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A generalization of a theorem of Piccard

By ANTAL JÁRAI (Budapest)

Dedicated to Professors Zoltán Daróczy and Imre Kátai
on the occasion of their sixtieth birthday

Abstract. In this paper the theorem of Piccard stating that the sum of two Baire
sets having second Baire category contains a nonvoid open set is generalized: addition
is replaced by a smooth function with several variables.

A famous theorem of Steinhaus asserts that the sum of two measur-
able subsets of the real line with positive measure contains an interval.
This theorem has numerous generalizations: R can be replaced by other
topological measure spaces, and addition can be replaced by a function of
two or more variables. The results have applications in the investigation
of regular solutions of functional equations: see the papers Sander [1976]
and Járai [1993], in which further references can be found. We remark
that as Sander pointed out, the measurability of one of the sets can be
omitted.

The analogous result of Piccard states that the sum of two Baire
sets having second Baire category has an inner point. Very strong gen-
eralizations exists; in this case also addition can be replaced by a two
variable function with weak solvability conditions. These results are use-
ful in the proof of “Baire property implies continuity” and “Baire prop-
erty implies boundedness” type regularity theorems for functional equa-
tions. We refer the reader to the papers Sander [1978], [1979], [1981],
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Kominek [1973], Járai [1986] and Grosse-Erdmann [1989] and the ref-
erences cited therein.

The purpose of this paper is to give a generalization of the theorem
of Piccard in which addition is replaced by a smooth function F with
several variables. This will include the well-known special case stating
that if F : Rk × Rk → Rk then F (A1 × A2) has an interior point. Let
us observe that considering a function F : Rkn → Rk, n > 2 is a trivial
generalization. To obtain a proper generalization we have to consider a
function F : Rkn → Rk(n−1) or more generally a function F : Rr → Rm

where m is not much less than r.

Notations. All normed spaces are assumed to be real ; the norm will
be denoted by | |. The notation ‖ ‖ will be used only for the operator norm
of linear operators. If f : D → Y is a function mapping an open subset
of a normed space into a normed space, then f ′ will denote the derivative
of f . If D ⊂ X1 ×X2 × . . .×Xn we will use the notations

Dxi =
{
(x1, . . . , xi−1, xi+1, . . . , xn) : (x1, . . . , xn) ∈ D

}

for the partial sets. The partial functions fxi : Dxi → Y are defined by

fxi(x1, . . . , xi−1, xi+1, . . . , xn) = f(x1, . . . , xn)

whenever (x1, . . . , xn) ∈ D. The sets Dxi1 ,... ,xir
and functions fxi1 ,... ,xir

are defined similarly. If Xi and Y are normed spaces and the domain of
the partial function fx1,... ,xi−1,xi+1,... ,xn is an open subset of Xi, then the
derivative of this function defines the partial derivative denoted by

∂if, ∂xif or
∂f

∂xi

if it exists. Concerning topology we follow the terminology and notations
of Bourbaki [1966]. Hence every regular, completely regular, normal,
compact and locally compact space is supposed to be Hausdorff . We will
say that a subset A of a topological space X is of first category , if A can
be represented as a countable union of nowhere dense sets, otherwise A is
of second category . X is called a Baire space if every nonvoid open subset
of X is of second category. A will be called a Baire set if there exists an
open set V such that the symmetric difference A4 V has first category.
The function f has the Baire property on A if the domain of f contains
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A except a set of first category, the range of f is in a topological space Y

and A ∩ f−1(W ) is a Baire set in X for every open subset W of Y . We
note that several authors, including Bourbaki [1966], use another termi-
nology. The most important facts concerning these notions can be found
in Bourbaki [1966]; see Chapter IX, §5, and the corresponding exercises.
Combining these facts with the proof in Oxtoby [1971], Chapter 15, we
get the following form of a well-known theorem of Kuratowsky and Ulam:

Theorem [Kuratowsky, Ulam]. Let X and Y be topological spaces,

and suppose that Y has a countable base. Let E be a Baire set in X × Y .

