function q such that

$$
q(x+2 y)-2 q(x+y)+q(x)-2 q(y)=0 \quad(x, y \in \mathbb{R})
$$

and

$$
f(x)-q(x)=o\left(|x|^{\alpha}\right) \quad(x \rightarrow 0)
$$

1. Introduction

In the present paper we consider the square-norm functional equation

$$
q(x+y)+q(x-y)-2 q(x)-2 q(y)=0 \quad(x, y \in \mathbb{R})
$$

for real functions q and we call its solutions quadratic functions. We write this equation in the form

$$
q(x+2 y)-2 q(x+y)+q(x)-2 q(y)=0 \quad(x, y \in \mathbb{R})
$$

Mathematics Subject Classification: Primary 39B22, Secondary 26A24.
Key words and phrases: stability of functional equations, square-norm equation, inter-val-derivative.
Research supported by OTKA No. T-016846 and FKFP No. 0310/1997.
and we prove the following stability theorem: If, for $\alpha \geq 0 \alpha \neq 2$, a real function f satisfies

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ x \leq 0 \leq x+2 y}} \frac{f(x+2 y)-2 f(x+y)+f(x)-2 f(y)}{y^{\alpha}}=0
$$

that is

$$
\begin{gathered}
f(x+2 y)-2 f(x+y)+f(x)-2 f(y)=o\left(y^{\alpha}\right) \\
((x, y) \rightarrow(0,0), x \leq 0 \leq x+2 y),
\end{gathered}
$$

then there exists a quadratic function $q: \mathbb{R} \rightarrow \mathbb{R}$ for which

$$
f(x)-q(x)=o\left(|x|^{\alpha}\right) \quad(x \rightarrow 0) .
$$

By giving some counterexamples we also prove that the statement is not valid for $\alpha=2$.

The study of the stability of functional equations in the sense above was inspired by some works of A. Dinghas, A. Simon and P. Volkmann on the Dinghas interval-derivative ([1], [6], [7], [9]). For some results concerning the stability of monomial and polynomial functional equations in this sense we refer to [2], [3], [4], [6] and [7], a similar consideration of the square-norm equation to what we have here is given in [8].

2. Stability

Lemma 1. Let δ be a positive real number and $f:(-\delta, \delta) \rightarrow \mathbb{R}$ be a function. If, for a nonnegative real number $K \geq 0$,

$$
\begin{gather*}
|f(x+2 y)-2 f(x+y)+f(x)-2 f(y)| \leq K \tag{1}\\
(x \in(-\delta, 0], y, x+2 y \in[0, \delta))
\end{gather*}
$$

then there exist a $\bar{K} \geq 0$ and a quadratic function $q: \mathbb{R} \rightarrow \mathbb{R}$, for which

$$
|f(x)-q(x)| \leq \bar{K} \quad(x \in(-\delta, \delta))
$$

Proof. We prove that (1) implies the existence of a real number $K_{1} \geq 0$, such that

$$
\begin{equation*}
|f(x+2 y)-2 f(x+y)+f(x)-2 f(y)| \leq K_{1} \tag{2}
\end{equation*}
$$

for all $x, y, x+2 y \in(-\delta, \delta)$. By Corollario 1 in [8] this property yields our statement.

Let $\delta>0$, and $f:(-\delta, \delta) \rightarrow \mathbb{R}$ satisfy (1). If we write $x=y=0$ in (1), we obtain $|2 f(0)| \leq K$, furthermore, with $x=-y$ we get

$$
\begin{equation*}
|f(y)-f(-y)| \leq 2 K \quad(y \in(0, \delta)) \tag{3}
\end{equation*}
$$

Let \bar{x} and \bar{y} be fixed real numbers with the property $\bar{x}, \bar{y}, \bar{x}+2 \bar{y} \in(-\delta, \delta)$. Then we have one of the following relations:
(A) $\bar{x} \in(-\delta, 0], \bar{y} \in[0, \delta), \bar{x}+2 \bar{y} \in[0, \delta)$;
(B) $\bar{x} \in[0, \delta), \bar{y} \in[0, \delta), \bar{x}+2 \bar{y} \in[0, \delta)$;
(C) $\bar{x} \in(-\delta, 0], \bar{y} \in[0, \delta), \bar{x}+2 \bar{y} \in(-\delta, 0]$;
(D) $\bar{x} \in(-\delta, 0], \bar{y} \in(-\delta, 0], \bar{x}+2 \bar{y} \in(-\delta, 0]$;
(E) $\bar{x} \in[0, \delta), \bar{y} \in(-\delta, 0], \bar{x}+2 \bar{y} \in[0, \delta)$;
(F) $\bar{x} \in[0, \delta), \bar{y} \in(-\delta, 0], \bar{x}+2 \bar{y} \in(-\delta, 0]$.