Then except for a set of points x of X which is of first category the set Ex

is a Baire set. Moreover E is of first category if and only if the set Ex is

of first category in Y with the exception of a set of x’s of first category.

The following theorem is an abstract version of our generalization of
the theorem of Piccard.

Theorem. Let T , Y and Xi be topological spaces, gi : T × Y → Xi

continuous functions, and suppose that gi,t(B) has second Baire category

whenever B ⊂ Y is a subset of Y with second Baire category. Suppose

that Ai ⊂ Xi and Ai is a Baire set whenever 1 ≤ i ≤ n. Then the set V

of points t ∈ T for which
n⋂

i=1

g−1
i,t (Ai)

is of second category is an open subset of T .

Proof. The sets Ai can be written in the form Ai = Ei4Mi, where
Ei is open and Mi is of first category. Suppose that t0 ∈ V , and let
K =

⋂n
i=1 g−1

i,t0
(Ai), K ′ = K ∩ (⋂n

i=1 g−1
i,t0

(Ei)
)
. Since g−1

i,t0
(Mi) is of first

category in Y whenever i = 1, 2, . . . , n, we have that

K\K ′ ⊂
n⋃

i=1

g−1
i,t0

(Mi)

is of first category, hence K ′ is of second category in Y . Let y0 be a
point of K ′ for which W ∩ K ′ is of second category in Y for each open
neighbourhood W of y0 (see Bourbaki [1966], IX, §5, Exercise 3). Clearly
gi(t0, y0) ∈ Ei if i = 1, 2, . . . , n. Since the sets Ei are open and the
functions gi are continuous, the sets g−1

i (Ei) are open and contain the
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point (t0, y0), hence there exist open sets V ′ and W ′, such that t0 ∈ V ′,
y0 ∈ W ′, and V ′ ×W ′ ⊂ ⋂n

i=1 g−1
i (Ei). We will prove that

W ′ ∩
( n⋂

i=1

g−1
i,t (Ai)

)

is of second category for each t ∈ V ′. Were this not true, the sets

W ′\g−1
i,t (Ai), i = 1, 2, . . . , n

would cover – except for a set of first category – the set W ′. If we prove
that these sets are of first category, then we have a contradiction. But this
follows from the inclusion

W ′\g−1
i,t (Ai) ⊂ g−1

i,t (Mi ∩ Ei),

which is a consequence of W ′ ⊂ g−1
i,t (Ei).

Remark. If we suppose that Y is a complete separable metric space
and X1 is metrizable then we may omit the condition that the set A1 has
the Baire property.

To prove this, let C1 denote the set of all points x1 ∈ X1 such that for
each neighbourhood U1 of x1 the set U1 ∩ A1 is of second Baire category.
It is known (see Bourbaki [1966], IX, §5, Exercise 3) that C1 is a closed
set and A1\C1 is of first category. Let B1 denote the set of inner points
of C1. Then B1 is open and A1\B1 is also of first category. As in the
previous proof we obtain that W ′\g−1

1,t (B1) and W ′\g−1
i,t (Ai), 2 ≤ i ≤ n

are of first category. It is enough to prove that W ′ ∩ g−1
1,t (A1) is of second

category, because then if follows that

W ′ ∩
(

n⋂

i=1

g−1
i,t (Ai)

)

cannot be of first category.
Suppose, that W ′ ∩ g−1

1,t (A1) is of first category. Then, using that
W ′ ∩ g−1

1,t (B1) is an open set of second category, we obtain that

(W ′ ∩ g−1
1,t (B1))\g−1

1,t (A1) = (W ′ ∩ g−1
1,t (B1))\(W ′ ∩ g−1

1,t (A1))
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is a Baire set of second category. Let G be a Gδ subset of second category
of the set above. Then g1,t(G) is of second category as a subset of X1. By
Bourbaki [1966], IX, §6, Exercise 10, g1,t(G) is a Baire set in X1. Clearly
g1,t(G) ⊂ B1\A1. Writing g1,t(G) = U 4 F where U is open and F is of
first category, we see that U ∩ B1 is a nonvoid open set for which the
intersection with A1 is of first category. This contradicts the definition
of B1.