In case (A) the statement is trivial. In case (B) writing $x=-\bar{x}-2 \bar{y}$ and $y=\bar{x}+\bar{y}$ in (1) we obtain

$$
|f(\bar{x})-2 f(-\bar{y})+f(-\bar{x}-2 \bar{y})-2 f(\bar{x}+\bar{y})| \leq K .
$$

The addition of this inequality to $|f(\bar{x}+2 \bar{y})-f(-\bar{x}-2 \bar{y})| \leq 2 K$ and $|2 f(-\bar{y})-2 f(\bar{y})| \leq 4 K$ gives
(4) $|f(\bar{x}+2 \bar{y})-2 f(\bar{x}+\bar{y})+f(\bar{x})-2 f(\bar{y})| \leq 7 K \quad(\bar{x}, \bar{y}, \bar{x}+\bar{y} \in[0, \delta))$.

In case (C) from (3) we get

$$
\begin{gathered}
\mid f(\bar{x}+2 \bar{y})-f(-(\bar{x}+2 \bar{y}))-2 f(\bar{x}+\bar{y})+2 f(-(\bar{x}+\bar{y})) \\
+f(\bar{x})-f(-\bar{x})-2 f(\bar{y})+2 f(\bar{y}) \mid \leq 8 K,
\end{gathered}
$$

which together with (4) yields (2). In case (D) inequalities (3) and (4) similarly imply (2). In case (E) we get (2) by writing $x=\bar{x}+2 \bar{y}$ and $y=\bar{y}$ in (4). Finally (1) and (3) give (2) in case (F).

Theorem 1. Let $\alpha \geq 0, \alpha \neq 2$ be a real number. If a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
\begin{gather*}
f(x+2 y)-2 f(x+y)+f(x)-2 f(y)=o\left(y^{\alpha}\right) \tag{5}\\
((x, y) \rightarrow(0,0), x \leq 0 \leq x+2 y)
\end{gather*}
$$

then there exists a quadratic function $q: \mathbb{R} \rightarrow \mathbb{R}$, such that

$$
f(x)-q(x)=o\left(|x|^{\alpha}\right) \quad(x \rightarrow 0) .
$$

Proof. For $\alpha>2$ the statement was proved in Theorem 4 in [4].
Now let $\alpha \in[0,2)$. By (5) there exist positive real numbers δ and K, such that

$$
\begin{gathered}
|f(x+2 y)-2 f(x+y)+f(x)-2 f(y)| \leq K \\
(x \in(-\delta, 0], y, x+2 y \in[0, \delta)),
\end{gathered}
$$

therefore, by Lemma 1 there exist a $\bar{K} \geq 0$ and a quadratic function $q: \mathbb{R} \rightarrow \mathbb{R}$ with the property

$$
|f(x)-q(x)| \leq \bar{K} \quad(x \in(-\delta, \delta))
$$

For the function $\varepsilon:(-\delta, \delta) \rightarrow \mathbb{R}, \varepsilon(x)=f(x)-q(x)$ Theorem 1 in [4] implies $\varepsilon(0)=0$ and

$$
\begin{equation*}
\varepsilon(2 z)-2^{2} \varepsilon(z)=o\left(|z|^{\alpha}\right) \quad(z \rightarrow 0) \tag{6}
\end{equation*}
$$

Using these results our proof is similar to some reasoning in the proof of Théorème 2 in [7]. It is easy to see that (6) is equivalent to the following property: there exist a positive real number δ_{1} and a continuous, increasing function $h:\left[0, \delta_{1}\right] \rightarrow \mathbb{R}$, such that $\lim _{z \backslash 0} h(z)=0$ and

$$
|\varepsilon(2 z)-4 \varepsilon(z)| \leq|z|^{\alpha} h(|z|) \quad\left(z \in\left[-\delta_{1}, \delta_{1}\right]\right)
$$