In Laczkovich [1995], II.9.9 it is proved that continuous image of
a Polish space in a Hausdorff space is a Baire set. This shows that it is
enough to suppose that X1 is Hausdorff.

The following lemma allows us to use derivates to verify that the
conditions on the functions gi in the previous theorem are satisfied.

Lemma. Let Y be an open subset of Rk, T a topological space, D
an open subset of T × Y and (t0, y0) ∈ D. Suppose, that the function g :
D → Rr is continuous and has continuous partial derivative with respect

to y. If the rank of
∂g

∂y
(t0, y0) is r, then there exist open neighbourhoods

T ∗ and Y ∗ of t0 and y0, respectively, such that

(i) if B has second category in Y ∗, then gt(B) has second cate-
gory in Rr for each t ∈ T ∗;

(ii) if A is a Baire set in Rr, then g−1
t (A) ∩ Y ∗ is a Baire set in

Y for each t ∈ T ∗.

Proof. Let q = k − r, and let us divide the coordinates of y =
(y1, . . . , yk) into two groups y′ = (y′1, . . . , y′q) and y′′ = (y′′1 , . . . , y′′r ) such
that

det
(

∂g

∂y′′
(t0, y0)

)
= det

(
∂g

∂y′′
(t0, y′0, y

′′
0 )

)
6= 0

be satisfied. Introducing the notation

L(t, y′) =
∂g

∂y′′
(t, y′, y′′0 ),

and using the proof of the inverse function theorem (see Rudin [1964],
Theorem 9.24), we have that if Y ′′ is an open ball in Rr with center y′′0 ,
t ∈ T , (y′, y′′) ∈ Y and

(3)
∥∥∥∥

∂g

∂y′′
(t, y′, y′′)− L(t, y′)

∥∥∥∥ <
1

2 ‖L(t, y′)−1‖
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for all y′′ ∈ Y ′′, then gt,y′ is a homeomorphism of Y ′′ onto an open subset
U(t, y′) of Rr. Now let

0 < β <
1

2 ‖L(t0, y′0)−1‖ .

Using the continuity of expressions in (3), we may choose an open ball Y ′′

with center y′′0 and open sets Y ′ and T ∗, for which t0 ∈ T ∗, y′0 ∈ Y ′,
Y ∗ = Y ′ × Y ′′ ⊂ Y , moreover

∥∥∥∥
∂g

∂y′′
(t, y′, y′′)− L(t, y′)

∥∥∥∥ < β

and
β <

1
2 ‖L(t, y′)−1‖

whenever t ∈ T ∗, y′ ∈ Y ′ and y′′ ∈ Y ′′.
Suppose that there exists a subset B of Y ∗ = Y ′ × Y ′′ of second

category, and a t ∈ T ∗, such that gt(B) is of first category in Rr. Let us
choose a Borel set U of first category in Rr, for which gt(B) ⊂ U ⊂ gt(Y ∗)
and let B∗ = g−1

t (U) ∩ Y ∗. This set B∗ is a Baire set and is of second
category in Y ∗, but gt(B∗) is of first category in Rr. By the Kuratowsky–
Ulam theorem the set of all points y′ ∈ Y ′ for which B∗

y′ is of second
category is a set of second category. On the other hand, by the same
theorem, the set of all points y′ ∈ Y ′ for which B∗

y′ is not a Baire set, is of
first category. From this it follows that there exists y′ ∈ Y ′ for which B∗

y′

is a Baire set of second category in Y ′′. Since gt,y′ is a homeomorphism of
Y ′′ onto U(t, y′), the set gt,y′(B∗

y′) is of second category in Rr. This is a
contradiction, because gt,y′(B∗

y′) ⊂ gt(B∗). Hence (1) is proved.
To prove (2) suppose that A is a Baire set in Rr, and let us choose a

Borel set B for which A ⊂ B and B\A is of first category. Then

g−1
t (A) ∩ Y ∗ =

(
g−1

t (B) ∩ Y ∗) \ (
g−1

t (B\A) ∩ Y ∗) .

Using that g−1
t (B) is a Borel set and g−1

t (B\A) ∩ Y ∗ has first category
by (1), we have that g−1

t (A) ∩ Y ∗ is a Baire set.

Now we are prepared to prove the local version of our generalization of
the theorem of Piccard for a function from an open subset of Rr into Rm.
The condition of the following theorem means, roughly speaking, that the
nullspace of the derivative is large enough and is in general position.
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Theorem. Let X be the r-dimensional Euclidean space, and let

X1, . . . , Xn be orthogonal subspaces of X with dimensions r1, . . . , rn, re-

spectively. Suppose that ri ≥ 1 whenever 1 ≤ i ≤ n and
∑n

i=1 ri = r.

Let U be an open subset of X and F : U → Rm a continuously differ-

entiable function. For each x ∈ U let Nx denote the nullspace of F ′(x).
Let Ai be a Baire subset of Xi (i = 1, 2, . . . , n), and suppose that a ∈ U

and dim Na = r −m. Let pi denote the orthogonal projection of X onto

Xi. Suppose, that pi(Na) = Xi and pi(a) has a neighbourhood Ui such

that Ui\Ai is of first category if 1 ≤ i ≤ n. Then F (A1 × . . . × An) is a

neighbourhood of F (a).

Proof. Let k = r −m. Since the function x 7→ rankF ′(x) is lower
semicontinuous and rank F ′(a) = m, we may suppose that rank F ′(x) = m

for all x ∈ U . Similarly, choosing smaller U , if necessary, we may suppose
that pi(Nx) = Xi whenever x ∈ U and 1 ≤ i ≤ n.

Replacing U with a smaller subset if necessary and using the rank
theorem (see Dieudonné [1971], 10.3.1), we have that there exist map-
pings u, p and v and an open neighbourhood V of b = F (a) in Rm with
the following properties: F |U = v ◦p◦u, u maps U onto the open cube Ir,
where I =]−1, 1[, the mapping u is invertable, u and u−1 are continuously
differentiable; v maps Im onto V injectively, v and v−1 are continuously
differentiable; p is the projection

p : (x1, . . . , xr) 7→ (x1, . . . , xm)

of Ir onto Im. The cube Ir can be written in the form Ir = T × Y , where
T = Im and Y = Ik. Let u(a) = (t0, y0) ∈ T ×Y . We will use some simple
facts from differential geometry (see Dieudonné [1971], 16.8.8).

U ∩ F−1 (v(t)) is a closed submanifold of U for each t ∈ T . The
tangent space of this submanifold at the point x ∈ U ∩ F−1 (v(t)) is the
subspace Nx of the space X. Clearly, u−1 is a diffeomorphism of the closed
submanifold {t} × Y of T × Y onto U ∩ F−1 (v(t)). Let gi = pi ◦ u−1 if
1 ≤ i ≤ n. Due to the choice of U , pi is a submersion of U ∩ F−1 (v(t))
into Xi. Hence we get that the mapping gi,t : Y → Xi is also a submersion,
that is, it has rank ri whenever y ∈ Y and t ∈ T .