For

$$
\bar{\varepsilon}(z)= \begin{cases}\frac{\varepsilon(z)}{|z|^{\alpha}}, & \text { if } z \in\left[-\delta_{1}, \delta_{1}\right], z \neq 0, \\ 0, & \text { if } z=0\end{cases}
$$

we have

$$
\left.\left.\left||z|^{\alpha} \bar{\varepsilon}(z)-2^{\alpha-2}\right| z\right|^{\alpha} \bar{\varepsilon}(2 z)\left|\leq \frac{1}{4}\right| z\right|^{\alpha} h(|z|) \quad\left(z \in\left[-\delta_{1}, \delta_{1}\right]\right)
$$

that is

$$
\left|\bar{\varepsilon}(z)-2^{\alpha-2} \bar{\varepsilon}(2 z)\right| \leq \frac{1}{4} h(|z|) \quad\left(z \in\left[-\delta_{1}, \delta_{1}\right]\right)
$$

For the real numbers

$$
s_{k}=\sup \left\{|\bar{\varepsilon}(z)|\left|\frac{\delta_{1}}{2^{k}} \leq|z| \leq \frac{\delta_{1}}{2^{k-1}}\right\} \quad(k \in \mathbb{N})\right.
$$

we get

$$
s_{k+1} \leq 2^{\alpha-2} s_{k}+\frac{1}{4} h\left(\frac{\delta_{1}}{2^{k}}\right) \quad(k \in \mathbb{N})
$$

therefore, $\lim _{k \rightarrow \infty} s_{k}=0$, which implies

$$
\varepsilon(z)=o\left(|z|^{\alpha}\right) \quad(z \rightarrow 0)
$$

3. Instability

Lemma 2. Let δ be a positive real number and $f:[-\delta, \delta] \rightarrow \mathbb{R}$ be a continuous, odd function, which is two times differentiable on the interval $(0, \delta)$ and $f^{\prime \prime}(x) \leq 0,(x \in(0, \delta))$. Then we have

$$
\begin{equation*}
f(x+2 y)-2 f(x+y)+f(x) \geq 0 \tag{7}
\end{equation*}
$$

for $y \in\left[0, \frac{\delta}{2}\right], x \in[-2 y,-y]$ and

$$
\begin{equation*}
f(x+2 y)-2 f(x+y)+f(x) \leq 0 \tag{8}
\end{equation*}
$$

for $y \in\left[0, \frac{\delta}{2}\right], x \in[-y, 0]$.
Proof. Let $\delta>0$ be given and $f:[-\delta, \delta]$ satisfy the properties in the Lemma. By the well-known mean value theorem for divided differences (s. a. o. [5], p. 168), for all pairwise different $x_{1}, x_{2}, x_{3} \in[0, \delta]$ there exists a $\xi \in(0, \delta)$, such that

$$
\begin{gather*}
\frac{f\left(x_{1}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)}+\frac{f\left(x_{2}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)}+\frac{f\left(x_{3}\right)}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} \tag{9}\\
=\frac{f^{\prime \prime}(\xi)}{2!} \leq 0 .
\end{gather*}
$$

For $y=0$ inequalities (7) and (8) are trivial.
Let $y \in\left(0, \frac{\delta}{2}\right], x \in(-2 y,-y)$ be fixed and $2 x+3 y \neq 0$. If we write $x_{1}=x+2 y, x_{2}=-x-y$ and $x_{3}=-x$ in (9), we obtain

$$
\begin{gather*}
\frac{1}{(2 x+3 y)(2 x+2 y) y}(y f(x+2 y) \tag{I}\\
+(2 x+2 y) f(-x-y)-(2 x+3 y) f(-x)) \leq 0
\end{gather*}
$$

putting $x_{1}=0, x_{2}=x+2 y$ and $x_{3}=-x-y$ we get

$$
\begin{gather*}
\frac{1}{(x+2 y)(x+y)(2 x+3 y)}((-2 x-3 y) f(0) \tag{II}\\
+(x+y) f(x+2 y)+(x+2 y) f(-x-y)) \leq 0
\end{gather*}
$$

$x_{1}=0, x_{2}=x+2 y$ and $x_{3}=-x$ gives

$$
\begin{align*}
& \frac{1}{x(x+2 y)(2 x+2 y)}((-2 x-2 y) f(0) \tag{III}\\
& +x f(x+2 y)+(x+2 y) f(-x)) \leq 0
\end{align*}
$$

$x_{1}=0, x_{2}=-x-y$ and $x_{3}=-x$ implies
(IV) $\frac{1}{x(x+y) y}(y f(0)+x f(-x-y)+(-x-y) f(-x)) \leq 0$.