By the above lemma there exist sets T ∗ and Y ∗ such that t0 ∈ T ∗ ⊂ T ,
y0 ∈ Y ∗ ⊂ Y and gi,t(B) is of second category whenever B ⊂ Y ∗ has
second category and t ∈ T ∗. Let X∗

i = Xi, A∗i = Ai, and g∗i be the
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restriction of gi to T ∗ × Y ∗. Applying the theorem above to the sets
marked by star we have that the set V ∗ of points t for which

n⋂

i=1

g−1
i,t (Ai)

is of second category is open in T ∗. Since g∗i,t0 maps Y ∗ onto an open
neighbourhood of pi(a) and g∗(t0, y0) = pi(a), there exists an open neigh-
bourhood W of y0 in Y ∗ such that W\g∗−1

i,t0
(Ai) is of first category if

1 ≤ i ≤ n. This proves that t0 ∈ V ∗. Clearly v(V ∗) is an open neigh-
bourhood of b in Rm. If z ∈ v(V ∗), then v−1(z) ∈ V ∗, and hence the
set

n⋂

i=1

g∗−1
i,t (Ai)

is nonvoid. If y is an element of this set then u−1(t, y) ∈ F−1(z) and xi =
pi

(
u−1(t, y)

) ∈ Ai whenever 1 ≤ i ≤ n. This implies F (x1, . . . , xn) = z,
which is enough since v(V ∗) is an open neighbourhood of b = F (a).

Corollary. Let U be an open subset of Rr ×Rr, and let F : (x, y) 7→
F (x, y) be a continuously differentiable mapping of U into Rr. Suppose,

that A,B ⊂ Rr and A, B are Baire sets. If (a, b) ∈ U ,

det
∂F

∂x
(a, b) 6= 0, det

∂F

∂y
(a, b) 6= 0

and there exist a neighbourhoods U and V of a and b respectively such that

U\A and V \B is of first category, then F (A,B) contains a neighbourhood

of F (a, b).

Proof. By the theorem above we only have to prove that p1(Na,b) =
Rr and p2(Na,b) = Rr, where Na,b is the nullspace of F ′(a, b). Let (x, y) ∈
Na,b. If p1(x, y) = 0 then x = 0. Hence

0 = F ′(a, b)(x, y) =
∂F

∂y
(a, b)(y).

But det
∂F

∂y
(a, b) 6= 0, hence y = 0. This proves that p1 : Na,b → Rr is

one-to-one, that is p1(Na,b) = Rr. Similarly, p2(Na,b) = Rr.

The above theorem can be formulated in the following global form:
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Theorem. Let X be the r-dimensional Euclidean space, and let

X1, . . . , Xn be orthogonal subspaces of X with dimensions r1, . . . , rn, re-

spectively. Let pi denote the orthogonal projection of X onto Xi. Sup-

pose that ri ≥ 1 whenever 1 ≤ i ≤ n and
∑n

i=1 ri = r. Let U be

an open subset of X and F : U → Rm a continuously differentiable

function. For each x ∈ U let Nx denote the nullspace of F ′(x). If

dim Nx = r − m and pi(Nx) = Xi whenever x ∈ U and i = 1, 2, . . . , n,

moreover A1 × . . .×An ⊂ U and Ai is a Baire set having second category

if 1 ≤ i ≤ n, then F (A1 × . . .×An) contains a nonvoid open set.

Proof. A Baire set Ai can be written in the form Ui4Fi where Ui is
a nonvoid open set and Fi is of first category. For any a ∈ U1×U2×. . .×Un

we may apply the previous theorem.

Remark. Using the previous Remark, we may omit the condition that
A1 is a Baire set.
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versity, Budapest, 1995.

[8] J. C. Oxtoby [1971], Mass und Kategorie, Springer, Berlin, Heidelberg, New

York, 1971.

[9] S. Piccard [1939], Sur les ensembles de distances des ensembles de points d’un es-

pace euclidien, Secrétariat de l’Université Neuchâtel, vol. 13, Mém. Univ. Neuchâtel,

1939.

[10] W. Rudin [1964], Principles of mathematical analysis, 2nd edn, McGraw-Hill, New

York, 1964.

[11] W. Sander [1976], Verallgemeinerungen eines Satzes von H. Steinhaus, Manu-

scripta Math. 18 (1976), 25–42; Errata hierzu, Manuscripta Math. 20 (1977),

101–103.
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