In the case when $2 x+3 y<0$ we have

$$
\begin{array}{lrl}
\left(\mathrm{I}^{\prime}\right) & y f(x+2 y)+(2 x+2 y) f(-x-y)-(2 x+3 y) f(-x) \leq 0 ; \\
\left(\mathrm{II}^{\prime}\right) & (-2 x-3 y) f(0)+(x+y) f(x+2 y)+(x+2 y) f(-x-y) \leq 0 ; \\
\left(\mathrm{III}^{\prime}\right) & (-2 x-2 y) f(0)+x f(x+2 y)+(x+2 y) f(-x) \leq 0 ; \tag{III'}
\end{array}
$$

The addition of these inequalities yields

$$
2(x+y)(f(x+2 y)+2 f(-x-y)-f(-x)) \leq 0
$$

thus $x+y<0$ gives

$$
f(x+2 y)+2 f(-x-y)-f(-x) \geq 0,
$$

and f being odd (7) is implied. If $2 x+3 y>0$ then instead of (II') we get
(II") $\quad(2 x+3 y) f(0)-(x+y) f(x+2 y)-(x+2 y) f(-x-y) \leq 0$,
and the addition of (II"), (III') and (IV') yields (7). Finally, since f is continuous, we have (7) also for $x=-y, x=-2 y$ and $x=-\frac{3}{2} y$.

For $y \in\left(0, \frac{\delta}{2}\right], x \in(-y, 0)$ and $2 x+y \neq 0$ we prove (8) in a similar way by replacing

$$
\begin{aligned}
\text { (I) } & x_{1}=x+2 y, x_{2}=x+y, x_{3}=-x ; \\
\text { (II) } & x_{1}=0, x_{2}=x+2 y, x_{3}=x+y ; \\
\text { (III) } & x_{1}=0, x_{2}=x+2 y, x_{3}=-x ; \\
\text { (IV) } & x_{1}=0, x_{2}=x+y, x_{3}=-x
\end{aligned}
$$

in (9). The continuity of f gives (8) for $x=0$ and $x=-\frac{y}{2}$.
Theorem 2. Let $\delta \in(0,1)$ and $\beta>0$ be real numbers. For the function $f_{\beta}:[-\delta, \delta] \rightarrow \mathbb{R}$

$$
f_{\beta}(x)= \begin{cases}x^{2} \ln \left(-\ln \left(|x|^{\beta}\right)\right), & \text { if } x \neq 0 \tag{10}\\ 0, & \text { if } x=0 .\end{cases}
$$

we have

$$
\begin{gather*}
f_{\beta}(x+2 y)-2 f_{\beta}(x+y)+f_{\beta}(x)-2 f_{\beta}(y)=o\left(y^{2}\right) \tag{11}\\
((x, y) \rightarrow(0,0), x \leq 0 \leq x+2 y),
\end{gather*}
$$

but there exists no quadratic function $q: \mathbb{R} \rightarrow \mathbb{R}$, such that

$$
f_{\beta}(x)-q(x)=o\left(|x|^{2}\right) \quad(x \rightarrow 0) .
$$

Proof. Let $\delta \in(0,1)$ and $\beta>0$ be given and we define the function $f=f_{\beta}:[-\delta, \delta] \rightarrow \mathbb{R}$ by (10).

We prove that (11) holds for this function. Let

$$
\begin{gathered}
F(x, y)=\frac{f(x+2 y)-2 f(x+y)+f(x)-2 f(y)}{y^{2}} \\
\left(y \in\left(0, \frac{\delta}{2}\right], x \in[-2 y, 0]\right) .
\end{gathered}
$$

For $y \in\left(0, \frac{\delta}{2}\right], x \in(-2 y, 0), x \neq-y$ we have

$$
\begin{aligned}
\frac{\partial F}{\partial x}(x, y)= & \frac{1}{y^{2}}\left(2(x+2 y) \ln \left(-\ln \left(|x+2 y|^{\beta}\right)\right)+\frac{\beta(x+2 y)}{\ln \left(|x+2 y|^{\beta}\right)}\right. \\
& -4(x+y) \ln \left(-\ln \left(|x+y|^{\beta}\right)\right)-2 \frac{\beta(x+y)}{\ln \left(|x+y|^{\beta}\right)} \\
& \left.+2 x \ln \left(-\ln \left(|x|^{\beta}\right)\right)+\frac{\beta x}{\ln \left(|x|^{\beta}\right)}\right),
\end{aligned}
$$

that is

$$
\frac{\partial F}{\partial x}(x, y)=\frac{2}{y^{2}}(g(x+2 y)-2 g(x+y)+g(x)),
$$

where

$$
g(x)= \begin{cases}x\left(\ln \left(-\ln \left(|x|^{\beta}\right)\right)+\frac{\beta}{2 \ln \left(|x|^{\beta}\right)}\right), & \text { if } x \in[-\delta, \delta], x \neq 0, \\ 0, & \text { if } x=0 .\end{cases}
$$

This function is continuous, odd, two times differentiable on $(0, \delta)$ and $g^{\prime \prime}(x)<0,(x \in(0, \delta))$. Lemma 2 gives

$$
\frac{\partial F}{\partial x}(x, y) \geq 0 \quad\left(y \in\left(0, \frac{\delta}{2}\right], x \in(-2 y,-y)\right)
$$

and

$$
\frac{\partial F}{\partial x}(x, y) \leq 0 \quad\left(y \in\left(0, \frac{\delta}{2}\right], x \in(-y, 0)\right)
$$

therefore, for a fixed $y \in\left(0, \frac{\delta}{2}\right], F$ is increasing in its first variable on the interval $(-2 y,-y)$ and decreasing in its first variable on $(-y, 0)$. Furthermore, F is continuous in its first variable and

$$
\lim _{y \rightarrow 0} F(-2 y, y)=\lim _{y \rightarrow 0} F(-y, y)=\lim _{y \rightarrow 0} F(0, y)=0,
$$

which implies (11) for f.
Now we suppose that $q: \mathbb{R} \rightarrow \mathbb{R}$ is a quadratic function with the property

$$
f(x)-q(x)=o\left(|x|^{2}\right) \quad(x \rightarrow 0) .
$$

The function f is continuous, therefore, there exists a real number $\varepsilon>0$, such that q is bounded on the interval $(0, \varepsilon)$, thus it has the form $q(x)=$
$c x^{2},(x \in \mathbb{R})$ with a $c \in \mathbb{R}$. However, there does not exist a $c \in \mathbb{R}$ for which

$$
\lim _{x \rightarrow 0}\left(\ln \left(-\ln \left(|x|^{\beta}\right)\right)-c\right)=0 .
$$

Remark. The construction of the counterexamples in Theorem 2 is based on [7], where the function $f:(0,1) \rightarrow \mathbb{R}, f(x)=x \ln (-\ln (x))$ was given.

References

[1] A. Dinghas, Zur Theorie der gewöhnlichen Differentialgleichungen, Ann. Acad. Sci. Fennicae, Ser. A I 375 (1966).
[2] A. Gilányı, Charakterisierung von monomialen Funktionen und Lösung von Funktionalgleichungen mit Computern, Diss., Univ. Karlsruhe, 1995.
[3] A. Gilányı, A characterization of monomial functions, Aequationes Math. 54 (1997), 289-307.
[4] A. Gilányı, On locally monomial functions, Publ. Math. Debrecen 51 (1997), 343-361.
[5] E. Popoviciu, Teoreme de medie din analiza matematică şi legătura lor cu teoria interpolării, Editura Dacia, Cluj, 1972.
[6] A. Simon and P. Volkmann, Eine Charakterisierung von polynomialen Funktionen mittels der Dinghasschen Intervall-Derivierten, Results in Math. 26 (1994), 382-384.
[7] A. Simon and P. Volkmann, Perturbations de fonctions additives, Ann. Math. Silesianae 11 (1997), 21-27.
[8] F. Skof and S. Terracini, Sulla stabilità dell'equazione funzionale quadratica su un dominio ristretto, Atti della Accademia delle Scienze di Torino 121 no. 5-6 (1987), 153-167.
[9] P. Volkmann, Die Äquivalenz zweier Ableitungsbegriffe, Diss., Freie Univ. Berlin, 1971.

ATTILA GILÁNYI
INSTITUTE OF MATHEMATICS AND INFORMATICS
LAJOS KOSSUTH UNIVERSITY
H-4010 DEBRECEN, P.O. BOX 12.
HUNGARY
E-mail: gil@math.klte.hu

